JPS58174538A - Ni-based alloy member and manufacture thereof - Google Patents

Ni-based alloy member and manufacture thereof

Info

Publication number
JPS58174538A
JPS58174538A JP5578082A JP5578082A JPS58174538A JP S58174538 A JPS58174538 A JP S58174538A JP 5578082 A JP5578082 A JP 5578082A JP 5578082 A JP5578082 A JP 5578082A JP S58174538 A JPS58174538 A JP S58174538A
Authority
JP
Japan
Prior art keywords
resistance
based alloy
scc
gap
alloy member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5578082A
Other languages
Japanese (ja)
Other versions
JPS6211058B2 (en
Inventor
Yoshinao Urayama
浦山 義直
Shigeo Hattori
成雄 服部
Isao Masaoka
正岡 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5578082A priority Critical patent/JPS58174538A/en
Priority to EP83301811A priority patent/EP0091279B1/en
Priority to DE8383301811T priority patent/DE3368289D1/en
Publication of JPS58174538A publication Critical patent/JPS58174538A/en
Publication of JPS6211058B2 publication Critical patent/JPS6211058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain the Ni-based alloy member excellent in proper stress corrosion cracking resistance and esp. useful as a spring or the like for a nuclear reactor, by letting the alloy comprise the specified amount of each of Cr, Fe, Al, Ti and Nb, and the balance Ni and have a precipitation-strengthened primary recrystallized structure. CONSTITUTION:The Ni-based alloy member comprising, by wt., 14-25% Cr, Fe<=30%, 0.2-2% Al, 0.5-3% Ti, 0.7-4.5% Nb and the balance Ni. By cold- working this Ni-based alloy member with the ratio of sectional reduction above 25%, for instance, between solution treatment and double-stage aging treatment, a spring or bolt for a nuclear reactor further improved in its crevice corrosion resistance and stress corrosion cracking resistance (resistance to SCC) can be manufactured.

Description

【発明の詳細な説明】 のく関する。[Detailed description of the invention] Concerning Nokuku.

従来の原子炉用ばねは主に溶製後に固溶化処理を施した
後、冷間圧延により30%〜40%の加工を与え、その
後に時効処理を施して製作されていた。、これらは冷間
加工十時効処理により、原子炉用ばね材として要求され
る高温強度並びKばね特性を確保する九めの処理製作法
であるが、実機適用上特に問題となる隙間部での耐応力
腐食割れ性(以下耐SCC性という)に関する検討が必
ずしも十分に行なわれてはいないという欠点がめった。
Conventional nuclear reactor springs have been produced mainly by subjecting the springs to solution treatment after melting, cold rolling to 30% to 40% processing, and then subjecting them to aging treatment. These are the ninth manufacturing methods that ensure the high-temperature strength and K spring characteristics required for nuclear reactor spring materials through cold working and aging, but they are difficult to manufacture in the gaps, which are particularly problematic when applied to actual equipment. A shortcoming is that stress corrosion cracking resistance (hereinafter referred to as SCC resistance) has not always been sufficiently studied.

特に、原子炉用ばね(例えばBWR制御棒駆動機構のC
スプリング)は、高応力作用下で隙間が形成された箇所
で使用される場合が多く、SCC対策が重要である。現
在、原子炉用ばねとしては高強度と高耐食性に優れ九イ
ンコネル(商品名)×750が用いられており、そのほ
とんどが固溶化地理後に30〜40%の冷関力l工を施
し、その後に時効処理(直接時効)する工程で製作され
ている。固溶化処理後の冷間加工は結晶粒の微細化をは
かることを目的としているが、一方冷関加工に引麹続く
時効処理は原子炉用ばね材としてあげ、、、・1 ね特性並びに高温強度向上に寄与するものである。
In particular, springs for nuclear reactors (e.g. C of BWR control rod drive mechanism)
Spring) are often used in locations where gaps are formed under high stress, and SCC countermeasures are important. Currently, 9 Inconel (trade name) x 750, which has high strength and high corrosion resistance, is used as springs for nuclear reactors, and most of them are treated with 30-40% cold steel after solid solution treatment. It is manufactured using an aging process (direct aging). The purpose of cold working after solution treatment is to refine the crystal grains, but on the other hand, aging treatment that follows cold working with koji mold is used for spring materials for nuclear reactors. This contributes to improving strength.

