JPS61153249A - Ti-ni-cu shape memory alloy - Google Patents

Ti-ni-cu shape memory alloy

Info

Publication number
JPS61153249A
JPS61153249A JP27311584A JP27311584A JPS61153249A JP S61153249 A JPS61153249 A JP S61153249A JP 27311584 A JP27311584 A JP 27311584A JP 27311584 A JP27311584 A JP 27311584A JP S61153249 A JPS61153249 A JP S61153249A
Authority
JP
Japan
Prior art keywords
alloy
transformation
shape memory
temperature
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27311584A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamauchi
清 山内
Shoichi Sato
正一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP27311584A priority Critical patent/JPS61153249A/en
Publication of JPS61153249A publication Critical patent/JPS61153249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain reduced residual stress as well as a transformation temp. as low as <=30 deg.C As point by incorporating Ti, Ni, and Cu in a proportion shown in a prescribed formula and by carrying out heat treatment at prescribed temp. after cold working. CONSTITUTION:The Ti-Ni-Cu shape memory alloy has a composition represented by the formula Ti100-xNix-yCuy [where (x)=51-53 and (y)=5-10] in atom%, and is obtained by heat treatment at 400-600 deg.C after cold working. This alloy provides reduced residual stress as well as the low transformation temp. where prolonged repeatable life longevity can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、 Ni 、 TiおよびCuからなる形状記
憶合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a shape memory alloy consisting of Ni, Ti and Cu.

〔従来技術とその問題点〕[Prior art and its problems]

T1Ni合金は熱弾性型マルテンサイト変態の逆変態に
付随して顕著な形状記憶効果を示すことが知られている
。またNiの一部を他の元素例えばCuで置換したTl
Ni、−XCux合金も同様な効果を示すことはひろく
知られている。又T1Ni2元合金の変態温度について
は、700〜1000℃の均一化熱処理の場合# Ti
49”51合金に於いてIルチンサイト変態開始温度(
以下Ms点と略称する。)はほぼ−50℃、逆変態開始
温度(以下As7点と略称する。)はほぼ−30℃を示
すことが本間らによって示されている(東北大学選鉱精
練研究所報告索輪第37巻第1号(昭和56年6月)p
p79〜88)。
It is known that T1Ni alloy exhibits a remarkable shape memory effect accompanying the reverse transformation of thermoelastic martensitic transformation. Also, Tl in which part of Ni is replaced with other elements such as Cu
It is widely known that Ni and -XCux alloys also exhibit similar effects. Regarding the transformation temperature of the T1Ni binary alloy, #Ti
In the 49''51 alloy, the I rutinsite transformation initiation temperature (
Hereinafter, it will be abbreviated as Ms point. ) has been shown to be approximately -50℃, and the reverse transformation start temperature (hereinafter referred to as the As7 point) is approximately -30℃ (Tohoku University Ore Processing and Refining Research Institute Report, Soruna Vol. 37, No. 1 (June 1981) p.
p79-88).

更に形状記憶特性の改善(疲労特性の改善)を目的とし
て冷間加工後再結晶をさせない温度(300〜500℃
)で熱処理をする方法ばBuehlerによって示され
ている(Wire J、 Vol 2 + June 
1969 pp41〜49)。
Furthermore, for the purpose of improving shape memory properties (improving fatigue properties), the temperature at which recrystallization does not occur after cold working (300 to 500°C) is
) is shown by Buehler (Wire J, Vol 2 + June
1969 pp41-49).

