JPS61143567A - Manufacture of high temperature spring - Google Patents

Manufacture of high temperature spring

Info

Publication number
JPS61143567A
JPS61143567A JP26284384A JP26284384A JPS61143567A JP S61143567 A JPS61143567 A JP S61143567A JP 26284384 A JP26284384 A JP 26284384A JP 26284384 A JP26284384 A JP 26284384A JP S61143567 A JPS61143567 A JP S61143567A
Authority
JP
Japan
Prior art keywords
spring
strength
alloy
wire
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26284384A
Other languages
Japanese (ja)
Other versions
JPH0742560B2 (en
Inventor
Mitsuo Kawai
光雄 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59262843A priority Critical patent/JPH0742560B2/en
Publication of JPS61143567A publication Critical patent/JPS61143567A/en
Publication of JPH0742560B2 publication Critical patent/JPH0742560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Springs (AREA)
  • Wire Processing (AREA)

Abstract

PURPOSE:To maintain a fixed spring strength for a long time in high temp., by applying a process for controlling the majority of metal sructure to equi-axis crystals by soln. heat treating Ni alloy composed of prescribed ratios of C, Mn, Cr, Al, Ti, Nb, Fe, Mo. CONSTITUTION:Ni base ppt. hardened alloy comnposed of, by weight, <=0.1% C, <=1% Si, <=1% Mn, 10-25% Cr, 0.1-1% Al, 0.-2% Ti, 1.5-6% Nb, 2-25% Fe, 2-10% Mo, and the balance Ni is refined. Wire rod, etc. of the alloy is soln. heat treated, to convert the majority of metal structure to equi-axis crystals. This is formed to a prescribed shape to improve spring strength higher than a desired strength. next, it is heated under stress load and stabilizing treated.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は各種機械、機器の高温で長時間使用されるバネ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to springs used for long periods of time at high temperatures in various machines and equipment.

〔発明の技術的背景およびその問題点〕蒸気タービンや
ガスタービン、その他内燃機関などの各種の機械、機器
に高温バネが使用されている。従来より使用されている
高温バネは炭素0.IJ以下、硅素1.0%以下1.マ
ンガン1.0%以下、クロム10〜20%、アルミニウ
ム0.3〜1,0%、チタン2.0〜3.0%、ニオブ
0.5〜1.5%、鉄5〜1096.残部ニッケルヨF
)成ルNi基析出強化型合金の線材、棒材、板材を所定
のノくネ形状に成形後時効処理したものである。しかし
、この従来のバネ金高温で使用すると時間の経過ととも
に、バネの強さがりラキゼーションによシ急激に低下し
、常に一定のバネ強さを維持出来ない欠点がある。tた
最近の熱効率向上に伴なう各咥機械機器の高温化や小形
化に対してバネ強さが小さい欠点も有している。
[Technical background of the invention and its problems] High-temperature springs are used in various machines and equipment such as steam turbines, gas turbines, and other internal combustion engines. High-temperature springs that have been used conventionally have zero carbon. IJ or less, silicon 1.0% or less1. Manganese 1.0% or less, chromium 10-20%, aluminum 0.3-1.0%, titanium 2.0-3.0%, niobium 0.5-1.5%, iron 5-1096. remaining nickelyo F
) A wire, bar, or plate material of a precipitated Ni-based precipitation-strengthened alloy is formed into a predetermined groove shape and then subjected to an aging treatment. However, when this conventional spring metal is used at high temperatures, the strength of the spring rapidly decreases over time due to raxation, and there is a drawback that a constant spring strength cannot be maintained at all times. Another drawback is that the spring strength is low in response to the recent increase in temperature and miniaturization of various jaw machines due to improvements in thermal efficiency.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる従来の事情に鑑みてなされたもので、
従来の高温バネに比ベバネ強さが強く、また使用中のり
ラキゼーションによる変形およびバネ強さの低下が小さ
い、強度耐リラキゼーシミンに優れた高温バネの製造方
法を提供しようとするものである。
The present invention has been made in view of such conventional circumstances, and
An object of the present invention is to provide a method for manufacturing a high-temperature spring that has a higher spring strength than conventional high-temperature springs, has less deformation and lowering of spring strength due to gluing during use, and has excellent strength relaxation resistance.

