JPS6314834A - Tiniv shape memory alloy - Google Patents

Tiniv shape memory alloy

Info

Publication number
JPS6314834A
JPS6314834A JP15778786A JP15778786A JPS6314834A JP S6314834 A JPS6314834 A JP S6314834A JP 15778786 A JP15778786 A JP 15778786A JP 15778786 A JP15778786 A JP 15778786A JP S6314834 A JPS6314834 A JP S6314834A
Authority
JP
Japan
Prior art keywords
alloy
shape memory
cold
temp
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15778786A
Other languages
Japanese (ja)
Other versions
JP2541802B2 (en
Inventor
Kiyoshi Yamauchi
清 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP61157787A priority Critical patent/JP2541802B2/en
Publication of JPS6314834A publication Critical patent/JPS6314834A/en
Application granted granted Critical
Publication of JP2541802B2 publication Critical patent/JP2541802B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Powder Metallurgy (AREA)
  • Springs (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To develop a shape memory alloy having a working function at low temp., by subjecting an Ni-Ti alloy composed mainly of specific proportions of Ni and Ti and containing small amounts of V to cold working and then to heat treatment under specific conditions. CONSTITUTION:An ingot of an Ni-Ti-V alloy having a composition in which 0.25-2.0 atomic% V is added and incorporated to an Ni-Ti alloy containing Ni and Ti in an atomic% ratio of 1.02-1.06 is subjected to homogenizing treatment at 900 deg.C for 2hr and is then worked into a fine wire of 1.3mm diameter by means of a hot hammer, hot rolls, and cold wire drawing. The above fine wire is cold-worked to 1.0mm diameter at 40% draft with obviating the necessity of annealing. In this way, the shape memory alloy having remarkable pseudoelastic characteristic at a temp. of ordinary temp. (20 deg.C) or below, particularly at about 0 deg.C, also having a shape memory characteristic of low hysteresis, and increased in utility value for use in refrigerators, medical care, etc., can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、形状記憶合金特に低温での作動機能を有する
形状記憶バネおよび擬弾性バネに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to shape memory alloys, particularly shape memory springs and pseudoelastic springs having the function of operating at low temperatures.

(従来の技術) TiNi合金が熱弾性型マルテンサイト変態の逆変態に
付随して顕著な形状記憶効果、および擬弾性効果を示す
ことはよく知られている。
(Prior Art) It is well known that TiNi alloys exhibit remarkable shape memory effects and pseudoelastic effects accompanying the reverse transformation of thermoelastic martensitic transformation.

T1Ni合金をヒステリシスの小さな形状記憶バネとし
て用いる場合、冷間加工後400〜500℃で焼鈍し、
冷間の加工組織を残すことで中間相変態を利用すること
が知られている。また擬弾性バネについても同様な方法
が採られている。
When using T1Ni alloy as a shape memory spring with small hysteresis, it is annealed at 400 to 500°C after cold working.
It is known to utilize intermediate phase transformation by leaving a cold processed structure. A similar method is also used for pseudoelastic springs.

これらは、家電用アクチュエーター、歯列矯正線、ガイ
ドワイヤー、ブラジャー等への実用化が進められている
が、いずれも体温(約35℃)近傍で使用されるもので
あった。
These devices are being put to practical use in home appliance actuators, orthodontic wires, guide wires, brassiere, etc., but all of them are used at temperatures close to body temperature (approximately 35° C.).

(発明が解決しようとする問題点) 形状記憶合金を用いて室温(約20℃以下)とりわけO
′C前後で作動するバネを得ようとする場合、  T1
Ni 2元合金は500〜550℃の温度で短時間処理
(5〜10分間)を必要とする。この場合。
(Problem to be solved by the invention) Shape memory alloys are used to
When trying to obtain a spring that operates around 'C, T1
Ni binary alloys require short-time treatment (5-10 minutes) at temperatures of 500-550°C. in this case.

