JPS62133051A - Manufacture of alpha+beta (alpha+beta)-type titanium alloy - Google Patents

Manufacture of alpha+beta (alpha+beta)-type titanium alloy

Info

Publication number
JPS62133051A
JPS62133051A JP27203185A JP27203185A JPS62133051A JP S62133051 A JPS62133051 A JP S62133051A JP 27203185 A JP27203185 A JP 27203185A JP 27203185 A JP27203185 A JP 27203185A JP S62133051 A JPS62133051 A JP S62133051A
Authority
JP
Japan
Prior art keywords
beta
alpha
alloy
transus
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27203185A
Other languages
Japanese (ja)
Inventor
Minoru Okada
稔 岡田
Tomio Nishikawa
西川 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27203185A priority Critical patent/JPS62133051A/en
Publication of JPS62133051A publication Critical patent/JPS62133051A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture, at a low cost, an alpha+beta-type Ti alloy material having strength and ductility equal to those of parts to which sufficient alpha+beta working is applied, by subjecting an alpha+beta=type Ti alloy to a combination of beta-working and heat treatment under specific conditions. CONSTITUTION:The alpha+beta-type Ti alloy such as the one of Ti-6Al-4V, etc., is worked at >=80% reduction in area in a beta-single phase range in the range of temp. at and above beta-transus. Then the alloy is held at a temp. lower than the beta-transus by 20-90 deg.C for >=4hr and cooled slowly down to 550 deg.C or below at <=0.5-10 deg.C/sec cooling rate. Successively, the alloy is reheated to a temp. of 20-90 deg.C below the beta-transus, held at the temp. for less than 4hr, and cooled down to <=550 deg.C at 0.5-10 deg.C/sec cooling rate. The alloy is further aged at 540-650 deg.C for 4-10hr and cooled to room temp. In this way, alpha+beta-type Ti alloy parts excellent in toughness as well as in strength can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、α+β型チタン合金の製造方法、特に加工と
熱処理そして時効処理とを組合せてなる、高強度、高延
性α→−β型チクン合金の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing an α+β type titanium alloy, particularly a high strength, high ductility α→-β type titanium alloy produced by combining processing, heat treatment and aging treatment. This invention relates to a method for producing an alloy.

(従来の技術) チタン合金は、実用金属の中で最も比重強度(=強度/
比重)が高く、かつ高温強度も高いことから航空機用材
料として広く用いられている。さらにその特性を利用し
て自動車部品の軽量化のために特にエンジン部品、例え
ばパルプ、バルブ・スプリング等に利用されようとして
いる。ところが、自動車部品等の一般工業製品にチタン
合金を利用する場合、価格が高いことが最大の問題点と
なる。
(Conventional technology) Titanium alloy has the highest specific gravity strength (=strength/
It is widely used as an aircraft material because of its high specific gravity) and high high-temperature strength. Furthermore, by taking advantage of its properties, it is being used to reduce the weight of automobile parts, especially engine parts, such as pulp and valve springs. However, when titanium alloys are used in general industrial products such as automobile parts, the biggest problem is that they are expensive.

ところで、チタン合金はその金属組織上、α型そしてα
+β型およびβ型の3種の合金に区分される。このうち
、自動車部品等の高強度材料としてはα+β型が多用さ
れている。そしてこのα+β型チタン合金はα+β域に
おいて十分な加熱と加工を行い微細な等軸組織を得るこ
とが高い強度と延性を得るためには必要とされている。
By the way, titanium alloy has α-type and α-type due to its metallographic structure.
It is classified into three types of alloys: +β type and β type. Among these, the α+β type is often used as a high-strength material for automobile parts and the like. In order to obtain high strength and ductility, this α+β type titanium alloy must be sufficiently heated and processed in the α+β region to obtain a fine equiaxed structure.

ところが、α+β域での加工は変形抵抗も大きくかつ加
工温度範囲も狭い範囲に限定され、加工コストが大きく
なる原因となっている。一方、β域では加工が容易であ
り、大きな圧下率をとることができることが知られてい
る。したがって、α+β域での加工度を大幅に減少し、
はとんどの加工をβ域で行うことが可能となれば加工コ
ストの低下に大きく寄与し得ることが期待できる。
However, machining in the α+β region has a large deformation resistance and the machining temperature range is limited to a narrow range, causing an increase in machining cost. On the other hand, it is known that processing in the β range is easy and a large reduction ratio can be achieved. Therefore, the degree of machining in the α+β region is significantly reduced,
If it becomes possible to perform most of the processing in the β region, it is expected that it will greatly contribute to lower processing costs.