しかし、固溶化処理と時効処理との中間に30〜40%
の冷間加工を施しても、30〜40%の冷間加工が実用
上で問題となる耐隙間SCC性に有8CC性に優れ九N
i基合金製部材およびその製造方法をf!供することを
目的とするものである。
However, between solid solution treatment and aging treatment, 30 to 40%
Even if cold working is applied, 30 to 40% of cold working is a practical problem.It has excellent clearance SCC property.8 Excellent CC property and 9N.
f! I-based alloy members and their manufacturing method. The purpose is to provide

本発明者らは、固溶化処理と時効処理との中間に実施す
る冷間加工度を変え、耐隙間SCC性に及ぼす冷間加工
度の影響を高温高圧純水中隙間付定歪試験と光学顕微鏡
組織観察の両面から検討した。また同時に時効処理粂件
(直接時効及び二段時効)についても同様の検討を加え
た。その結果、次の様な新たな事実を発見した。■固溶
化処理と直接時効処理との中間に10〜30%の冷間カ
ロエを施すと隙間SCCCC感性受性良く示される。し
山 かし、60%の冷間加工を施せば耐隙間SCC性の向上
が認められるが、この場合、金属組織から隙間SCC感
受性の大小を判定することが困難である。■固溶化処理
と二段時効処理との中間に10〜20%の冷間加工を施
した場合には、隙間SCC感受性が顕著に認められるが
、参尋%以上の冷間加工になると隙間SCCCC性は着
しく減少する。この場合、金属組織から冷間加工度と隙
間8CC感受性との関連を容易に判定することが出来る
。すなわち、隙間SCC感受性が着しく小さく示される
0%以上の冷間加工の場合に、−久喜結晶粒が認められ
るのに対して、隙間SCC感受性が大きく示された10
〜20%の冷間加工では、それが認められない、これよ
り、二段時効処理材に生じる高温水中隙間8CCは直接
時効処理材の場合とSCCの発生メカニズムが異なって
であることを発見した。
The present inventors changed the degree of cold working carried out between the solution treatment and the aging treatment, and investigated the effect of the degree of cold working on the gap SCC resistance using constant strain tests with gaps in high-temperature, high-pressure pure water. This was investigated from both aspects of microscopic tissue observation. At the same time, a similar study was conducted regarding prescription cases (direct prescription and two-stage prescription). As a result, we discovered the following new facts. (2) If 10 to 30% cold carroe is applied between the solution treatment and the direct aging treatment, the gap SCCCC sensitivity is shown to be good. However, if 60% cold working is performed, the gap SCC resistance is improved, but in this case, it is difficult to determine the magnitude of the gap SCC susceptibility from the metal structure. ■If 10 to 20% cold working is performed between solution treatment and two-stage aging treatment, the gap SCC susceptibility is noticeable, but if the cold working exceeds the reference %, the gap SCCCC will increase. gender gradually decreases. In this case, the relationship between the cold work degree and the gap 8CC sensitivity can be easily determined from the metallographic structure. That is, in the case of cold working of 0% or more, where the gap SCC susceptibility is significantly small, -Kuki crystal grains are observed, whereas in the case of 10, where the gap SCC susceptibility is large.
This was not observed in ~20% cold working.From this, it was discovered that the SCC generation mechanism of the high-temperature underwater gap 8CC that occurs in the two-stage aged material is different from that in the directly aged material. .

本発明はこのような知見に基づいてなされたものであっ
て、第1の発明は、重量%で、Cr14〜25%、Fe
50%以下、At0.2〜2%。
The present invention has been made based on such knowledge, and the first invention is based on 14 to 25% of Cr and Fe of 14 to 25% by weight.
50% or less, At 0.2-2%.