しかしながら上記の2つの従来技術を組合わせてみても
9本発明の30℃以下で作動する低変態機能を持つNi
 −Ti −Cu 形状記憶合金を得るのは困難である
。すなわち、あとに本発明の実施例において併記しであ
るように2本間らによって示されたTi4.Ni51 
合金を作り、これを700℃〜1000℃ではなぐ40
0℃程度の比較的低い温度で熱処理をすると、R相変態
に件な5 Ms’(R相変態にともなう変態開始温度)
が現われ9M8′点はほぼ50℃、As点は30℃を越
えてしまうので所期の低変態機能を持たせることができ
ず、而も熱サイクルの繰返しに対し変態温度が相当大き
く変動し繰返し寿命が短いというどとが分った。さらに
この比較的低い温度で熱処理したTl 4.N151 
 合金を例えば30℃と10℃の間で可逆的に作動する
アクチュエータとして用いることとしてA8  点を2
5℃に設定可能としたとすると、700°〜1000℃
の熱処理でM8点がほぼ一50°、A8点がほぼ一20
℃であることから、10℃では完全にマルテンサイト変
態をしていないため、残留荷重が大きく(はぼ50%)
、この点からでも実用に供することは難しい。
However, even if the above two conventional technologies are combined, the present invention has a low transformation function that operates at temperatures below 30°C.
-Ti-Cu shape memory alloys are difficult to obtain. That is, the Ti4. Ni51
Make an alloy and heat it at 700℃~1000℃40
When heat treatment is performed at a relatively low temperature of about 0℃, 5 Ms' (transformation start temperature associated with R phase transformation), which is related to R phase transformation.
appears, the 9M8' point exceeds approximately 50℃, and the As point exceeds 30℃, making it impossible to provide the desired low transformation function.Moreover, the transformation temperature fluctuates considerably due to repeated thermal cycles, and the As point exceeds 30℃. I learned that it has a short lifespan. Tl further heat-treated at this relatively low temperature 4. N151
For example, if the alloy is used as an actuator that operates reversibly between 30°C and 10°C, score A8 is 2.
If it is possible to set it to 5℃, then 700℃ to 1000℃
After heat treatment, the M8 point is approximately 150 degrees and the A8 point is approximately 120 degrees.
℃, so the residual load is large (approximately 50%) because martensitic transformation does not occur completely at 10℃.
, Even from this point of view, it is difficult to put it into practical use.

〔発明の目的〕[Purpose of the invention]

本発明は繰り返lし寿命が高い低変態温度(A。 The present invention has a low transformation temperature (A) with a high repeat life.

点30℃以下)およびコルチンサイト変態において残留
荷重の小さな形状記憶合金を提供することを目的とする
The purpose of the present invention is to provide a shape memory alloy that has a small residual load during cortin site transformation (point 30°C or lower) and cortinsite transformation.

〔発明の構成〕[Structure of the invention]

本発明はNiとCuが合計で51〜53 at%、残部
Tiよりなる形状記憶合金である。
The present invention is a shape memory alloy consisting of a total of 51 to 53 at% of Ni and Cu, with the remainder being Ti.

本発明による形状記憶合金の組成を式で示せば以下の通
りである。
The composition of the shape memory alloy according to the present invention is expressed as follows.

51≦xく53 I゛ 5 < Jt < 10 そして冷間加工後400℃ないし600℃の熱処理を施
す。
51≦x53 I゛5 < Jt < 10 After cold working, heat treatment is performed at 400°C to 600°C.

〔発明の効果〕〔Effect of the invention〕

本発明のTiN1Cu合金は、 T1Ni合金同様の良
好な形状記憶効果を示すと同時に、低変態機能を示し、
マルテンサイト変態時の残留応力(降伏応力)が小さく
、而も熱サイクルを掛けても変態温度の変化が小さい利
点を有している。
The TiN1Cu alloy of the present invention exhibits a good shape memory effect similar to that of the T1Ni alloy, and at the same time exhibits a low transformation function.
It has the advantage that the residual stress (yield stress) during martensitic transformation is small, and the change in transformation temperature is small even when thermal cycles are applied.

〔実施例〕〔Example〕

以下本発明を実施例につき詳細に説明する。 The present invention will be described in detail below with reference to examples.

T1Ni 2元合金およびTiN1Cu合金のそれぞれ
について種々の合金を高周波真空溶解によって得た。そ
れらを900℃X2hr加熱後、熱間ハンマーおよび熱
間ロールによりφ9.5マで加工した。その後。
Various alloys were obtained by high frequency vacuum melting, respectively, T1Ni binary alloy and TiN1Cu alloy. After heating them at 900° C. for 2 hours, they were processed with a diameter of 9.5 mm using a hot hammer and a hot roll. after that.

700℃〜800℃で中間焼鈍を行ないながらφ1,3
まで加工し、その後φ1.3→φ1.0まで冷間加工を
行なった(加工率は41チ)。得られた素線の一部は7
50℃の均一化処理が施され、一部は500℃で30分
の中温処理が施された。
φ1,3 while performing intermediate annealing at 700℃~800℃
After that, cold working was performed from φ1.3 to φ1.0 (processing rate was 41 inches). A part of the obtained wire is 7
A homogenization treatment at 50°C was performed, and some were subjected to a medium temperature treatment at 500°C for 30 minutes.