〔発明の概要〕[Summary of the invention]

本発明はバネ素材であるNi基析出強化型合金の線材、
棒材あるいは板材を溶体化処理し、その金属組織の過半
を等軸晶とする工程と、バネ強さを所要の強さ以上にな
るような形状に形成する工程と、応力負荷加熱により所
要のバネ強さと形状および優れた耐すラキゼーション性
を付与する安定化処理の工程とを具備することを特徴と
した。
The present invention relates to a wire rod of a Ni-based precipitation-strengthened alloy that is a spring material,
There are two steps: solution treatment of bar or plate material to make the majority of its metallographic structure equiaxed, a step of forming it into a shape that has a spring strength greater than the required strength, and a stress-load heating process to obtain the required spring strength. It is characterized by comprising a stabilization process that imparts spring strength, shape, and excellent raxization resistance.

高強度耐すラキゼーシ目ンの高温バネの製造方法であう
、又バネ素材が重量パーセントで炭素0.1%以下、硅
素1,0チ以下、マンガン1.0チ以下、クロム10〜
25%、アルミニウム0.1〜1.0%、チタン0.1
〜2.、O%、ニオブ1.5〜6.0%、鉄2〜25%
、モリブデン2.0〜10.0%、残部ニッケルより成
る合金で、かつ前述した各工程をへて成る事を特徴とす
る高強度、耐すラキゼーション高温バネである。
This is a method for producing high-strength, high-temperature springs with high resistance to cracking, and the spring material is carbon 0.1% or less, silicon 1.0% or less, manganese 1.0% or less, and chromium 10-10% by weight.
25%, aluminum 0.1-1.0%, titanium 0.1
~2. , O%, niobium 1.5-6.0%, iron 2-25%
, 2.0 to 10.0% molybdenum and the balance nickel, and is a high-strength, raxation-resistant high-temperature spring that is characterized by having undergone the above-mentioned processes.

ここで本発明の限定理由について説明する。まず溶体化
処理により金属組織の過半を等軸晶にする理由は熱間鍛
造あるいは熱間圧延、熱間伸線などの加工組織がそのほ
とんどである場合は耐すラキゼーシlン性が得られない
ためである。なお、溶体化処理温度′は980℃以上、
望ましくは1.0000C以上が良く、またその後若干
の冷間加工を加えても良い。次にバネ強さを所要の強さ
以上になるような形状に成形する理由は、安定化処理に
よp所要のバネ強さおよび形状にするために必要不可欠
で、最初から所要の形状にしておい友場合には安定化処
理による変形で、所定のバネ強さ、形状が得られないた
めである。
Here, the reason for the limitation of the present invention will be explained. First of all, the reason why most of the metal structure is made equiaxed by solution treatment is that if most of the structure is processed by hot forging, hot rolling, hot wire drawing, etc., it is not possible to obtain rakishing properties. It's for a reason. Note that the solution treatment temperature' is 980°C or higher,
Desirably, the temperature is 1.0000C or higher, and some cold working may be added thereafter. Next, the reason why the spring is formed into a shape that has a spring strength higher than the required strength is that it is essential to achieve the required spring strength and shape through stabilization treatment, and it is necessary to mold the spring into the desired shape from the beginning. This is because, in this case, the predetermined spring strength and shape cannot be obtained due to deformation caused by the stabilization process.