処理時間が短いために、スプリング・バックを無視でき
ず、成型性に難点を有していた。また。
Since the processing time is short, spring back cannot be ignored, and moldability is problematic. Also.

500℃を越えた熱処理条件では、冷間加工で与えられ
た加工組織が消えるために、ヒステリシスが大きくなる
難点を有している。
Heat treatment conditions exceeding 500° C. have the disadvantage of increasing hysteresis because the processed structure imparted by cold working disappears.

また0℃前後から擬弾性を示すバネは、400〜450
℃で短時間(5〜10分間)の処理によって得られる。
Also, springs that exhibit pseudoelasticity from around 0°C have a temperature of 400 to 450°C.
Obtained by short-term (5-10 minutes) treatment at <RTIgt;C.

しかし前記と同様スプリングバックが大きくコイルバ坏
の成型は困難であった。
However, like the above, the springback was large and it was difficult to mold the coil bar.

これらの難点を克服し、室温以下で作動する素子の製造
を可能にすることは、冷蔵庫、住宅用換気口1等のアク
チュエーター、自動車、衣料、医療等への擬弾性バネへ
の実用化にとって極めて重要なことである。
Overcoming these difficulties and making it possible to manufacture elements that operate below room temperature will be extremely important for practical application to actuators for refrigerators, residential ventilation openings, and pseudoelastic springs for automobiles, clothing, medical care, etc. It's important.

本発明の目的は、室温(約20’C)以下特にO′C前
後の温度で作動するアクチーエータ−バネ。
The object of the present invention is to provide an actuator spring that operates at temperatures below room temperature (approximately 20'C), particularly around O'C.

および擬弾性バネを容易に提供することにある。and to easily provide a pseudoelastic spring.

(問題点を解決する手段と作用) 本発明はNiとTiの原子パーセント比が1.02〜1
.06および0.25〜2.0原子パーセントのVを含
むTiNiV合金で、冷間加工後425〜525℃で1
0〜60分間熱処理することにより、形状記憶効果およ
び超弾性効果の作動温度を低温側ヘシフトさせる。
(Means and effects for solving the problems) The present invention is characterized in that the atomic percent ratio of Ni and Ti is 1.02 to 1.
.. 06 and 0.25 to 2.0 atomic percent V at 425 to 525 °C after cold working.
By heat treating for 0 to 60 minutes, the operating temperature of the shape memory effect and superelastic effect is shifted to the lower temperature side.

(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

高周波真空溶解によって得られたTiNiV合金を温度
900℃で2時間の均一化処理後、熱間ハンマー、熱間
ロー乞および冷間伸線にょシ径1.3 ranまで加工
した。その後、焼鈍なしで径1.0gまで冷間加工(加
工率40%)して、供試用素線を得た。溶解によって得
られたTiNiV合金の組成を表1に示す。(表中に熱
間・冷間の加工性の調査結果を示している。) 以下今日 表1 0 加工性 良 Δ〃難 × 加工できない 得られた合金線のうちのひとつであるTi4875Ni
 5o7s Vo、s合金線(Nn6)を温度400℃
,450’C。
The TiNiV alloy obtained by high-frequency vacuum melting was homogenized at a temperature of 900° C. for 2 hours, and then processed by hot hammering, hot brazing, and cold wire drawing to a diameter of 1.3 RAN. Thereafter, the wire was cold-worked to a diameter of 1.0 g (work rate: 40%) without annealing to obtain a test wire. Table 1 shows the composition of the TiNiV alloy obtained by melting. (The table shows the results of investigation on hot and cold workability.) Table 1 below: 0 Workability Good Δ Poor × Ti4875Ni, one of the obtained alloy wires that cannot be worked
5o7s Vo,s alloy wire (Nn6) at a temperature of 400℃
, 450'C.

および500℃でそれぞれ30分間熱処理を施した。and heat treatment was performed at 500° C. for 30 minutes, respectively.

