JPH0344136B2 - - Google Patents

Info

Publication number
JPH0344136B2
JPH0344136B2 JP59207040A JP20704084A JPH0344136B2 JP H0344136 B2 JPH0344136 B2 JP H0344136B2 JP 59207040 A JP59207040 A JP 59207040A JP 20704084 A JP20704084 A JP 20704084A JP H0344136 B2 JPH0344136 B2 JP H0344136B2
Authority
JP
Japan
Prior art keywords
alloy
transformation temperature
shape memory
workability
tini
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59207040A
Other languages
Japanese (ja)
Other versions
JPS6187839A (en
Inventor
Kyoshi Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP20704084A priority Critical patent/JPS6187839A/en
Publication of JPS6187839A publication Critical patent/JPS6187839A/en
Publication of JPH0344136B2 publication Critical patent/JPH0344136B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、Ni,Ti,CuおよびBからなる形状
記憶合金に関するものである。 〔従来技術〕 TiNi合金は熱弾性型マルテンサイト変態の逆
変態に付随して顕著な形状記憶効果を示すことが
知られている。またNiの一部の他を元素X(例え
ば、Fe,Cu,Co,V,Cr等々)で置換した
TiNi−X合金も同様な効果を示すことが明らか
にされている(「金属」1966年2月13日号pp44〜
48,東北大学選研〓報,28(1972)209〜219,特
開昭47−2102,特開昭53−28518,特開昭53−
149732)。 TiNi合金の変態温度はNi濃度の減少とともに
上昇することが知られている。しかし化学量論値
よりもNi濃度が減少するとTi2Niの第2相が析出
し合金を脆くするため加工性が悪くなる。 また、形状記憶特性の改善(疲労特性の向上)
を目的として冷間加工後再結晶をさせない温度
(300〜500℃)で熱処理をする方法が知られてい
る。 しかし、この熱処理によれば、均一化熱処理
(700〜1000℃)で得られる変態温度が逆変態開始
温度(以下As点)で+100〜−196℃(Ni濃度に
依存する。)を示すのに対し、ほぼ+30〜+60℃
の範囲に収束を示すようになり、+60℃以上のAs
点を示す合金は得難いものとなつていた。 TiNi−X合金については添加元素の殆んどが
合金の変態温度を低下させる傾向を示すがCu,
Coは変態温度への顕著な依存性を示さない。ま
たSi,B,Beは変態温度を上昇させることが明
らかとされている。 高変態機能合金(As点60℃以上)を得るため
には、Si,BおよびBeを一種もしくは数種添加
する方法、Ni濃度を少なくする方法が考えられ
るが、いづれも加工性(冷間加工性、およびコイ
リング等の機械加工性)を悪くする。また前記中
温熱処理によればAs点は60℃以下となつてしま
うのが現状であつた。 〔発明の目的〕 本発明は加工性の良好な変態温度の高い
(As60℃以上)繰り返し寿命の高いTiNi系形状
記憶合金を提供することを目的とする。 〔発明の構成〕 本発明によれば、NiとCuが合計で48〜50at%
(Cu:10at%以下)、残部TiよりなるTiNi−Cu合
金に対して、NiをBで01〜5at%置換し、700℃
以上の最終熱処理を行つた形状記憶合金であつ
て、60℃以上の変態温度を保ち、且つ、少なくと
も1000回の熱サイクルによつても、変態温度劣化
の少ない形状記憶合金が得られる。 本発明による形状記憶合金の組成を式で示せば
以下のとおりである。 Ti100-xNix-(y+z)CuyBz ただし、48≦x≦50 0<y≦10 0.1≦z≦5 〔発明の効果〕 本発明のTiNiCuBe合金はTiNi合金同様の良
好な形状記憶効果を示すと同時に、加工性に富
み、第1表,第2表に示すように高変態機能を示
す利点を有している。 以下、実施例に基づき本発明を説明する。 〔実施例〕 高周波真空溶解によつて得られたTiNiCuB合
金は、900℃で2hrの均一化処理後、熱間ハンマ
ー、熱間ロールでφ9.5まで加工された。その後
700〜800℃で中間焼鈍を行ないφ2.0まで冷間加工
され、その後は焼鈍なしで一気にφ1.6まで冷間加
工された。 得られた素線は一部は750℃の均一化処理を施
され、一部は700℃で30分熱処理が施された。 それらの結果を表−1,表−2に示している。 TiNi合金については、化学量論値からはずれ
るにつれ、その加工性は悪くなる傾向を示し、
Ti52Ni48は熱間加工が出来なかつた(熱間加工条
件:850℃)。 これに対し本合金はB添加が3at%を越えると
加工性は悪くなる傾向を示すが、従来のTiNi合
金に比べはるかに良い結果を得た。 本発明の請求範囲でB添加を5at%以内とした
のは5at%以上では加工性を顕著に悪くし、冷間
加工性に問題があるためであり、最適は3at%以
下である。また0.1at%以下では添加の効果が顕
著に認め難い。 Cu添加量については、10at%までは顕著な加
工性の劣化、変態温度の低下の原因とはならない
が、10at%を越えると顕著な加工性の劣化を来た
すことになり目的とする高変態材を得難くなる。 700℃で30分熱処理材について、加熱冷却の熱
サイクルの繰り返しによる変態温度の変化につい
て調べた結果を表−2に示してい。 T51Ni49合金については顕著な変態温度の変化
が認られているが、本請求範囲合金では顕著な変
化は認められない。 このように本発明合金はAs60℃以上の繰り返
しに強い形状記憶合金の提供を可能にすることが
できた。これは蒸気調圧弁等高温で作動するアク
チユエータへの応用が可能である。
[Industrial Application Field] The present invention relates to a shape memory alloy consisting of Ni, Ti, Cu and B. [Prior Art] TiNi alloys are known to exhibit a remarkable shape memory effect accompanying the reverse transformation of thermoelastic martensitic transformation. In addition, a part of Ni was replaced with element X (e.g., Fe, Cu, Co, V, Cr, etc.)
It has been revealed that the TiNi-X alloy also exhibits a similar effect (``Metal'' February 13, 1966 issue pp44~
48, Tohoku University Senken Newsletter, 28 (1972) 209-219, Unexamined Japanese Patent Publication 1972-2102, Unexamined Japanese Patent Publication 1973-28518, Unexamined Japanese Patent Publication 1973-2011-
149732). It is known that the transformation temperature of TiNi alloys increases as the Ni concentration decreases. However, when the Ni concentration decreases below the stoichiometric value, a second phase of Ti 2 Ni precipitates and makes the alloy brittle, resulting in poor workability. Also, improved shape memory properties (improved fatigue properties)
For this purpose, a method is known in which heat treatment is performed at a temperature (300 to 500°C) that does not cause recrystallization after cold working. However, according to this heat treatment, the transformation temperature obtained by homogenizing heat treatment (700 to 1000 °C) shows a reverse transformation start temperature (hereinafter referred to as the As point) of +100 to -196 °C (depending on the Ni concentration). On the other hand, almost +30 to +60℃
It started to show convergence in the range of , and As
Alloys exhibiting dots were becoming difficult to obtain. For TiNi-X alloys, most of the added elements tend to lower the transformation temperature of the alloy, but Cu,