T・10.5〜3%、NbO,7〜4.5%、残部N1
か耐応力腐食割れ性に優れ7’tNi&合金製部材、を
要旨とするものである。東嘆的I;C凛イlの等+4f
)〆時よし曳ま九第2の発明は、電歇%で、Cr14〜
25%、pe30%以下、At0.2〜2%、’i’i
0.5〜3%、Nb45〜8%、MO8%以F、残部−
次 Niからなり、かつ析出強化され1、^結晶組織を有す
る、耐応力腐食割れ性に優れたN1基合金製部材を要旨
とするものである。
T・10.5~3%, NbO, 7~4.5%, balance N1
The main objective is to provide a 7'Ni alloy member with excellent stress corrosion cracking resistance. Togaku's I; C Rin I's +4f
) The second invention of Tokiyoshi Hikima9 is the electric switch%, Cr14~
25%, pe30% or less, At0.2-2%, 'i'i
0.5-3%, Nb45-8%, MO8% or more F, balance -
The object of the present invention is to provide a member made of an N1-based alloy, which is made of Ni, is precipitation-strengthened, has a 1,^ crystal structure, and has excellent stress corrosion cracking resistance.

さらに第3の発明は、重要%で、Cr14〜25%、p
e30%以下、At0.2〜2%、Ti愼とするNi基
合金製部材の製造方法、を要旨とするものである。
Furthermore, the third invention has an important % of Cr of 14 to 25%, p
The gist of the present invention is a method for manufacturing a member made of a Ni-based alloy with e30% or less, At 0.2 to 2%, and Ti.

本発明における成分限定理由を次に述べる。The reasons for limiting the ingredients in the present invention will be described below.

Cr:Crは耐SCC性の点では少なくとも14%が必
要であるが、一方、25%を超えると熱間加工性が損な
われ、まえTCP相として知られる妻堵片−」相早−°
 有害相の生成によって冷間加工性9機械的性質および
耐食性が低下するので14〜25%とした。
Cr: Cr needs to be at least 14% in terms of SCC resistance, but on the other hand, if it exceeds 25%, hot workability will be impaired, resulting in the formation of chromatic flakes known as the TCP phase.
The cold workability 9 mechanical properties and corrosion resistance are reduced due to the formation of harmful phases, so the content was set at 14 to 25%.

pe:peは基地の組織を安定化し、耐食性を向上させ
る。しかし、F・の含有量が多過ぎるとLaves  
相など有害相を生ぜしめるため、30%≧Feとし友。
pe: pe stabilizes the base structure and improves corrosion resistance. However, if the content of F is too high, Laves
30% ≧Fe is recommended because it causes harmful phases such as phase.

At、T1及びNbはいずれもNiとの金属間化合物を
形成し析出強化に寄与する。時効硬化能を与えるため罠
は少なくと−0,2%以上のAtおよび0.5%以上の
T!の組合せが必要でsb、AtおよびTM(2)il
を増加させ、かつNbを添加することによシ目的に応じ
た高強度の合金が得られる。−刃金有量が過多であると
特性が劣化するので、Atは0.2〜2%、T直は0.
5〜3%とし、しかして第1の発明において1NbFi
o、7〜4.5%とした。
At, T1, and Nb all form intermetallic compounds with Ni and contribute to precipitation strengthening. In order to provide age hardening ability, the trap contains at least -0.2% At and 0.5% T! A combination of sb, At and TM(2)il is required.
By increasing Nb and adding Nb, a high-strength alloy suitable for the purpose can be obtained. - If the amount of blade metal is too large, the characteristics will deteriorate, so At is 0.2 to 2%, and T straight is 0.
5 to 3%, and in the first invention 1NbFi
o, 7 to 4.5%.

ま次第2の発明においてはさらKMoi含有する。MO
はCrと共存して十分な耐8CC性を確保する。しかし
、MOの量が多くなり過ぎると加工性が悪くなり、耐食
性や機械的性質を慣なう有害相が生成し中すくなる丸め
、MOは8%以下とした。
In the second invention, KMoi is further included. M.O.
Coexists with Cr to ensure sufficient 8CC resistance. However, if the amount of MO is too large, the workability will deteriorate, and a harmful phase will be produced that will deteriorate the corrosion resistance and mechanical properties, making it difficult to roll the material.