これらの形状記憶特性を調べるために一20℃から+5
0℃まで温度を変化させた時の応力対ひずみ曲線を求め
た。O′Cおよび20℃に於ける結果を第1図に示す。
In order to investigate these shape memory properties, temperatures from -20°C to +5°C
A stress vs. strain curve was determined when the temperature was varied up to 0°C. The results at O'C and 20°C are shown in FIG.

参考として20’Cに於けるTi48Ni54合金線(
Nn15)の応力対ひずみ曲線を併せて示す。この結果
からTi 48 y5Ni 5075 Vo s合金線
はいずれの熱処理についても20℃で良好な擬弾性特性
を示し、特に400℃、450℃熱処理については0℃
でも顕著な擬弾性特性を示していることがわかる。一方
r  T’ 49 Ni51合金線はo’cでの擬弾性
特性は得難<、500℃熱処理では20℃での擬弾性特
性も得られない。
For reference, Ti48Ni54 alloy wire at 20'C (
The stress versus strain curve of Nn15) is also shown. These results show that the Ti48y5Ni5075Vos alloy wire exhibits good pseudoelastic properties at 20°C for all heat treatments, and especially for the 400°C and 450°C heat treatments, it exhibits good pseudoelastic properties at 0°C.
However, it can be seen that it exhibits remarkable pseudoelastic properties. On the other hand, the r T' 49 Ni51 alloy wire has difficulty in obtaining pseudoelastic properties at o'c, and cannot obtain pseudoelastic properties at 20°C by heat treatment at 500°C.

第2図に前記合金線の応力対温度曲線を示しているが、
400℃および450℃熱処理については一10’Cか
ら前記特性が得られている。
FIG. 2 shows the stress versus temperature curve of the alloy wire.
Regarding heat treatment at 400°C and 450°C, the above characteristics are obtained from -10'C.

次に成型性を調べるために、冷間加工によって得られた
1閣φ素線を6rnMφのコイルに加工し、400℃,
450℃および500’Cで30分間熱処理を施した。
Next, in order to examine the formability, the 1mmφ wire obtained by cold working was processed into a 6rnMφ coil, heated at 400°C,
Heat treatment was performed at 450°C and 500'C for 30 minutes.

その結果、  450’C,および500’C熱処理材
については、加工コイル(径6 rm )のバネが得ら
れたが、  400’C熱処理材についてはスプリング
バンクによってコイル径は8間に拡がった。この傾向は
比較として行ったTi49Ni51合金線にも認められ
た。また得うレタヨイ2.。
As a result, springs with processed coils (diameter 6 rm) were obtained for the 450'C and 500'C heat-treated materials, but for the 400'C heat-treated material, the coil diameter expanded to 8 rms due to the spring bank. This tendency was also observed in the Ti49Ni51 alloy wire used for comparison. Let's get it again 2. .

バネの特性は第1図と同様の結果を示した。The characteristics of the spring showed results similar to those shown in FIG.

500℃で30分間熱処理コイルバネの定荷重下に於け
る温度−変位について調べた。−例としてNn6および
Nl115の合金線によるものを第3図に示す。(図中
には荷重250gr下におけるバネの加熱・冷却による
変位を示しているが、低温域でのバネの変位に対しスト
ッパーを設けている。)この結果より本発明による合金
(lI&16 )のコイルバネのマルテンサイト変態開
始温度(Mg点)および逆変態完了温度(Af点)はそ
れぞれ4℃と7℃であった。一方、比較としてのTi4
9Ni  合金(Nn15)のコイルバネのMs点およ
びAf点はそれぞれ26℃と35℃であった。すなゎち
本発明による合金は変態温度ヒステリシス(Af−Ms
)の小さい且つ2作動温度(Ma rおよびAf)の低
い素子の製作を可能にした。
The temperature-displacement of a coil spring heat-treated at 500° C. for 30 minutes under constant load was investigated. - As an example, an alloy wire of Nn6 and Nl115 is shown in FIG. (Although the figure shows the displacement due to heating and cooling of the spring under a load of 250g, a stopper is provided to prevent the displacement of the spring in a low temperature range.) From this result, it is clear that the coil spring of the alloy (lI & 16) according to the present invention The martensitic transformation start temperature (Mg point) and reverse transformation completion temperature (Af point) were 4°C and 7°C, respectively. On the other hand, Ti4 as a comparison
The Ms point and Af point of the 9Ni alloy (Nn15) coil spring were 26°C and 35°C, respectively. In other words, the alloy according to the present invention exhibits transformation temperature hysteresis (Af-Ms
) and two low operating temperatures (Mar and Af).