応力負荷加熱による安定化処理は所要のバネ強さ正形状
および優れた耐すラキゼーシ目ン性を付する念めに必要
不可欠な工程で、この工程がない場合には高温で使用中
にバネ強さおよびバヌ形状の変化が大きく、長時間安定
したバネ強さを発揮する高温バネが得られない事による
Stabilization treatment by stress-load heating is an essential process to ensure that the spring has the required strength, proper shape, and excellent rachisage resistance. This is due to the large changes in spring and spring shape, making it impossible to obtain a high-temperature spring that exhibits stable spring strength over a long period of time.

なお、この応力負可安定化処理は時効処理のあとに行な
うのが望ましいが、時効処理を兼ねて行なっても良い。
Note that this stress negative stabilization treatment is preferably performed after the aging treatment, but it may also be performed concurrently with the aging treatment.

次にバネ素材の化学組成の限定理由としては線材、棒材
、板材などに加工出来るとともに所要のバネ形状に容易
に成形出来ること、従来の高温バネよ)も優れた耐すラ
キゼーシ習ン性が得られることによる。
Next, the reason for limiting the chemical composition of the spring material is that it can be processed into wire rods, bars, plates, etc., and that it can be easily formed into the desired spring shape. Depends on what you get.

以下に化学組成の各成分の限定理由について述べる。The reason for limiting each component of the chemical composition will be described below.

炭素は合金に固溶し強度を向上させる次めに必要な元素
で好ましくは0.02〜0.06%程度添加するが多量
の添加は炭化物が結晶粒界に析出し耐粒界腐食性や靭性
を害するので0.1%以下とする。
Carbon is the next necessary element that dissolves in the alloy and improves its strength, and is preferably added in an amount of about 0.02 to 0.06%, but if it is added in a large amount, carbides will precipitate at grain boundaries, resulting in poor intergranular corrosion resistance. Since it impairs toughness, the content should be 0.1% or less.

硅素は溶解時に脱酸剤として添加するもので、゛好まし
くは0.1〜0.6チ程度含有するが、多量の添加は靭
性や加工性を害するので1.0以下とする。
Silicon is added as a deoxidizing agent during melting, and is preferably contained in a range of about 0.1 to 0.6 silicon, but since adding too much silicon impairs toughness and processability, the silicon content should be 1.0 or less.

マンガンは溶解時に脱酸、脱硫剤として添加するもので
好ましくは0.1〜0.5%程度含有する。しかし多量
に添加してもその効果が小さくなるの″171.0チ以
下とする。
Manganese is added as a deoxidizing and desulfurizing agent during melting, and is preferably contained in an amount of about 0.1 to 0.5%. However, even if a large amount is added, the effect will be small, so it should be kept at 171.0 inches or less.

クロムは合金の強度や耐酸化性、耐食性を向上させる作
用をなす元素で10〜25チ特に15〜20チの範囲が
望ましい。lOチ未満では添加効果が少なく、また25
%t−越えると加工性を害するので上記範囲に規定した
Chromium is an element that improves the strength, oxidation resistance, and corrosion resistance of the alloy, and is preferably in the range of 10 to 25 inches, particularly 15 to 20 degrees. If it is less than 100%, the effect of addition is small;
If it exceeds %t, the processability will be impaired, so it is specified within the above range.

モリブデンは合金の強度を向上させると共に耐食性を向
上させる作用があシ、少なくとも2.0チ以上の添加が
必要である。しかし10チヲ越える多量の添加は加工i
を劣化させるのでこれ以下にする必要がある。
Molybdenum has the effect of improving the strength of the alloy as well as its corrosion resistance, and must be added in an amount of at least 2.0 h. However, if a large amount of addition exceeding 10% is added, processing is required.
It needs to be lower than this because it causes deterioration.

アルミニウムはニッケルと金属間化合物を生成して合金
中に析出し合金の強度を向上させる作用をなす元素であ
る。この場合0.1%未満では効果が少なくまたチタン
やニオブの含有量との兼ね甘いもあるが、10チを越え
て多量に添加すると加工性が悪くなるので0.1〜1.
0チの範囲が良く特に望ましくは0.2〜0.7チが良
い。
Aluminum is an element that forms an intermetallic compound with nickel, precipitates in the alloy, and improves the strength of the alloy. In this case, if it is less than 0.1%, the effect will be small, and if it is added in a large amount exceeding 10%, the processability will deteriorate, so 0.1 to 1%.
The range of 0 inches is good, and the range of 0.2 to 0.7 inches is particularly desirable.