(発明が解決しようとする問題点) 本発明の目的は、α+β加工を行わすβ加工と熱処理と
の組合せにより十分なα+β加工を行った線材と同等の
強度と延性の組合せを持つα+β型チタン合金を低コス
トで製造する方法を提供することである。
(Problems to be Solved by the Invention) The purpose of the present invention is to produce α+β type titanium that has the same combination of strength and ductility as a wire rod that has undergone sufficient α+β processing by combining β processing and heat treatment. It is an object of the present invention to provide a method for producing alloys at low cost.

また、本発明の別の目的は、α+β型チタン合金、特に
棒材、線材および熱延板材を鉄鋼の高速棒材および線材
圧延ラインあるいは熱延板圧延ラインで製造することが
可能となる、α+βチタン合金の製造方法を提供するこ
とである。
Another object of the present invention is to make it possible to produce α+β type titanium alloys, particularly bars, wire rods, and hot-rolled sheets, on a high-speed steel bar and wire rod rolling line or a hot-rolled plate rolling line. An object of the present invention is to provide a method for producing a titanium alloy.

(問題点を解決するための手段) ところで、チタン合金にあって延性を高い水率に保つに
は、β加工で得られる針状組織ではなく等軸&+[11
1とする必要がある。針状組織を等軸Ml HMにかえ
るのには、αよβ域での十分な加熱と加工を与える方法
の他、すでに多くの文献に開示されているごとく (常
温〜600)°c〜(850〜1000) ℃の温度範
囲で2〜10回の繰り返し加熱−冷却を行う方法が知ら
れている。
(Means for solving the problem) By the way, in order to maintain the ductility of a titanium alloy at a high water content, it is necessary to create an equiaxed &+[11
It is necessary to set it to 1. In order to change the acicular structure to equiaxed Ml HM, in addition to the method of applying sufficient heating and processing in the α and β regions, as already disclosed in many literatures, (room temperature ~ 600) °C ~ ( A method is known in which heating and cooling are repeated 2 to 10 times in the temperature range of 850 to 1000°C.

ところが、本発明者らが鋭意研究を行った結果、断面減
少率80%以上のβ加工を行い、β粒を細粒化した材料
ではくり返し加熱によらなくてもβトランザス以下20
〜90℃の温度範囲に1回加熱し4時間以内の保持後、
550℃以下まで0.1’c/秒以下の冷却速度で冷却
を行うことにより十分に等軸化の効果が得られることを
見出した。そこでさらに、この点を検討したところ、こ
の等軸化熱処理方法に、微細化熱処理方法さらに時効処
理を組合せることにより、α+β鍛造後焼鈍材とほぼ同
等の強度、延性が得られることを知り、本発明を完成し
た。
However, as a result of intensive research by the present inventors, we found that in materials in which β grains are refined by β processing with a cross-section reduction rate of 80% or more, the β transus is less than 20% without repeated heating.
After heating once to a temperature range of ~90°C and holding for less than 4 hours,
It has been found that a sufficient equiaxed effect can be obtained by cooling to 550° C. or lower at a cooling rate of 0.1'c/sec or lower. So, we further investigated this point and found that by combining this equiaxed heat treatment method, refinement heat treatment method, and aging treatment, it is possible to obtain strength and ductility almost equivalent to α + β forged and then annealed material. The invention has been completed.

ここに、本発明の要旨とするところは、α+β型チタン
合金にβ−トランザス以上の温度領域のβ牟相域で断面
減少率80%以上となる加工を行った後、β−トランザ
スより20〜90℃低い温度に4時間以内保持してから
、550℃以下の温度まで0゜1℃/秒以下の冷却速度
で冷却し、次いで、β−トランザス以下20〜90℃の
温度に再び加熱してから、550℃以下まで0.5°C
/秒以上、10℃/sec以下の冷却速度で冷却し、さ
らに、540〜650°Cの温度で4〜10時間の時効
処理を行い室温まで冷却することを特徴とする、α+β
型チタン合金の製造方法である。
Here, the gist of the present invention is that after processing an α+β type titanium alloy to achieve a cross-section reduction rate of 80% or more in the β phase region in the temperature range above the β-transus, held at a low temperature for no more than 4 hours, then cooled to a temperature below 550°C at a cooling rate of no more than 0°1°C/sec, then heated again to a temperature between 20 and 90°C below the β-transus; 0.5°C below 550°C
α+β, characterized by cooling at a cooling rate of 10° C./sec or more and 10° C./sec or less, and further aging treatment at a temperature of 540 to 650° C. for 4 to 10 hours and cooling to room temperature.
This is a method for manufacturing type titanium alloy.