表1に示す合金の変態温度を750℃で1時間の熱処理
したものについてそれぞれ調べた結果を第4図に示す。
FIG. 4 shows the results of examining the transformation temperatures of the alloys listed in Table 1, which were heat-treated at 750° C. for 1 hour.

図中(1)は’rt49Ni 51−x”xなる形でV
を添加した時のMs点と添加量(x)の関係。
In the figure, (1) is V in the form 'rt49Ni 51-x''x.
Relationship between the Ms point and the amount added (x) when added.

(2)はTi 49−X Ni s+ VX 、 (3
)はT’ 49−x/2 Ni51−x//2vxなる
形で添加した時のそれぞれの関係を示している。
(2) is Ti49-X Nis+VX, (3
) shows the respective relationships when added in the form of T' 49-x/2 Ni51-x//2vx.

この結果よシ、■添加量の増加とともにMs点はいずれ
の添加系についても低下する。このことより低変態点材
を製作するために、■を多く添加することが期待される
が、冷間加工性は添加量の増加とともに悪くなり、特に
表に示すように2at%を越えると殆ど加工できなかっ
た。
As a result, as the amount of addition increases, the Ms point decreases for all addition systems. From this, it is expected to add a large amount of ■ to produce a low transformation point material, but the cold workability worsens as the amount added increases, and as shown in the table, in particular, when the amount exceeds 2 at%, almost no It could not be processed.

一方、添加量が0.25at%未満では添加による効果
は認められなかった。合金組成限定理由ばNiとTiの
原子パーセント比が1.02未満1例えばTi495N
i495V10  Ti495Ni50VO5等の合金
組成では、変態温度低下の顕著な効果が認め難い。また
同原子パーセント比が1.06を超える。
On the other hand, no effect was observed when the amount added was less than 0.25 at%. The reason for limiting the alloy composition is that the atomic percent ratio of Ni and Ti is less than 1.02.1 For example, Ti495N
With alloy compositions such as i495V10 Ti495Ni50VO5, it is difficult to recognize the significant effect of lowering the transformation temperature. Further, the atomic percentage ratio exceeds 1.06.

例えばTi47.5 Ni 52 Vo、s 、 Ti
47,75 Nis+、7s Vo、s等の合金組成で
は変態温度の顕著な低下は認められるものの、加工が殆
ど出来ない。本発明のV添加最適範囲は、0.5〜1.
Oa tチであシ、添加に供される母合金(TiNi合
金)のNi濃度は良好な形状記憶特性を示す50〜51
at%である。
For example, Ti47.5 Ni52 Vo,s, Ti
With alloy compositions such as 47,75 Nis+, 7s Vo, and s, although a remarkable decrease in transformation temperature is observed, processing is hardly possible. The optimum range of V addition in the present invention is 0.5 to 1.
In addition, the Ni concentration of the master alloy (TiNi alloy) used for addition is 50 to 51, which exhibits good shape memory properties.
It is at%.

(発明の効果) 以上説明したように1本発明による形状記憶合金によれ
ば、常温(約20’C,)以下、特に0℃前後において
顕著な擬弾性特性を示すとともに。
(Effects of the Invention) As explained above, the shape memory alloy according to the present invention exhibits remarkable pseudoelastic properties at room temperature (approximately 20° C.) or lower, particularly at around 0° C.