ま次第2の発明においても、NbはAtやTIに比べて
、析出強化に対する効果が大きく、ばねに必要な高い硬
化能を得る丸めにはNbの添加が必要であるが多過ぎる
と粗大な炭化物や金属間化合一の生成による機械的特性
の劣化や加工性の低下が生じることがある。そのため第
2の発明においてはNbを45〜8%とした。
Also in the second invention, Nb has a greater effect on precipitation strengthening than At or TI, and it is necessary to add Nb for rounding to obtain the high hardening ability required for springs, but if too much Nb is added, coarse carbides are formed. Deterioration of mechanical properties and deterioration of workability may occur due to the formation of intermetallic compounds and intermetallic compounds. Therefore, in the second invention, Nb was set at 45 to 8%.

また第3の発明においては、固m化処理の温度としては
950〜1150Cが好適である。また二段時効処理と
しては、800〜900CVC1ないし30時間保持し
た後、冷却し、次いで600〜750Cで1ないし30
時間行なうようにする法を説明する。
In the third invention, the temperature of the solidification treatment is preferably 950 to 1150C. In addition, as a two-stage aging treatment, after holding at 800 to 900 CVC for 1 to 30 hours, cooling, and then heating at 600 to 750 C for 1 to 30 hours.
Explain how to make time work.

第1図(a)、 Cb)はインデックスチューブ10内
壁にグラファイトシール11をMRシ付ける九めに用い
られるエクスパンションスプリング12を示すものであ
る。このエクスパンションスプリング12は切り込み1
3を有する帯状のリングであって、幅は10am、[径
Fi60−である。このエフ製造されたものである。
FIGS. 1(a) and 1(c) show an expansion spring 12 used for attaching the graphite seal 11 to the inner wall of the index tube 10. This expansion spring 12 has notch 1
3, the width is 10 am, and the diameter Fi is 60-. This was manufactured by F.

@1図(C)、 1)はピストンチューブ201Cグラ
ファイトシール21を取シ付ける丸めのガータスプリン
グ22を示すものである。このガータスプリング22は
、コイル状であって、コイル部長さ166■、芯線直径
0,36■でめる。これは、溶4甲零策、コ4ソンク。
@1 Figure (C), 1) shows the rounded garter spring 22 to which the graphite seal 21 of the piston tube 201C is attached. This garter spring 22 has a coil shape, with a coil length of 166 cm and a core wire diameter of 0.36 cm. This is Soru 4 Ko Reisaku, Ko 4 Sonku.

製後、固溶化、9F=N#4#い(午の際に一%以上の
加工が加えられる)、二段時効処理によって製造された
ものである。
After manufacturing, it is manufactured by solid solution treatment, 9F=N#4# (processing of 1% or more is added during heating), and two-stage aging treatment.

第1図(e)はタイプレート30とチャンネルボックス
31との間に設けられ九スプリング32を示し、第1図
(0はキャップスクリュウ40に設けられ九スプリング
41を示す図である。これらのスプリング32.41は
それぞれ第1図(a)、 (b)のエクスパンションス
プリング12と同様にして製造され丸ものである。第1
図(f)において42はガーンコネルX750 (商品
名)とインコネル718(−品名)である。その主な化
学成分はインコネル×750が、7m92%N i 、
15.48%Cr。
FIG. 1(e) shows nine springs 32 provided between the tie plate 30 and channel box 31, and FIG. 1(e) shows nine springs 41 provided in the cap screw 40. 32 and 41 are round and manufactured in the same manner as the expansion springs 12 shown in FIGS. 1(a) and 1(b).
In Figure (f), 42 is Garnconel X750 (product name) and Inconel 718 (-product name). Its main chemical components are Inconel x 750, 7m92% Ni,
15.48%Cr.

6.91%F・、0957%At、2,60%T1゜0
.95%Nb+Ta、0.04%cで、(7ニア $ 
A/7182>!5L47%Ni、18.37%cr、
0.40%At、0.85%Ti、5.Q6%N b+
T aである。
6.91%F・, 0957%At, 2,60%T1゜0
.. 95%Nb+Ta, 0.04%c, (7nea $
A/7182>! 5L47%Ni, 18.37%cr,
0.40% At, 0.85% Ti, 5. Q6%N b+
It is Ta.