なお、本発明に云うα+β型合金とは、常温でα品と3
品のl昆合組織を有するとともに、高温加熱によってβ
トランザス超の温度で8品単独の組織を呈する合金をい
い、例えばTi −6AQ −4Vで代表されるもので
ある。また、本方法に供する合金は主に鋳塊であるが、
何らかの手段で710工された合金を供してもよい。
In addition, the α+β type alloy referred to in the present invention refers to the α type alloy and the 3 type alloy at room temperature.
In addition to having the same structure as that of a product, β
It refers to an alloy that exhibits an individual eight-component structure at temperatures above the transus, and is typified by, for example, Ti-6AQ-4V. In addition, although the alloy used in this method is mainly an ingot,
An alloy processed by some means may be provided.

(作用) 次に、添付図面に示ず熱処理チャートにもとすいて本発
明の方法をさらに説明する。
(Function) Next, the method of the present invention will be further explained with reference to a heat treatment chart not shown in the accompanying drawings.

第1図(八)および(B)はそれぞれ従来法と本発明法
によるα+β型チタン合金の製造方法を図示するもので
、第1図(八)に示す従来法においては、圧延素材、例
えばインゴットにまずβ加工を行い鋳塊の凝固組織を破
壊した後、結晶粒の等軸化および微細化を目的として、
通常断面減少率が50%以上の十分なα+β加工を行い
、その後、例えば700〜800℃の適切な温度での焼
鈍を行う。しかしながら、そのα+β域での加工は一般
に困難で、しかも50%以上という加工は高度の技術を
要する高価なものである。
Figures 1 (8) and (B) illustrate methods for producing α+β type titanium alloys by the conventional method and the method of the present invention, respectively. In the conventional method shown in Figure 1 (8), the rolled material, e.g. First, β processing is performed to destroy the solidified structure of the ingot, and then with the aim of making the grains equiaxed and refined,
Usually sufficient alpha+beta processing is carried out so that the area reduction rate is 50% or more, and then annealing is carried out at an appropriate temperature of, for example, 700 to 800 degrees Celsius. However, processing in the α+β region is generally difficult, and processing of 50% or more is expensive and requires advanced technology.

一方、本発明にかかる方法は第1図(B)に示す如くす
べての加工をβ域で行い、その後、結晶粒の等軸化熱処
理および微細化熱処理を順次行うのである。
On the other hand, in the method according to the present invention, as shown in FIG. 1(B), all processing is performed in the β region, and then a heat treatment for equiaxed crystal grains and a heat treatment for grain refinement are sequentially performed.

ここに、本発明にあって、従来のようにインゴットを圧
延素材としてもよ(、あるいはその他の適宜α+β型チ
タン合金材を圧延素材としてもよく、それらに先ずβ域
で80%以上の加工を行うのである。β加工を80%以
上とした理由は、80%未満のβ加工では、β粒の微細
化が十分でなく、後続工程で本発明の等軸化熱処理およ
び微細化熱処理を行っても等軸化および微細化が十分で
なく、したがって後述の実施例において比較例として示
したように、0.2%耐力および絞りの十分な改善が行
われないからである。
Here, in the present invention, an ingot may be used as a rolled material as in the past (or other appropriate α+β type titanium alloy materials may be used as a rolled material, and they are first processed by 80% or more in the β region). The reason why β processing is set at 80% or more is that β grains are not sufficiently refined by β processing of less than 80%, so the equiaxed heat treatment and refinement heat treatment of the present invention are performed in the subsequent process. This is because equiaxedization and refinement are not sufficient, and therefore, as shown as a comparative example in the Examples described later, sufficient improvement in 0.2% proof stress and reduction of area cannot be achieved.