表1は上記の結果を示す。この表から分るように* T
iN1Cu合金に於いて、 Cuが10at%までは顕
著な加工性の低下は示さ力いが*10at%を越えると
加工は出来なかった。またp 5 at%以下のCu添
加では、500℃中温処理条件では顕著なA8点の上昇
が認められるようになり、 Cu添加の効果は認められ
なかった。更にTiが47 at%以下の合表−1 *750℃XIhr熱処理   ◎加工性・・・良I$
 500℃X1hr  tt    ○ 〃 ・・・普
通△ 〃 ・・・難 × 〃 ・・・不可 以下弦日 金ではT1Ni合金同様のT1Ni 3相の析出による
著しい加工性の低下が認められ、加工は出来なかった。
Table 1 shows the above results. As you can see from this table *T
In the iN1Cu alloy, there is no noticeable deterioration in workability when Cu is present up to 10 at%, but when it exceeds *10 at%, it cannot be worked. Furthermore, when Cu was added at p 5 at % or less, a remarkable increase in the A8 point was observed under medium temperature treatment conditions of 500° C., and no effect of Cu addition was observed. Furthermore, Ti is 47 at% or less -1 *750℃XIhr heat treatment ◎Workability...Good I$
500°C There wasn't.

表2は上記のように得られた合金の一部(Ti49Ni
46Cu5合金r T148N145Cu5合金)を5
00℃で中温処理したものを熱サイクル(熱サイクル条
件、10℃と40℃の間)をかけたのちのA8温度の変
化を示している。比較のために。
Table 2 shows some of the alloys obtained as described above (Ti49Ni
46Cu5 alloy r T148N145Cu5 alloy) 5
It shows the change in A8 temperature after thermal cycling (thermal cycle conditions, between 10°C and 40°C) after medium temperature treatment at 00°C. For comparison.

TI 49N151合金を550℃処理および500℃
処理したものの、熱サイクルデータを併せて示している
。表2から明らかなように、 TiN1Cu合金は繰り
返しに対し顕著な温度変化が認められない。
TI 49N151 alloy treated at 550℃ and 500℃
Thermal cycle data is also shown for processed samples. As is clear from Table 2, the TiN1Cu alloy shows no significant temperature change with repeated cycles.

以下余白 表−2 500℃X30m1n 但しく1′)については550℃X30m1n次に前記
合金を0℃〜40℃の範囲で3%引張り、各温度に於け
る降伏応力を求めた。
Margin Table 2 below: 500°C x 30ml (1'): 550°C x 30ml Next, the above alloy was stretched by 3% in the range of 0°C to 40°C, and the yield stress at each temperature was determined.

第1図は上記の合金の温度に対する降伏応力依存性を示
す図である。図において(1)は表2のA1に相当する
合金線を500℃X30m1n熱処理したもの、(1)
はAfの合金線を550℃X30m1n熱処理したもの
、(3)は屋3の合金線を500℃×30m1n熱処理
したもの、(7)は屋7の合金線を500℃X 30 
min熱処理したものをあられしている。この第1図か
ら明らかなように、 TiN1Cu合金はほぼA8点近
傍から明確な降伏応力の差が認められる。即ちマルテン
サイト変態温度域と逆変態温度域とで変形応力に差を生
じている。このことは0〜10℃の低温側での変形が容
易であること、即ち残留応力が小さいことを示している
。これに対しTi4.Ni54合金はAB点近傍で明確
な前記応力の差は認められず、はぼ直線的に変化してい
るのみである。このことは低温側での残留応力が大きい
ことを示している。
FIG. 1 is a diagram showing the dependence of yield stress on temperature of the above alloy. In the figure, (1) is the alloy wire corresponding to A1 in Table 2 that has been heat treated at 500°C x 30m1n.
(3) is the Af alloy wire heat treated at 550°C x 30 m1n, (3) is the alloy wire from Ya 3 heat treated at 500°C x 30 m1n, and (7) is the alloy wire from Ya 7 heat treated at 500°C x 30 m1n.
The product that has been heat-treated for a minimum of 10 minutes is used as a raincoat. As is clear from FIG. 1, there is a clear difference in yield stress in the TiN1Cu alloy from approximately the vicinity of point A8. That is, there is a difference in deformation stress between the martensitic transformation temperature range and the reverse transformation temperature range. This shows that deformation is easy at low temperatures of 0 to 10°C, that is, residual stress is small. On the other hand, Ti4. In the Ni54 alloy, no clear difference in stress is observed near point AB, and the stress changes only approximately linearly. This indicates that the residual stress is large on the low temperature side.

このように本発明合金は、As点30℃以下の繰り返7
Lに強く、且つ、残留応力の小さな形状記憶合金の提供
を可能にすることができた。
In this way, the alloy of the present invention has an As point of 30°C or lower after 7 cycles.
It was possible to provide a shape memory alloy that is strong against L and has small residual stress.