第1表は高1高圧純水中における隙間付定歪試験結果を
示す。試験条件は次の通シである。試験温[:288C
,圧力” 86 h/cm” 、溶存酸素:8pyn、
@間形成材二グラファイト・ファイバーウール、ひずみ
:約1.0%、試験時間:500時間。
Table 1 shows the results of a constant strain test with a gap in high-pressure pure water. The test conditions are as follows. Test temperature [:288C
, Pressure "86 h/cm", Dissolved oxygen: 8 pyn,
@Interforming material 2 graphite fiber wool, strain: approximately 1.0%, test time: 500 hours.

第    1    表 ts1表において、記号は次の内容を示す。Chapter 1 Table In the ts1 table, the symbols indicate the following contents.

・:割れ感受性大(1000μm以上の割れ)0:割れ
感受性中(200’Lm−1000srnの割れ) 02割れ感受性小(0〜200μmの割れ)インコネル
X750の場合、固溶化処理60%の冷lI5加工を施
すと、10%、20%及び30%の冷+&Ii加工で隙
間SCC感受性が犬無く示され、30%以下の冷間加工
は隙間SCC性に関して有害であることが第1表より脳
められる。直接時効処理の場合でも冷間加工度が60%
となると隙間SCC性は着しく小さくなるが、強加工と
なる。なお金属組織から直接時効処理材の隙間SCC感
受性のIiI&を判定することは困−である。
・: High crack sensitivity (cracks of 1000 μm or more) 0: Medium crack sensitivity (cracks of 200'Lm-1000 srn) 02 Low crack sensitivity (cracks of 0 to 200 μm) For Inconel X750, cold lI5 processing with 60% solution treatment When subjected to cold processing of 10%, 20%, and 30%, the gap SCC sensitivity was clearly shown, and it can be concluded from Table 1 that cold working of 30% or less is harmful in terms of gap SCC property. . Even in the case of direct aging treatment, the degree of cold working is 60%.
In this case, the gap SCC property becomes smaller, but the machining becomes stronger. Note that it is difficult to determine IiI& of the gap SCC susceptibility of an aged material directly from the metallographic structure.

固溶化処理(106[1”X1h→水冷)と二段時を施
すと、10%及び20%の冷間加工で隙間8CC感受性
が大き、〈示されるが、30%以上の冷間加工では耐隙
間、S CC性が着しく改善される。
When solid solution treatment (106[1"X1h → water cooling) and two-stage processing are applied, the gap 8CC sensitivity is large at 10% and 20% cold working, and the resistance is low at cold working of 30% or more. Clearance and SCC properties are significantly improved.

第2図および第、p’□i−はインコネルX750の隙
と 関SCC感受性を金属組織との関連を示す顕微鏡写真で
あッテ、混酸(92mLHct+3mLHNOs+5m
tHs80a)K浸漬して腐食させたものである。
Figures 2 and 2, p'□i- are micrographs showing the relationship between the gap and SCC sensitivity of Inconel X750 and the metallographic structure.
It was corroded by immersion in tHs80a)K.

1s2図は直接時効処理した本の、lX3図は二段時効
処理したものであって、各図において、(a)は冷間加
工*io%、0))は同20%、(C)は同30%。
The 1s2 figure is a book that was directly aged, and the 1X3 figure is a book that was subjected to two-stage aging treatment. In each figure, (a) is cold worked *io%, 0)) is 20%, and (C) is Same as 30%.

(d)は同60%である。直接時効処理の場合、冷間加
工度の増大に伴って結晶粒は微細化するが、隙間SCC
感受性と金属ml鐵との間に相関が認められなム。一方
、二段時効処理の場合、隙間8CC感受性が大きく示さ
れた金属組織は粒界腐食のみが認められるのに対して、
隙間SCC感受−が著い相関関係にあることを示してお
り、本合金の耐る。こ9−結晶は冷間加工度と中間熱処
理条件で決定づけられ、冷間加工度の増大に伴って進行
し、耐隙間8CC性を著しく改善させる。
(d) is 60%. In the case of direct aging treatment, grains become finer as the degree of cold working increases, but the gap SCC
No correlation was found between sensitivity and metallurgy. On the other hand, in the case of two-stage aging treatment, only intergranular corrosion was observed in the metal structure that showed a large gap 8CC sensitivity;
This shows that there is a significant correlation between the gap SCC sensitivity and the resistance of this alloy. This 9-crystal is determined by the degree of cold working and intermediate heat treatment conditions, progresses as the degree of cold working increases, and significantly improves the gap resistance.

これらのことから耐隙間SCC性に優れ九原子1木゛ル
ト すことが実用的でかつ、有益であることが知られ組織(
A再結晶挙動)からも容易に判定できることを発見し友
For these reasons, it is known that it is practical and beneficial to use a nine-atom, one-wood bolt with excellent gap SCC resistance.
A friend discovered that it could be easily determined from (A recrystallization behavior).

インコネル718の場合も、前述インコネル×750の
場合と同様子・最終時効処″]l後の金属組織を再結晶
組織にすれば耐隙間8CC性が極めて良好となることが
認められた。
In the case of Inconel 718, as in the case of Inconel x 750, it was found that if the metal structure after the secondary and final aging treatment was changed to a recrystallized structure, the gap resistance to 8CC would be extremely good.

以上のように本実施例によれば、固溶化処理と二段時効
処理との中間に断l減少率3−a%以上の以上の通り本
発明によれば耐SCC性に優れたN1基合金製部材が提
供される。
As described above, according to this embodiment, the N1-based alloy has a shear l reduction rate of 3-a% or more between the solution treatment and the two-stage aging treatment, and has excellent SCC resistance. A manufactured member is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(0は原子炉用ばねの形状を示す概略図
、第2図(a)〜(d)および第3図(a)〜(d)t
f N i & 合金の金属組織の顕微鏡写真である。 10・・・インデックスチ”−−プ、12・・・エクス
パンションスプリング、2o・・・ピストンチューブ2
2・・・ガータスゲリング、3o・リイプレート、:1 ゛疹Z口 (べ) 2 茅、釧屈 3、(qλ (の)
Figures 1 (a) to (0 are schematic diagrams showing the shape of reactor springs, Figures 2 (a) to (d) and Figures 3 (a) to (d) t
It is a micrograph of the metal structure of fNi & alloy. 10... Index tip, 12... Expansion spring, 2o... Piston tube 2
2... Gertus Gering, 3o Riiprate, :1 ゛Z mouth (be) 2 Kaya, Kushiku 3, (qλ (no)

Claims (1)

【特許請求の範囲】 1、重量%で、Cr14〜25%、l’e30%以下、
AtO,’2〜2%、Tlα5〜3%、Nb0.7濃結
晶組織を有する、耐応力腐食割れ性に優れた門弟1項記
載のN14合金合金材。 3、重量%で、Cr14〜25%、Fe50%以下、k
tO,2〜2%、T過0.5〜3%、Nb4.5つ析出
強化され、7再結晶組織を有する、耐応力腐食割3項記
載のNi基合金製部材。 5、重量%で、Cr14〜25%、Fe50%以F、A
tO,2〜2%、’t”io、s〜3%1Nb0.7〜
4.5%、残部N1からなる合金を箒夷發を棚蕃共にに
段時効処理は800〜9JIOCで1ないし30時間、
および、600〜750Cで1ないし30時間行なうこ
とを特徴とする特許、請求の範7、前記部材は原子炉用
ばねAcある特許請求の範囲第5項または第6項記載の
方法。
[Claims] 1. In weight%, Cr14-25%, l'e 30% or less,
The N14 alloy material according to item 1, which has a dense crystal structure of AtO, 2 to 2%, Tlα 5 to 3%, and Nb0.7, and has excellent stress corrosion cracking resistance. 3. Weight %: Cr 14-25%, Fe 50% or less, k
The Ni-based alloy member according to item 3 for stress corrosion resistance, which is precipitation-strengthened by 2 to 2% tO, 0.5 to 3% T, 4.5 Nb, and has a recrystallized structure. 5. In weight%, Cr14-25%, Fe50% or more F, A
tO, 2~2%, 't"io, s~3% 1Nb0.7~
The alloy consisting of 4.5% and the balance N1 was aged at 800 to 9 JIOC for 1 to 30 hours,
7. The method according to claim 5 or 6, wherein the member is a nuclear reactor spring Ac.
JP5578082A 1982-04-02 1982-04-02 Ni-based alloy member and manufacture thereof Granted JPS58174538A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5578082A JPS58174538A (en) 1982-04-02 1982-04-02 Ni-based alloy member and manufacture thereof
EP83301811A EP0091279B1 (en) 1982-04-02 1983-03-30 Ni-base alloy member and method of producing the same
DE8383301811T DE3368289D1 (en) 1982-04-02 1983-03-30 Ni-base alloy member and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5578082A JPS58174538A (en) 1982-04-02 1982-04-02 Ni-based alloy member and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58174538A true JPS58174538A (en) 1983-10-13
JPS6211058B2 JPS6211058B2 (en) 1987-03-10