また、等軸化処理においてその温度領域をβトランザス
より(20〜90℃)低い温度領域とした理由は、[β
トランザス−20℃]超の温度では例えば30%以下と
α相の比率が低くなりすぎ、一方、[βトランザス−9
0℃]未溝の温度では逆に70%以上とα相の比率が多
すぎ、等軸の再結晶粒を得ることができないためである
。この場合、等軸化には先ず、βトランザスより(20
〜90℃)低い大領域で残留するα相(1次αと呼ぶ)
の球状化(等軸化)が必要であり、このためβトランザ
ス−(20〜90°C)の温度領域で適当な時間の保持
が必要であり、好ましくは1時間程度の保持が必要であ
る。一方、4時間超の保持では1次α相が成長し好まし
くない。
In addition, the reason why the temperature range in the equiaxed processing was set to be lower (20 to 90°C) than the β transus is because [β
At temperatures above [transus -20°C], the ratio of α phase becomes too low, for example below 30%; on the other hand, [β transus -9
0° C.] At the ungrooved temperature, on the other hand, the ratio of the α phase is 70% or more, which is too high, making it impossible to obtain equiaxed recrystallized grains. In this case, equiaxedization first requires (20
α phase remaining in a large region at low temperature (~90℃) (referred to as primary α)
It is necessary to spheroidize (equaxed), and for this reason, it is necessary to hold it in the β transus temperature range (20 to 90°C) for an appropriate amount of time, preferably for about 1 hour. . On the other hand, holding for more than 4 hours causes the primary α phase to grow, which is not preferable.

なお、この保持は、β加工後一旦550°C以下にまで
冷却してからβトランザスより20〜90°C低い温度
に加熱して保持することが必要である。
Note that for this holding, it is necessary to once cool down to 550°C or less after β processing, and then heat and hold at a temperature 20 to 90°C lower than the β transus.

所定時間保持した後は、550℃以下まで0.1℃/s
ec以下で冷却する。これはβトランザス−(20〜9
0°C)の温度領域に保持された時にβ相として残留し
た部分から、冷却中に2次α相が析出し、この2次α相
を等軸品として析出させるには0.1℃/sec以下の
遅い冷却速度とすることが必要となるためである。55
0℃未満の温度範囲では2次α相の析出は起こらず、し
たがって冷却速度の制御は550℃までで良い。
After holding for a specified time, 0.1℃/s until below 550℃
Cool down below ec. This is β transus-(20~9
During cooling, a secondary α phase precipitates from the portion that remained as a β phase when kept in the temperature range of 0°C), and in order to precipitate this secondary α phase as an equiaxed product, a temperature of 0.1°C/ This is because a slow cooling rate of sec or less is required. 55
Precipitation of the secondary α phase does not occur in a temperature range below 0°C, so the cooling rate can be controlled up to 550°C.

次に、本発明にあっては微細化処理を行うが、その場合
の加熱限度を同じくβ;・ランザスより(20〜90℃
)低い領域とした理由は、2次α相を微細に析出させる
ためには、1次α相が、30〜70%、好ましくは50
%程度残存してβ結晶粒の成長を抑えることが必要であ
り、このためβ−(20〜90℃)に保持することが必
要であるためである。
Next, in the present invention, a finer treatment is performed, but the heating limit in that case is also β;
) The reason for the low region is that in order to finely precipitate the secondary α phase, the primary α phase must be 30 to 70%, preferably 50%.
This is because it is necessary to suppress the growth of β-crystal grains by remaining about %, and therefore it is necessary to maintain the temperature at β-(20 to 90°C).

その場合、微細化には全断面にわたってβトランザス−
(20〜90°C)の温度領域にあることが必要で、こ
のため適切な時間の保持、好ましくは1時間程度の保持
が必要である。4時間超の保持では1次α相が成長し好
ましくない。
In that case, miniaturization requires β transus across the entire cross section.
(20 to 90°C), and for this reason, it is necessary to hold the temperature for an appropriate time, preferably about 1 hour. If the holding time exceeds 4 hours, the primary α phase will grow, which is not preferable.

所定時間保持した後は、550℃以下まで0.5℃/s
ee以上、10℃/sec以下の冷却速度で冷却するが
、これは、10°C/se(超ではマルテンサイト変態
がおこり本発明の目的である、α相の微細化処理は実現
されないためである。一方、0.5℃/sec未満の冷
却速度では2次α相が粗大化して析出してしまう。した
がって、本発明にあっては、0.5℃/sec以上、1
0°C/seC以下の冷却速度であることが必要となる
。また550°C未満の温度範囲では2次α相の析出は
すでに起こらず、したがって冷却速度の制御は550℃
までで良いことになる。
After holding for a specified time, 0.5℃/s until below 550℃
Cooling is performed at a cooling rate of ee or more and 10°C/sec or less. This is because if the cooling rate exceeds 10°C/sec, martensitic transformation will occur and the refinement of the α phase, which is the objective of the present invention, will not be achieved. On the other hand, if the cooling rate is less than 0.5°C/sec, the secondary α phase will coarsen and precipitate. Therefore, in the present invention, if the cooling rate is less than 0.5°C/sec,
A cooling rate of 0°C/secC or less is required. Furthermore, in the temperature range below 550°C, precipitation of the secondary α phase no longer occurs, and therefore the cooling rate cannot be controlled at 550°C.
That's a good thing.

このようにして得られたα+β型チタン合金の加工材に
は時効処理を行うが、微細化処理の効果を上げ、α+β
鍛造および焼鈍材と同等の強度を得るためには、βトラ
ンザス−(20〜90℃)の温度jl域から0.5℃/
sec以上で冷却した時に、2次α品が析出した後の母
相として残留したβ相からさらに時効により微細な3次
α品を析出させることが必要である。
The processed material of the α+β type titanium alloy obtained in this way is subjected to aging treatment, which improves the effect of the refinement treatment and
In order to obtain strength equivalent to forged and annealed materials, the temperature should be increased by 0.5℃/
It is necessary to further precipitate fine tertiary α products by aging from the β phase that remains as a parent phase after the secondary α products are precipitated when cooled for more than sec.

このための時効は、540℃X4h〜650℃×10h
であることが必要で、540℃X4h未満の条件では3
次α晶の析出が十分でなく、650℃X loh超では
3次α品がむしろ成長してしまうためである。
Aging for this is 540℃ x 4h to 650℃ x 10h
3 for conditions less than 540℃ x 4 hours.
This is because the precipitation of secondary α-crystals is not sufficient, and tertiary α-crystals rather grow at temperatures exceeding 650°C.

第2図は、本発明により得られるα+β型チタン合金の
金属ミクロMi織の模式図であり、図中、1次α品を取
り囲んで2次α品が析出し、その間に3次α品が析出し
ているのが分かる。各7品は微細に分散しているため、
高強度化、高靭化が実現されるのである。
FIG. 2 is a schematic diagram of the metal micro-Mi weave of the α+β type titanium alloy obtained by the present invention. In the figure, the secondary α product is precipitated surrounding the primary α product, and the tertiary α product is in between. It can be seen that it is precipitated. Each of the seven items is finely dispersed, so
This results in higher strength and toughness.

次に、実施例によって本発明をさらに具体的に説明する
Next, the present invention will be explained in more detail with reference to Examples.

実施例1 第1表に示す組成を有するα+β型チタン合金であるT
i−6AQ−4V合金を溶製して、直径400mm×長
さ1800mmのインゴットを得、次いでこれを115
0℃に加熱し、終了温度990℃でβ鍛造して直径を1
00mmの丸棒とし、さらにこれを1100℃に加熱し
終了温度990℃でβ圧延して第2表に示す各断面減少
率に相当する直径の丸棒とした。次いでこのようにして
得られた棒あるいは線材を第2表に示す各熱処理条件で
それぞれ処理し、得られたα+β型チタン合金の線材か
ら、試験片を採取し、その機械的特性を評価した。結果
を同じく第2表にまとめて示す。
Example 1 T is an α+β type titanium alloy having the composition shown in Table 1.
The i-6AQ-4V alloy was melted to obtain an ingot with a diameter of 400 mm and a length of 1800 mm.
Heated to 0℃ and β-forged at a finishing temperature of 990℃ to a diameter of 1
This was further heated to 1100° C. and β-rolled at a finishing temperature of 990° C. to obtain a round bar having a diameter corresponding to each cross-sectional reduction ratio shown in Table 2. The rods or wire rods thus obtained were then treated under the respective heat treatment conditions shown in Table 2, and test pieces were taken from the resulting α+β type titanium alloy wire rods and their mechanical properties were evaluated. The results are also summarized in Table 2.

第1表 (重量%) 第2表において、患18が従来法のβ加工+(α+β)
加工士焼鈍による例であり、隘28は、β加工+焼鈍に
よる例である。1m1Bでは強度、延性ともに良好な組
合せが得られているのに対し、阻28では、延性が十分
に得られていない。
Table 1 (weight %) In Table 2, patient 18 is β processed by the conventional method + (α + β)
This is an example of annealing by a processing worker, and the case 28 is an example of β processing + annealing. With 1m1B, a good combination of both strength and ductility was obtained, whereas with 28 mm, sufficient ductility was not obtained.

一方、連1および磁4の本発明方法の実施例では強度、
伸びは患18と比較しても同程度であり、絞りは11に
118に比べると小さいが阻28よりもはるかに良好で
、AMS規格や旧り規格(≧25%)にも合格する実質
上問題のない値が得られている。
On the other hand, in the embodiments of the method of the present invention in series 1 and magnet 4, the strength
The elongation is the same compared to the 118, and the aperture is smaller than the 11 and 118, but it is much better than the 28, and it practically passes the AMS standard and the old standard (≧25%). Values without problems are obtained.