Co shows no significant dependence on transformation temperature. It is also known that Si, B, and Be increase the transformation temperature. In order to obtain a highly transformed functional alloy (with an As point of 60°C or higher), it is possible to add one or more types of Si, B, and Be, or to reduce the Ni concentration. and machinability such as coiling). Furthermore, according to the medium temperature heat treatment, the As point is currently 60°C or lower. [Object of the Invention] An object of the present invention is to provide a TiNi-based shape memory alloy that has good workability, a high transformation temperature (As 60° C. or higher), and a long cycle life. [Structure of the Invention] According to the present invention, Ni and Cu are 48 to 50 at% in total.
(Cu: 10 at% or less), Ni is replaced with B at 01 to 5 at% in a TiNi-Cu alloy consisting of the balance Ti, and the temperature is 700℃.
A shape memory alloy that has been subjected to the above final heat treatment, maintains a transformation temperature of 60° C. or higher, and exhibits little transformation temperature deterioration even after at least 1000 heat cycles is obtained. The composition of the shape memory alloy according to the present invention is expressed as follows. Ti 100-x Ni x-(y+z) Cu y B z However, 48≦x≦50 0<y≦10 0.1≦z≦5 [Effects of the Invention] The TiNiCuBe alloy of the present invention has good properties similar to the TiNi alloy. It has the advantage of exhibiting a shape memory effect, high workability, and high transformation function as shown in Tables 1 and 2. The present invention will be explained below based on Examples. [Example] A TiNiCuB alloy obtained by high-frequency vacuum melting was homogenized at 900° C. for 2 hours and then processed to a diameter of φ9.5 using a hot hammer and a hot roll. after that
It was cold-worked to φ2.0 with intermediate annealing at 700 to 800°C, and then cold-worked to φ1.6 without annealing. A portion of the obtained wire was subjected to a homogenization treatment at 750°C, and a portion was subjected to a heat treatment at 700°C for 30 minutes. The results are shown in Table-1 and Table-2. As for TiNi alloy, its workability tends to deteriorate as it deviates from the stoichiometric value.
Ti 52 Ni 48 could not be hot worked (hot working conditions: 850°C). On the other hand, this alloy shows a tendency for workability to deteriorate when B addition exceeds 3 at%, but much better results were obtained than with conventional TiNi alloys. The reason why the addition of B is limited to 5 at% or less in the claims of the present invention is because if it exceeds 5 at%, the workability will be significantly deteriorated and there will be problems with cold workability, so the optimum B content is 3 at% or less. Further, at 0.1 at% or less, the effect of addition is difficult to notice. Regarding the amount of Cu added, up to 10at% it will not cause a noticeable deterioration in workability or a drop in the transformation temperature, but if it exceeds 10at%, it will cause a noticeable deterioration in workability and it will not cause a noticeable deterioration in workability and it will not cause a noticeable deterioration in workability and will not cause a noticeable deterioration in the transformation temperature. becomes difficult to obtain. Table 2 shows the results of investigating changes in transformation temperature due to repeated heating and cooling thermal cycles for materials heat-treated at 700°C for 30 minutes. Although a significant change in transformation temperature is observed for the T 51 Ni 49 alloy, no significant change is observed for the claimed alloy. In this way, the alloy of the present invention made it possible to provide a shape memory alloy that is resistant to repeated temperatures of As60°C or higher. This can be applied to actuators that operate at high temperatures, such as steam pressure regulating valves.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 NiとCuが合計で48〜50at%(Cu:10at%以
下)、残部TiよりなるTiNi−Cu合金に対して、
NiをBで0.1〜5at%置換し、700℃以上の最終熱
処理を行つた形状記憶合金であつて、 60℃以上の変態温度を保ち、且つ、少なくとも
1000回の熱サイクルによつても、変態温度劣化の
少ない形状記憶合金。
[Claims] 1. For a TiNi-Cu alloy consisting of a total of 48 to 50 at% Ni and Cu (Cu: 10 at% or less) and the balance being Ti,
A shape memory alloy in which Ni is replaced by 0.1 to 5 at% of B and subjected to final heat treatment at 700°C or higher, which maintains a transformation temperature of 60°C or higher, and has at least
A shape memory alloy with minimal deterioration due to transformation temperature even after 1000 thermal cycles.
JP20704084A 1984-10-04 1984-10-04 Shape memory alloy Granted JPS6187839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20704084A JPS6187839A (en) 1984-10-04 1984-10-04 Shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20704084A JPS6187839A (en) 1984-10-04 1984-10-04 Shape memory alloy