チタンもアルミニウムと同様に合金の強度を向上させる
元素で0.1%以上望ましくは0.2%以上添加する。
Titanium, like aluminum, is an element that improves the strength of the alloy, and is added in an amount of 0.1% or more, preferably 0.2% or more.

しかし多量の添加はアルミニウムとニオブとの兼ね合い
もあるが、加工性が悪くなることから2.0%とした。
However, adding a large amount causes poor workability, although there is a balance between aluminum and niobium, so it was set at 2.0%.

鉄は合金の熱間鍛造性を向上させる作用をなす元素であ
る。この場合2%未満の添加では効果が少なく、ま九2
5%を越える多食の添加は耐食性が悪くなるのでこれ以
下におさえた。
Iron is an element that improves the hot forgeability of the alloy. In this case, adding less than 2% will have little effect, and
Addition of more than 5% leads to poor corrosion resistance, so the amount was kept below this.

ニオブはアルミニウムやチタンと同様にニッケルと化合
物を生成して合金の耐摩耗性と強度を向上させるのに有
効な元素である。この場合1.5%未満では効果が十分
に得られずまた6、0%を越えるとアルミニウムやチタ
ンと同様に加工性を害するのでこの範囲とした。
Niobium, like aluminum and titanium, is an effective element that forms compounds with nickel to improve the wear resistance and strength of alloys. In this case, if it is less than 1.5%, the effect will not be sufficiently obtained, and if it exceeds 6.0%, workability will be impaired like aluminum or titanium, so this range was set.

〔発明の実施例〕[Embodiments of the invention]

実施例1 高周波誘導溶解炉を用いて、 C:0.31%、8i:
0.23% 、MM : 0.20 %、Cr :18
.4%、F’e:17.5%、Ti  二O,77%。
Example 1 Using a high frequency induction melting furnace, C: 0.31%, 8i:
0.23%, MM: 0.20%, Cr: 18
.. 4%, F'e: 17.5%, Ti2O, 77%.

At:o、43俤、 Nb : 5.4% 、Mo :
 3.6%、残部Niよジ成る合金インボラトラ得念。
At: o, 43 yen, Nb: 5.4%, Mo:
Alloy Inborator is made up of 3.6% Ni and the balance is Ni.

次いでこのインゴットに熱間鍛造や伸線加工を施こし1
.4 ミ’Jの線材とした。
Next, this ingot is subjected to hot forging and wire drawing processing.
.. 4 Mi'J wire rod was used.

このようにして得た線材の一部を切出し、1020℃で
30分間加熱後急冷したのち、冷間で伸線を行ない1.
2ミリの線材とした。
A part of the wire obtained in this way was cut out, heated at 1020°C for 30 minutes, rapidly cooled, and then cold drawn.1.
It was made of 2mm wire.

引続き、この線材で中心径11ミリ、自由長21.5ミ
リ、有効巻数4.5回、全巻数6.5回のコイルバネを
成形し光のち718℃で8時間、621℃で8時間の時
効処理を施こした。さらにこのコイルバネを圧縮してコ
イル長さを12ミリとした状態で700℃、2,5時間
の安定化処理を施こし試験に供した。なお、このコイル
バネの金属組織を観察した結果、双晶が見られる等軸晶
であった。
Subsequently, a coil spring with a center diameter of 11 mm, a free length of 21.5 mm, an effective number of turns of 4.5 turns, and a total number of turns of 6.5 turns was formed from this wire, and after being exposed to light, it was aged at 718°C for 8 hours and at 621°C for 8 hours. Processed. Further, this coil spring was compressed to a coil length of 12 mm, and then subjected to stabilization treatment at 700° C. for 2.5 hours, and then subjected to a test. In addition, as a result of observing the metal structure of this coil spring, it was found to be an equiaxed crystal with twin crystals.

比較例1 上記1.2ミリの線材で中心径11ミリ、自由長20 
ミ!J %有効巻数4.5口金巻数6.5回のコイルバ
ネを成形したのち718℃で8時間、621℃で8時間
の時効処理を施こし試験に供した。
Comparative Example 1 The above 1.2 mm wire has a center diameter of 11 mm and a free length of 20 mm.
Mi! J % A coil spring having an effective number of turns of 4.5 and a number of turns of the base of 6.5 was molded, and then subjected to aging treatment at 718° C. for 8 hours and at 621° C. for 8 hours, and subjected to a strain test.

比較例2 前述した1、 4 ミIJの線材の一部を切出し、95
4°Cで1時間加熱後急冷したのち、冷間で伸線して1
.2ミリの線材とした。
Comparative Example 2 Cut out a part of the above-mentioned 1 and 4 mm IJ wire, and
After heating at 4°C for 1 hour and quenching, draw the wire in the cold to form 1
.. It was made of 2mm wire.

次いでコイル中心径11ミI7 、自由長21.5ミリ
有効巻数4.5回、全巻数6.5回のコイルノ(ネを成
形したのち、718℃で8時間、621℃で8時間の熱
処理を施こした。さらにこのコイルバネを圧縮してコイ
ル長さを12ミリとした状態で、  600℃。
Next, after forming a coil with a center diameter of 11 mm, a free length of 21.5 mm, an effective number of turns of 4.5 turns, and a total number of turns of 6.5 turns, heat treatment was performed at 718°C for 8 hours and at 621°C for 8 hours. Furthermore, this coil spring was compressed to a coil length of 12 mm and heated to 600℃.

1.5時間の安定化処理を施こし試験に供した。It was subjected to a stabilization treatment for 1.5 hours and then subjected to a strain test.

なおこのコイルバネの金属組織は等軸晶が明)ようには
見られなかった。
Note that the metal structure of this coil spring did not appear to be equiaxed.

比較例3 従来の高温バネ素材であるC:0.06%、Si二〇、
13%。
Comparative Example 3 Conventional high temperature spring material C: 0.06%, Si20,
13%.

MM : 0.62 %、Cr :15.4%lFe 
ニア、2%、Ti  :2.5%、A t:  0.8
3%、Nb : 0.82%、残部Niよ構成る合金を
高周波誘導溶解炉より溶製した。
MM: 0.62%, Cr: 15.4%lFe
Near, 2%, Ti: 2.5%, At: 0.8
An alloy consisting of 3% Nb, 0.82% Nb, and the balance Ni was melted in a high frequency induction melting furnace.

次いで熱間鍛造、伸線を施こして1.4ミリの線材とし
たのち1093℃で30分加熱彼急冷した。引続いてこ
の線材を冷間伸線して1.2ミリの線材としたのち、コ
イル中心径11ミリ、自由長20ミリ。
The wire was then hot-forged and wire-drawn to form a 1.4 mm wire rod, which was then heated at 1093°C for 30 minutes and rapidly cooled. Subsequently, this wire was cold-drawn into a 1.2 mm wire, and the coil was made into a wire with a center diameter of 11 mm and a free length of 20 mm.

有効巻数4.5回、全巻数6.5回のコイルバネに成形
、650℃で5時間の時効処理を施こし試験に供した。
The coil spring was formed into a coil spring having an effective number of turns of 4.5 turns and a total number of turns of 6.5 turns, and was subjected to an aging treatment at 650° C. for 5 hours and subjected to a test.

試験は前述した実施例1と比較例1〜3の圧縮コイルバ
ネを12ミリに圧縮固定した状態で60o℃および70
0℃の炉中に装入、所定時間加熱したのち室温にとり出
し加重をとりのぞいたのちのバネの自由長と、バネの長
さを12ミリに圧縮するに要する荷重を測定した。なお
、このバネの金属組織は等軸晶であった。試験結果を第
1図および第2図に示す。
The test was carried out at 60°C and 70°C with the compression coil springs of Example 1 and Comparative Examples 1 to 3 compressed and fixed to 12 mm.
The spring was placed in a furnace at 0°C, heated for a predetermined period of time, then taken out to room temperature, and after removing the load, the free length of the spring and the load required to compress the spring length to 12 mm were measured. Note that the metal structure of this spring was an equiaxed crystal. The test results are shown in Figures 1 and 2.

図より明らかなように本発明に係る高強度、耐すラキゼ
ーシ冒ン高温バネは比較例のバネに比べ、高温で長時間
応力が加わっ次状態で使用されても。
As is clear from the figure, the high-strength, high-temperature spring of the present invention is more durable than the spring of the comparative example, even when used at high temperatures and under stress for a long time.

コイル長さおよびバネ強さはほとんど変化せず、優れた
耐すラキゼーシロン性を有し、常に一定のバネ強さを長
時間保持出来る工業上有用なバネであることが判る。
It can be seen that the coil length and spring strength hardly change, and the spring has excellent resistance to rachising and is industrially useful because it can always maintain a constant spring strength for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明に係る高強度耐すラキゼー
ション高温バネおよび比較例のバネに加重を加えバネ長
さ12ミリに圧縮1.た状態で加熱したのち、荷重をと
ジさった時のバネ自由長とバネ長さ? 12 ミリに圧
縮するに必要な測定結果を示す特性図である。 第1図 P=T(fagt+zD)・rff’ T;に第2図
FIGS. 1 and 2 show the high-strength, high-temperature raking spring according to the present invention and the spring of the comparative example, which are loaded and compressed to a spring length of 12 mm. What is the free spring length and spring length when the load is removed after heating the spring? FIG. 3 is a characteristic diagram showing measurement results necessary for compression to 12 mm. Figure 1 P=T(fagt+zD)・rff'T; Figure 2

Claims (1)

【特許請求の範囲】 1、バネ素材であるNi基析出強化合金の線材、棒板あ
るいは板材を溶体化処理し、その金属組織の過半を等軸
晶とする工程と、バネ強さを所要の強さ以上になるよう
な形状に成形する工程と、応力負荷加熱による安定化処
理の工程とを具備することを特徴とした高温バネの製造
方法。 2、バネ素材が、重量パーセントで炭素0.1%以下、
硅素1.0%以下、マンガン1.0%以下、クロム10
〜25%、アルミニウム0.1〜1.0%、チタン0.
1〜2.0%、ニオブ1.5〜6.0%、鉄2〜25%
、モリブデン2.0〜10.0%、残部ニッケルより成
る合金である事を特徴とする高温バネの製造方法。
[Scope of Claims] 1. Process of solution-treating a wire, rod or plate material of Ni-based precipitation-strengthened alloy, which is a spring material, to make the majority of its metallographic structure equiaxed, and to obtain the required spring strength. A method for producing a high-temperature spring, comprising a step of forming the spring into a shape that has a higher strength, and a step of stabilizing the spring by stress-load heating. 2. The spring material contains less than 0.1% carbon by weight,
Silicon 1.0% or less, manganese 1.0% or less, chromium 10
~25%, aluminum 0.1-1.0%, titanium 0.
1-2.0%, niobium 1.5-6.0%, iron 2-25%
, 2.0 to 10.0% molybdenum, and the balance nickel.
JP59262843A 1984-12-14 1984-12-14 High temperature spring manufacturing method Expired - Lifetime JPH0742560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59262843A JPH0742560B2 (en) 1984-12-14 1984-12-14 High temperature spring manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262843A JPH0742560B2 (en) 1984-12-14 1984-12-14 High temperature spring manufacturing method

Publications (2)

Publication Number Publication Date
JPS61143567A true JPS61143567A (en) 1986-07-01
JPH0742560B2 JPH0742560B2 (en) 1995-05-10

Family

ID=17381386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262843A Expired - Lifetime JPH0742560B2 (en) 1984-12-14 1984-12-14 High temperature spring manufacturing method

Country Status (1)

Country Link
JP (1) JPH0742560B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274820A (en) * 1989-04-18 1990-11-09 Mitsubishi Steel Mfg Co Ltd Method and apparatus for automatically producing coil spring
EP1340825A2 (en) * 2002-02-27 2003-09-03 Daido Tokushuko Kabushiki Kaisha Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60015728T2 (en) * 1999-01-28 2005-11-03 Sumitomo Electric Industries, Ltd. HEAT-RESISTANT ALLOY WIRE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877559A (en) * 1981-10-30 1983-05-10 Hitachi Ltd Manufacture of spring for nuclear reactor with superior stress corrosion cracking resistance
JPS58136736A (en) * 1982-02-08 1983-08-13 Hitachi Ltd Ni alloy member
JPS58174538A (en) * 1982-04-02 1983-10-13 Hitachi Ltd Ni-based alloy member and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877559A (en) * 1981-10-30 1983-05-10 Hitachi Ltd Manufacture of spring for nuclear reactor with superior stress corrosion cracking resistance
JPS58136736A (en) * 1982-02-08 1983-08-13 Hitachi Ltd Ni alloy member
JPS58174538A (en) * 1982-04-02 1983-10-13 Hitachi Ltd Ni-based alloy member and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274820A (en) * 1989-04-18 1990-11-09 Mitsubishi Steel Mfg Co Ltd Method and apparatus for automatically producing coil spring
EP1340825A2 (en) * 2002-02-27 2003-09-03 Daido Tokushuko Kabushiki Kaisha Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
EP1340825A3 (en) * 2002-02-27 2003-10-08 Daido Tokushuko Kabushiki Kaisha Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
US6918972B2 (en) 2002-02-27 2005-07-19 Daido Tokushuko Kabushiki Kaisha Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring

Also Published As

Publication number Publication date
JPH0742560B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
US5131961A (en) Method for producing a nickel-base superalloy
JP2003253363A (en) Ni-BASE ALLOY FOR HEAT-RESISTANT SPRING, HEAT-RESISTANT SPRING USING THE ALLOY, AND ITS PRODUCTION METHOD
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JPH09170016A (en) Production of high-temperature-stable object made of in706 type iron/nickel super alloy
JPH10204592A (en) Stainless steel wire and its production
JP2000017395A (en) Fe SERIES SHAPE MEMORY ALLOY AND ITS PRODUCTION
JP2659373B2 (en) Method of manufacturing high-temperature bolt material
JPS61143567A (en) Manufacture of high temperature spring
JPH03134144A (en) Nickel-base alloy member and its manufacture
JPH11256278A (en) Cobalt-free maraging steel
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JP2796966B2 (en) Ultra-low thermal expansion alloy and manufacturing method
JP2001158943A (en) Heat resistant bolt
JPS62250136A (en) Copper alloy terminal and connector
JPS60187652A (en) High-elasticity alloy
JPS62167839A (en) Ni base alloy and its manufacture
JPS62167838A (en) Ni base alloy and its manufacture
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts
JPH0633206A (en) Method for heat-treating ni-base alloy
JPH1068050A (en) Stainless steel for spring excellent in thermal settling resistance
JPH0238547A (en) Manufacture of ti-ni shape memory alloy
JPS61142672A (en) Electric connection terminal clip for filament lighting of magnetron
JPS62170444A (en) Precipitation strengthening cast ni alloy having superior resistance to stress corrosion cracking
JPH01156455A (en) Manufacture of shape memory alloy
JPS61157640A (en) Manufacture of steel bar and wire rod for cold forging