次にβ加工度の効果を隘1および隘4と阻19の比較で
検討する。NQI9の50%加工ではその後の等軸化お
よび微細化熱処理を行っても強度、延性の改善はいずれ
も十分でなくβ加工度はml、Th4のごと<80%以
上必要であることがわかる。
Next, the effect of the degree of β processing will be examined by comparing 1, 4, and 19. It can be seen that in 50% processing of NQI9, even if the subsequent equiaxedization and refinement heat treatments are performed, neither the strength nor the ductility is sufficiently improved, and the degree of β processing is required to be <80% or more in terms of ml and Th4.

次に、等軸化熱処理条件を隘1.5.6.9.10およ
び階20.21.22.29の比較で検討する。保持条
件としては隘18の880°cx1hでは等軸化の進行
が十分でなく、患21の980°cxlhでは残存する
α相が極端に少なくなりすぎ等軸化が進行せず、いずれ
も強度、延性ともに改善されておらず、阻5.6に示し
た900〜970°C1すなわちβトランザス(Ti−
6AQ−4Vテ990 ℃)以下20〜90℃の温度範
囲とすることが必要であることが分かる。また保持時間
は寛29の8hでは結晶粒が成長し、NQ9およびlO
に示すように好ましくは4時間以下とするのが適当であ
る。
Next, the equiaxed heat treatment conditions will be examined by comparing 1.5.6.9.10 and 20.21.22.29. Regarding the holding conditions, at 880° cxlh in No. 18, the progress of equiaxedization is not sufficient, and at 980° cxlh in No. 21, the remaining α phase is too small, and equiaxedization does not progress. Neither the ductility nor the ductility was improved, and the 900-970°C1 shown in 5.6, that is, the β transus (Ti-
It can be seen that it is necessary to keep the temperature within the range of 20 to 90°C below 6AQ-4V (990°C). In addition, when the holding time was 8 h in Kan 29, crystal grains grew and NQ9 and lO
As shown in , it is preferable to set the time to 4 hours or less.

また冷却速度の効果をk 1 、Ik 2と11kL2
2で比較すると、冷却速度を1.0°C/秒とした場合
等軸化が十分でなく特に延性の改善が十分でなく、0.
1℃/秒以下とする必要がある。
Also, the effect of cooling rate is k 1 , Ik 2 and 11kL2
2, it is found that when the cooling rate is 1.0°C/sec, the equiaxed formation is not sufficient and the improvement in ductility is not sufficient.
It needs to be 1°C/second or less.

次に、微細化熱処理条件を、患7.8.11.12.1
3.14および患23.24.25.30の比較で検討
する。
Next, the refinement heat treatment conditions were changed to 7.8.11.12.1.
3.14 and 23.24.25.30.

阻23の850℃Xlhではα相の比率が高すぎて微細
化効果が十分でなく強度、延性ともに十分な改善が行わ
れず、Ilb、24の980℃Xlhではα相の比率が
低くなりすぎ延性の改善が十分でない。
At 850 °C improvement is not sufficient.

また、階30の950℃x8h保持では、結晶粒が成長
してしまい微細化効果が十分ではない。さらに冷却速度
の効果についてみるとll&125の0.1℃/秒では
、冷tJI途中に結晶粒が成長してしまい強度の改1q
が十分ではない。また、第2表には示していないが、i
o’c/沙超ではマルテンサイトが生成し、本来の目的
が達成されない。
In addition, when holding the stage 30 at 950° C. for 8 hours, crystal grains grow and the refinement effect is not sufficient. Furthermore, looking at the effect of the cooling rate, at 0.1°C/sec for ll&125, crystal grains grow during the cooling tJI, resulting in a change in strength of 1q.
is not enough. Although not shown in Table 2, i
In o'c/sha, martensite is generated and the original purpose is not achieved.

以」二の結果より、微細化熱処理条件として保持条件は
、嵩7.8および11.12のβトランザス以下20〜
90°Cの温度範囲に、好ましくは4時間以下保持する
のが適当であり、冷却速度は漱13.14に示すように
0.5℃/秒以上、IO℃/秒以下とすることが必要で
あることがわかる。
From the above two results, the holding conditions as the refinement heat treatment conditions are 20 ~ 20 ~
It is appropriate to maintain the temperature in a temperature range of 90°C, preferably for 4 hours or less, and the cooling rate should be 0.5°C/second or more and IO°C/second or less as shown in 13.14. It can be seen that it is.