ヒステリシスの小さい形状記憶特性を示すという効果が
あシ、冷蔵庫、医療、衣料関連への応用が期待できる。
It has the effect of exhibiting shape memory characteristics with low hysteresis, and can be expected to be applied to refrigerators, medical care, and clothing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本文表中の合金NcL6 (Ti4875 N
i so 75vo、s合金)、 Nn15 (Ti4
9Ni51合金)を500’C。 450℃および400℃でそれi理したもののO′Cl
2O℃に於ける応力対ひずみ線図。第2図は、第1図中
合金Nn 6 ’k 500.450.400 ’Cテ
それぞれ(資)分間熱処理したものの、降伏応力と温度
関係を示す図(図中、破線部は形状記憶特性温度域、実
線は擬弾性特性温度域を示している。)。 第3図は本文衣1中合金随6およびNn6の素線をコイ
ルバネに500℃で加分間の熱処理で成型したものの2
50 gr荷重下での温度と変位の関係を示す図(コイ
ル径:6.O+++mφ、線径1.0)、第4図は本試
験に用いられた合金を750℃で1時間熱処理したもの
のMs点とV添加量の関係を示す図(図中、■〜[相]
は本文表中の合金番号、(1)はTi49Ni51−x
VX、 f2)はTi 49−xNi 51.、 Vx
、  (3)はTi49−X/2 ” 51−x/2 
vxの添加系を示している。)である。 第3図 第4図
Figure 1 shows the alloy NcL6 (Ti4875 N
i so 75vo, s alloy), Nn15 (Ti4
9Ni51 alloy) at 500'C. O'Cl after treatment at 450°C and 400°C
Stress vs. strain diagram at 20°C. Figure 2 shows the relationship between yield stress and temperature for the alloy Nn 6'k 500.450.400'C in Figure 1, which was heat treated for 500.450.400'C. (The solid line indicates the temperature range of pseudoelastic characteristics.) Figure 3 shows two coil springs made of strands of alloy 6 and Nn6, which were formed into coil springs by heat treatment at 500°C.
A diagram showing the relationship between temperature and displacement under a load of 50 gr (coil diameter: 6.0 + + mφ, wire diameter 1.0), Figure 4 shows the Ms of the alloy used in this test after being heat treated at 750 ° C for 1 hour. A diagram showing the relationship between points and V addition amount (in the diagram, ■ ~ [phase]
is the alloy number in the text table, (1) is Ti49Ni51-x
VX, f2) is Ti 49-xNi 51. , Vx
, (3) is Ti49-X/2" 51-x/2
This shows a vx addition system. ). Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1) NiとTiの原子パーセントの比が1.02〜
1.06および0.25〜2.0原子パーセントのVを
含むTiNiV合金よりなる形状記憶TiNiV合金。
(1) The atomic percent ratio of Ni and Ti is 1.02~
A shape memory TiNiV alloy comprising a TiNiV alloy containing 1.06 and 0.25 to 2.0 atomic percent V.
(2) 冷間加工後425〜525℃で10〜60分間
熱処理してなる特許請求の範囲第1項記載の形状記憶T
iNiV合金。
(2) Shape memory T according to claim 1, which is obtained by heat treatment at 425 to 525°C for 10 to 60 minutes after cold working.
iNiV alloy.
JP61157787A 1986-07-07 1986-07-07 Shape memory TiNiV alloy and manufacturing method thereof Expired - Lifetime JP2541802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61157787A JP2541802B2 (en) 1986-07-07 1986-07-07 Shape memory TiNiV alloy and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61157787A JP2541802B2 (en) 1986-07-07 1986-07-07 Shape memory TiNiV alloy and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS6314834A true JPS6314834A (en) 1988-01-22
JP2541802B2 JP2541802B2 (en) 1996-10-09