Family

ID=13008403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5578082A Granted JPS58174538A (en) 1982-04-02 1982-04-02 Ni-based alloy member and manufacture thereof

Country Status (3)

Country Link
EP (1) EP0091279B1 (en)
JP (1) JPS58174538A (en)
DE (1) DE3368289D1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204849A (en) * 1984-03-28 1985-10-16 Toshiba Corp Sealing ring for control rod driving mechanism of nuclear power plant
JPS61142672A (en) * 1984-12-14 1986-06-30 株式会社東芝 Electric connection terminal clip for filament lighting of magnetron
JPS61143567A (en) * 1984-12-14 1986-07-01 Toshiba Corp Manufacture of high temperature spring
JPS61153254A (en) * 1984-12-27 1986-07-11 Toshiba Corp Nickel alloy and its manufacture

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626408A (en) * 1984-09-20 1986-12-02 Nippon Yakin Kogyo Kabushiki Kaisha Ni-based alloy excellent in intergranular corrosion resistance, stress corrosion cracking resistance and hot workability
US4761190A (en) * 1985-12-11 1988-08-02 Inco Alloys International, Inc. Method of manufacture of a heat resistant alloy useful in heat recuperator applications and product
DE3778731D1 (en) * 1986-01-20 1992-06-11 Sumitomo Metal Ind NICKEL-BASED ALLOY AND METHOD FOR THEIR PRODUCTION.
FR2596066B1 (en) * 1986-03-18 1994-04-08 Electricite De France AUSTENITIQUE NICKEL-CHROME-FER ALLOY
US4793868A (en) * 1986-09-15 1988-12-27 General Electric Company Thermomechanical method of forming fatigue crack resistant nickel base superalloys and product formed
JPS63198316A (en) * 1987-01-08 1988-08-17 インコ、アロイス、インターナショナルインコーポレーテッド Tray for processing silicon wafer
US4882125A (en) * 1988-04-22 1989-11-21 Inco Alloys International, Inc. Sulfidation/oxidation resistant alloys
US4909860A (en) * 1989-02-21 1990-03-20 Inco Alloys International, Inc. Method for strengthening cold worked nickel-base alloys
US5047093A (en) * 1989-06-09 1991-09-10 The Babcock & Wilcox Company Heat treatment of Alloy 718 for improved stress corrosion cracking resistance
JP4277113B2 (en) 2002-02-27 2009-06-10 大同特殊鋼株式会社 Ni-base alloy for heat-resistant springs
US8197748B2 (en) * 2008-12-18 2012-06-12 Korea Atomic Energy Research Institute Corrosion resistant structural alloy for electrolytic reduction equipment for spent nuclear fuel
CN104988356B (en) * 2015-05-27 2017-03-22 钢铁研究总院 Method for manufacturing large high-purity nickel base alloy forging