最後に、時効条件の影響をIkl、2.3.8および寛
26.27.31.32の比較で検討する。患26の5
00 ’r、 x4h、、th31の600℃xih時
効ではいずれも時効による強度上昇が十分でなく、また
患27の750℃X4h、隘32の600°CX24h
時効では過時効となり強度が低下する。したがって、時
効条件としては嵐1.2.3.8に示ずように(540
〜650℃)×(4〜10)h、好ましくは(4〜B)
hが適切であることがわかる。
Finally, the influence of the statute of limitations is examined by comparing Ikl, 2.3.8 and Kan 26.27.31.32. 5 of 26
00'r, x4h,, th31's 600°C x 2h aging did not sufficiently increase the strength due to aging, and 750°C x 4h for No. 27 and 600°C x 24h for No. 32.
In aging, it becomes over-aged and the strength decreases. Therefore, the statute of limitations condition is as shown in Arashi 1.2.3.8 (540
~650°C)×(4-10)h, preferably (4-B)
It can be seen that h is appropriate.

実施例2 本例では棒材の代わりに板材を使った点を除いて実施例
1を繰り返した。すなわち、インゴット(寸法直径40
0mm x長さ1800mm)を板厚30mmにまで粗
圧延してから、1100℃に加熱して、圧延終了温度9
90℃で圧下率90%の熱間圧延を行い(一方向β−圧
延)、板厚3mmの板材を得た。これに第3表に示す条
件で熱処理を行って供試材とした。
Example 2 Example 1 was repeated except that in this example, plates were used instead of bars. That is, the ingot (size diameter 40
0mm x length 1800mm) was roughly rolled to a thickness of 30mm, heated to 1100°C, and the rolling end temperature was 9.
Hot rolling was performed at 90° C. with a reduction rate of 90% (unidirectional β-rolling) to obtain a plate material with a thickness of 3 mm. This was subjected to heat treatment under the conditions shown in Table 3 to obtain test materials.

各供試材の機械的特性を同じく第3表に比較例のそれと
ともにまとめて示す。
The mechanical properties of each sample material are also summarized in Table 3 together with those of the comparative example.

α+β圧延(一方向圧延)および焼鈍(750’cxl
h、 PC)の圧延板では機械的性質(特に0.2%耐
力)の異方性が存在するのに対し、本発明法では異方性
の少ない仮ができる。 (第3表、実施例参照)。
α+β rolling (unidirectional rolling) and annealing (750'cxl
h, PC) has anisotropy in mechanical properties (particularly 0.2% proof stress), whereas the method of the present invention produces a sheet with less anisotropy. (See Table 3, Examples).

(発明の効果) 以上、本発明を詳述したが、本発明によれば、従来より
比較的加工が容易と考えられてきたβ域での加工が可能
となるとともに、その後の等軸化熱処理、微細化熱処理
を経て高強度、高靭性のα+β型チタン合金が容易に得
られ、その効果は顕著であることが分かる。
(Effects of the Invention) The present invention has been described in detail above.According to the present invention, processing in the β region, which has conventionally been considered relatively easy to process, becomes possible, and the subsequent equiaxed heat treatment It can be seen that a high-strength, high-toughness α+β type titanium alloy can be easily obtained through the refinement heat treatment, and the effect is remarkable.

なお、本実施例にはα+β型チタン合金の代表として、
Ti  6AQ4V (β−トランザス=990℃)の
例を示したが、同じα+β型合金であり強靭化機構もほ
ぼ同一であるrt−6AQ−6シー2Sn 、 Ti−
6AQ−2Sn   −4Zr   −2Mo  、 
 Ti  −6八Q−2Sn   −4Zr−6Mo 
、、Ti −6AI2−2Nh −ITa−0,8Mo
等の合金にも適用可能であることは明らかである。
In this example, as a representative α+β type titanium alloy,
Although the example of Ti 6AQ4V (β-transus = 990°C) is shown, rt-6AQ-6C2Sn, Ti-
6AQ-2Sn-4Zr-2Mo,
Ti-68Q-2Sn-4Zr-6Mo
,,Ti-6AI2-2Nh-ITa-0,8Mo
It is obvious that the method can also be applied to alloys such as the following.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(八)は、従来法の加工熱処理チャート:第1図
([1)は、本発明にかがる方法の加工熱処理チャー1
・; および 第2図は、本発明により得られたα+β型チタン合金の
金属組織の模式図である。
Fig. 1 (8) is a processing heat treatment chart of the conventional method; Fig. 1 ([1)] is a processing heat treatment chart 1 of the method according to the present invention.
.; and FIG. 2 are schematic diagrams of the metal structure of the α+β type titanium alloy obtained by the present invention.

Claims (1)

【特許請求の範囲】[Claims] α+β型チタン合金にβ−トランザス以上の温度領域の
β単相域で断面減少率80%以上となる加工を行った後
、β−トランザスより20〜90℃低い温度に4時間以
内保持してから、550℃以下の温度まで0.1℃/秒
以下の冷却速度で冷却し、次いで、β−トランザス以下
20〜90℃の温度に再び加熱し4時間以内の保持をし
てから、550℃以下まで0.5℃/秒以上、10℃/
sec以下の冷却速度で冷却し、さらに、540〜65
0℃の温度で4〜10時間の時効処理を行い室温まで冷
却することを特徴とする、α+β型チタン合金の製造方
法。
After processing the α+β type titanium alloy to achieve a cross-section reduction rate of 80% or more in the β-single-phase region in the temperature range above the β-transus, hold it at a temperature 20 to 90°C lower than the β-transus for less than 4 hours. , cooled to a temperature of 550°C or less at a cooling rate of 0.1°C/second or less, then heated again to a temperature of 20 to 90°C below the β-transus and held for within 4 hours, and then heated to a temperature of 550°C or less. up to 0.5℃/sec or more, 10℃/
Cooling at a cooling rate of 540 to 65 sec or less
A method for producing an α+β type titanium alloy, which comprises aging treatment at a temperature of 0° C. for 4 to 10 hours and cooling to room temperature.
JP27203185A 1985-12-03 1985-12-03 Manufacture of alpha+beta (alpha+beta)-type titanium alloy Pending JPS62133051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27203185A JPS62133051A (en) 1985-12-03 1985-12-03 Manufacture of alpha+beta (alpha+beta)-type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27203185A JPS62133051A (en) 1985-12-03 1985-12-03 Manufacture of alpha+beta (alpha+beta)-type titanium alloy

Publications (1)

Publication Number Publication Date
JPS62133051A true JPS62133051A (en) 1987-06-16

Family

ID=17508161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27203185A Pending JPS62133051A (en) 1985-12-03 1985-12-03 Manufacture of alpha+beta (alpha+beta)-type titanium alloy

Country Status (1)

Country Link
JP (1) JPS62133051A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679183A (en) * 1994-12-05 1997-10-21 Nkk Corporation Method for making α+β titanium alloy
GB2457998A (en) * 2007-12-19 2009-09-09 Gen Electric A method of working titanium alloys

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679183A (en) * 1994-12-05 1997-10-21 Nkk Corporation Method for making α+β titanium alloy
GB2457998A (en) * 2007-12-19 2009-09-09 Gen Electric A method of working titanium alloys

Similar Documents

Publication Publication Date Title
US3676225A (en) Thermomechanical processing of intermediate service temperature nickel-base superalloys
JPH0798989B2 (en) Method for producing titanium alloy parts comprising improved hot working and resulting parts
KR20120115497A (en) Production of high strength titanium alloys
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
DE3837544A1 (en) METHOD FOR IMPROVING THE FRACTION QUALITY OF A HIGH-TIN TITANIUM ALLOY
JP2019512603A (en) An improved method of finishing extruded titanium products
JPH01279736A (en) Heat treatment for beta titanium alloy stock
US4295901A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
JPH01272750A (en) Production of expanded material of alpha plus beta ti alloy
JPS6160871A (en) Manufacture of titanium alloy
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
US5092940A (en) Process for production of titanium and titanium alloy material having fine equiaxial microstructure
US4358324A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
US4528042A (en) Method for producing superplastic aluminum alloys
JPH06212378A (en) Treatment of beta type titanium alloy hot formed product
JPS62133051A (en) Manufacture of alpha+beta (alpha+beta)-type titanium alloy
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
JPS5826425B2 (en) Manufacturing method for high-strength aluminum alloy with excellent mechanical properties in the thickness direction
US3892602A (en) As-worked, heat treated cold-workable hypoeutectoid steel
US5223053A (en) Warm work processing for iron base alloy
US4490188A (en) Method of imparting a fine grain structure to 2000 &amp; 7000 series aluminum alloys
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
JPS61284560A (en) Manufacture of alpha+beta titanium alloy