Family

ID=15657283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61157787A Expired - Lifetime JP2541802B2 (en) 1986-07-07 1986-07-07 Shape memory TiNiV alloy and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2541802B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171844A (en) * 1987-01-08 1988-07-15 Tokin Corp Ti-ni-v shape memory alloy
US7658761B2 (en) 2004-03-05 2010-02-09 Nec Tokin Corporation Balloon expandable superelastic stent
US8652199B2 (en) 2005-05-23 2014-02-18 Nec Tokin Corporation Stent with autonomic function
CN103658224A (en) * 2013-11-25 2014-03-26 西安思维金属材料有限公司 Method for processing linear type TiNiV alloy wire with high superelasticity
US9205178B2 (en) 2005-05-23 2015-12-08 Nec Tokin Corporation Ti-Ni-Nb alloy device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161746A (en) * 1982-03-19 1983-09-26 Furukawa Electric Co Ltd:The Nickel-titanium alloy for precision casting
JPS5928548A (en) * 1982-08-06 1984-02-15 Kazuhiro Otsuka Superelastic shape-memory ni-ti base alloy and manufacture thereof
JPS6026648A (en) * 1983-07-21 1985-02-09 Furukawa Electric Co Ltd:The Manufacture of shape memory ni-ti alloy plate
JPS60121247A (en) * 1983-10-14 1985-06-28 レイケム・コ−ポレイシヨン Shape memory alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161746A (en) * 1982-03-19 1983-09-26 Furukawa Electric Co Ltd:The Nickel-titanium alloy for precision casting
JPS5928548A (en) * 1982-08-06 1984-02-15 Kazuhiro Otsuka Superelastic shape-memory ni-ti base alloy and manufacture thereof
JPS6026648A (en) * 1983-07-21 1985-02-09 Furukawa Electric Co Ltd:The Manufacture of shape memory ni-ti alloy plate
JPS60121247A (en) * 1983-10-14 1985-06-28 レイケム・コ−ポレイシヨン Shape memory alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171844A (en) * 1987-01-08 1988-07-15 Tokin Corp Ti-ni-v shape memory alloy
US7658761B2 (en) 2004-03-05 2010-02-09 Nec Tokin Corporation Balloon expandable superelastic stent
US8652199B2 (en) 2005-05-23 2014-02-18 Nec Tokin Corporation Stent with autonomic function
US9205178B2 (en) 2005-05-23 2015-12-08 Nec Tokin Corporation Ti-Ni-Nb alloy device
CN103658224A (en) * 2013-11-25 2014-03-26 西安思维金属材料有限公司 Method for processing linear type TiNiV alloy wire with high superelasticity

Also Published As

Publication number Publication date
JP2541802B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
US5958159A (en) Process for the production of a superelastic material out of a nickel and titanium alloy
JPH0665742B2 (en) Shape memory TiNiV alloy manufacturing method
JPH0543969A (en) Shape-memory alloy of high critical temperature
JPS6237353A (en) Manufacture of shape memory alloy
JPS6314834A (en) Tiniv shape memory alloy
JPS63235444A (en) Ti-ni-al based shape memory alloy and its production
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JP2004197112A (en) Method of producing biological superelastic titanium alloy
JPH01268835A (en) Super elastic alloy material and super elastic element
JP2573499B2 (en) TiNiCuV quaternary shape memory alloy
JPH0860277A (en) Nickel-titanium alloy
JPS62284047A (en) Manufacture of shape memory alloy
JP3141328B2 (en) Manufacturing method of super elastic spring alloy
JPH0238547A (en) Manufacture of ti-ni shape memory alloy
JPS63303022A (en) Super elastic ti-ni-al-cr alloy
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JPH0288737A (en) Super elastic ni-ti-cu alloy and its manufacture
JPS60155657A (en) Production of ti-ni superelastic alloy
JPS622026B2 (en)
JPS61153249A (en) Ti-ni-cu shape memory alloy
JP2691567B2 (en) Super elastic element
JPS6187839A (en) Shape memory alloy
JP3933623B2 (en) Method for producing superelastic titanium alloy for living body and titanium alloy for superelasticity
JPH059686A (en) Production of shape memory niti alloy
JPS61106741A (en) Shape memory ti-ni alloy having small hysteresis

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term