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726153A (en) * 1980-07-23 1982-02-12 Toshiba Corp Heat treatment of nickel superalloy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3592632A (en) * 1966-07-14 1971-07-13 Int Nickel Co High temperature nickel-chromium-iron alloys particularly suitable for steam power applications
US3660177A (en) * 1970-05-18 1972-05-02 United Aircraft Corp Processing of nickel-base alloys for improved fatigue properties
FR2277901A2 (en) * 1974-07-12 1976-02-06 Creusot Loire IMPROVEMENTS TO NICKEL-IRON-CHROME BASED ALLOYS, WITH STRUCTURAL HARDENING OBTAINED BY APPROPRIATE THERMAL TREATMENT
US4225363A (en) * 1978-06-22 1980-09-30 The United States Of America As Represented By The United States Department Of Energy Method for heat treating iron-nickel-chromium alloy
JPS57123948A (en) * 1980-12-24 1982-08-02 Hitachi Ltd Austenite alloy with stress corrosion cracking resistance
CA1194346A (en) * 1981-04-17 1985-10-01 Edward F. Clatworthy Corrosion resistant high strength nickel-base alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726153A (en) * 1980-07-23 1982-02-12 Toshiba Corp Heat treatment of nickel superalloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204849A (en) * 1984-03-28 1985-10-16 Toshiba Corp Sealing ring for control rod driving mechanism of nuclear power plant
JPS61142672A (en) * 1984-12-14 1986-06-30 株式会社東芝 Electric connection terminal clip for filament lighting of magnetron
JPS61143567A (en) * 1984-12-14 1986-07-01 Toshiba Corp Manufacture of high temperature spring
JPS61153254A (en) * 1984-12-27 1986-07-11 Toshiba Corp Nickel alloy and its manufacture

Also Published As

Publication number Publication date
EP0091279A1 (en) 1983-10-12
DE3368289D1 (en) 1987-01-22
EP0091279B1 (en) 1986-12-10
JPS6211058B2 (en) 1987-03-10

Similar Documents

Publication Publication Date Title
RU2555293C1 (en) Heat resistant alloy on base of nickel
EP0056480B1 (en) Use of nickel base alloy having high resistance to stress corrosion cracking
JPS58174538A (en) Ni-based alloy member and manufacture thereof
JPWO2018151222A1 (en) Ni-base heat-resistant alloy and method for producing the same
KR20030077239A (en) Super duplex stainless steel with a suppressed formation of intermetallic phases and having an excellent corrosion resistance, embrittlement resistance, castability and hot workability
CA1068132A (en) High strength ferritic alloy
GB1595707A (en) Ferrous alloys
CN111394663A (en) Heat-resistant iron-based alloy and preparation method thereof
JP6347408B2 (en) High strength Ni-base alloy
JP2018059135A (en) Ni-BASED HEAT-RESISTANT ALLOY MEMBER AND METHOD FOR PRODUCING THE SAME
US4751046A (en) Austenitic stainless steel with high cavitation erosion resistance
Sireesha et al. Metallurgical changes and mechanical behaviour during high temperature aging of welds between Alloy 800 and 316LN austenitic stainless steel
JPH0317243A (en) Super alloy containing tantalum
JP2000239740A (en) MANUFACTURE OF Fe-BASE ALLOY MEMBER EXCELLENT IN STRESS CORROSION CRACKING RESISTANCE, AND Fe-BASE ALLOY MEMBER
JPH03134144A (en) Nickel-base alloy member and its manufacture
Klueh et al. Thermal stability of manganese-stabilized stainless steels
JP2000001754A (en) Austenitic alloy and structure using the same
JPH0327626B2 (en)
JPS59211552A (en) Martensitic high cr steel with high toughness
GB2163455A (en) Long range ordered alloys modified by addition of niobium and cerium(
Kim et al. Creep rupture properties of type 316LN stainless steel welded by the SAW process
JPH0312136B2 (en)
JPH0676638B2 (en) High strength Ni-Cr alloy with excellent corrosion resistance and heat resistance
Chakravorty et al. High-temperature strength of nickel alloys based on γ′-phase
RU2543587C2 (en) Heat resistant alloy on nickel base