なお2本発明の最適合金組成は、加工性を考えるとT1
が49〜48at%、 (Ni−+:Cu )が51〜
52 at%、 Cuが5〜7at%である。
Note that the optimum alloy composition of the present invention is T1 in view of workability.
is 49-48 at%, (Ni-+:Cu) is 51-48 at%
52 at%, and Cu is 5 to 7 at%.

このような室温(z20℃)前後かそれ以下で作動する
素子は、冷蔵庫、自動車等々の応用が可能である。
Such devices that operate around or below room temperature (Z20° C.) can be applied to refrigerators, automobiles, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、 T1Ni合金、およびTiN1Cu合金の
温度に対する降伏応力依存性を示すグラフを示している
Figure 1 shows a graph showing the yield stress dependence on temperature for T1Ni and TiN1Cu alloys.

Claims (1)

【特許請求の範囲】 1、組成が原子パーセントにおいてTi_1_0_0_
−_xNi_x_−_yCu_yの形であらわされる形
状記憶合金において、前記xとyが 51≦x≦53 5≦y≦10 であらわされ、冷間加工後に400〜600℃の熱処理
を施して成り、低変態機能を示すと共に、残留応力が小
さく、熱サイクルをかけても変態温度の変動が小さいこ
とを特徴とするTiNiCu形状記憶合金。
[Claims] 1. Composition is Ti_1_0_0_ in atomic percent
-_xNi_x_-_yCu_y, where x and y are expressed as 51≦x≦53 5≦y≦10, are heat treated at 400 to 600°C after cold working, and have low transformation. A TiNiCu shape memory alloy that exhibits high performance, low residual stress, and small fluctuations in transformation temperature even when subjected to thermal cycles.
JP27311584A 1984-12-26 1984-12-26 Ti-ni-cu shape memory alloy Pending JPS61153249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27311584A JPS61153249A (en) 1984-12-26 1984-12-26 Ti-ni-cu shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27311584A JPS61153249A (en) 1984-12-26 1984-12-26 Ti-ni-cu shape memory alloy

Publications (1)

Publication Number Publication Date
JPS61153249A true JPS61153249A (en) 1986-07-11

Family

ID=17523338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27311584A Pending JPS61153249A (en) 1984-12-26 1984-12-26 Ti-ni-cu shape memory alloy

Country Status (1)

Country Link
JP (1) JPS61153249A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215948A (en) * 1988-02-22 1989-08-29 Furukawa Electric Co Ltd:The Ni-ti-cu shape-memory alloy and its manufacture
CN111411263A (en) * 2020-04-29 2020-07-14 三峡大学 Low-temperature superelasticity Ti-Ni-Cu-Y-Hf shape memory alloy and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215948A (en) * 1988-02-22 1989-08-29 Furukawa Electric Co Ltd:The Ni-ti-cu shape-memory alloy and its manufacture
CN111411263A (en) * 2020-04-29 2020-07-14 三峡大学 Low-temperature superelasticity Ti-Ni-Cu-Y-Hf shape memory alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
US5958159A (en) Process for the production of a superelastic material out of a nickel and titanium alloy
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
JPH0665742B2 (en) Shape memory TiNiV alloy manufacturing method
JPH057460B2 (en)
JPS61153249A (en) Ti-ni-cu shape memory alloy
JPH02270938A (en) Iron-based shape memorizing alloy and preparation thereof
JPH01242763A (en) Manufacture of ti-ni shape memory alloy reduced in hysteresis
US2945758A (en) Nickel base alloys
JPS63235444A (en) Ti-ni-al based shape memory alloy and its production
JPS59215448A (en) Functional alloy
JPS6314834A (en) Tiniv shape memory alloy
JP3977956B2 (en) High strength β-type Ti alloy with excellent cold workability
JPS5935978B2 (en) shape memory titanium alloy
JPH04224643A (en) Shape memory alloy and its manufacture
JPH108168A (en) Nickel-titanium-zirconium(hafnium) shape memory alloy improved in workability
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JP2691567B2 (en) Super elastic element
JPS59179714A (en) Hot working method of two-phase stainless steel
JPS61143567A (en) Manufacture of high temperature spring
JPH0273933A (en) Shape memory alloy
JPH0344136B2 (en)
JPS648047B2 (en)
JPH04136143A (en) Method for working ti-ni alloy
JPH0533303B2 (en)
JPS61217544A (en) Shape memory alloy