Publications (2)

Publication Number Publication Date
JPS6187839A JPS6187839A (en) 1986-05-06
JPH0344136B2 true JPH0344136B2 (en) 1991-07-05

Family

ID=16533207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20704084A Granted JPS6187839A (en) 1984-10-04 1984-10-04 Shape memory alloy

Country Status (1)

Country Link
JP (1) JPS6187839A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273933A (en) * 1988-09-10 1990-03-13 Tokin Corp Shape memory alloy
US6149742A (en) * 1998-05-26 2000-11-21 Lockheed Martin Corporation Process for conditioning shape memory alloys

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157936A (en) * 1982-03-13 1983-09-20 Hitachi Metals Ltd Shape memory alloy
JPS59170247A (en) * 1983-03-16 1984-09-26 Furukawa Electric Co Ltd:The Manufacture of niti type shape memory material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157936A (en) * 1982-03-13 1983-09-20 Hitachi Metals Ltd Shape memory alloy
JPS59170247A (en) * 1983-03-16 1984-09-26 Furukawa Electric Co Ltd:The Manufacture of niti type shape memory material

Also Published As

Publication number Publication date
JPS6187839A (en) 1986-05-06

Similar Documents

Publication Publication Date Title
US20030098099A1 (en) Alpha-beta type titanium alloy
JPH11343548A (en) Production of high strength ti alloy excellent in workability
JP4116134B2 (en) Austenitic stainless steel excellent in high temperature sag resistance and method for producing the same
US5032195A (en) FE-base shape memory alloy
JPH0344136B2 (en)
JPS6326186B2 (en)
JPS61238942A (en) Heat resisting alloy
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
JPH1068050A (en) Stainless steel for spring excellent in thermal settling resistance
JP2603463B2 (en) Low temperature reversible shape memory alloy
WO2021206142A1 (en) Seal member and method for manufacturing same
JP3977956B2 (en) High strength β-type Ti alloy with excellent cold workability
JP3451771B2 (en) High strength low thermal expansion alloy wire rod and method of manufacturing the same
JP2004027254A (en) Titanium alloy having excellent corrosion resistance and method of producing the same
JPH0533303B2 (en)
JPH10152738A (en) Heat resistant copper alloy for heat exchanger
JPH04224643A (en) Shape memory alloy and its manufacture
JPH04218649A (en) Manufacture of ti-al intermetallic compound type alloy
JPS621460B2 (en)
JPH0742552B2 (en) High Ni alloy thin strip having excellent corrosion resistance and method for producing the same
JPH11335785A (en) High strength low thermal expansion alloy and its production
JPH036212B2 (en)
JPH03253528A (en) High strength copper alloy having high workability
JPH0742560B2 (en) High temperature spring manufacturing method
JPH03150333A (en) Shape memory alloy and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees