JPS6211058B2 - - Google Patents

Info

Publication number
JPS6211058B2
JPS6211058B2 JP57055780A JP5578082A JPS6211058B2 JP S6211058 B2 JPS6211058 B2 JP S6211058B2 JP 57055780 A JP57055780 A JP 57055780A JP 5578082 A JP5578082 A JP 5578082A JP S6211058 B2 JPS6211058 B2 JP S6211058B2
Authority
JP
Japan
Prior art keywords
scc
gap
aging treatment
subjected
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57055780A
Other languages
Japanese (ja)
Other versions
JPS58174538A (en
Inventor
Yoshinao Urayama
Shigeo Hatsutori
Isao Masaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5578082A priority Critical patent/JPS58174538A/en
Priority to EP83301811A priority patent/EP0091279B1/en
Priority to DE8383301811T priority patent/DE3368289D1/en
Publication of JPS58174538A publication Critical patent/JPS58174538A/en
Publication of JPS6211058B2 publication Critical patent/JPS6211058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高温高圧純水中で、かつ他の部材と
接触し高応力作用下で、隙間が形成されている原
子炉用隙間構造部材に用いられる耐応力腐食割れ
性に優れたNi基合金製部材に係り、特に原子炉
用ばね、ボルトに適用するに好適なものに関す
る。 従来の原子炉用ばねは主に溶製後に固溶化処理
を施した後、冷間圧延により30%〜40%の加工を
与え、その後に時効処理を施して製作されてい
た。これらは冷間加工+時効処理により、原子炉
用ばね材として要求される高温強度並びにばね特
性を確保するための処理製作法であるが、実機適
用上特に問題となる隙間部での耐応力腐食割れ性
(以下耐SCC性という)に関する検討が必ずしも
十分に行なわれてはいないという欠点があつた。 特に、原子炉用ばね(例えばBWR制御棒駆動
機構のCスプリング)は、高応力作用下で隙間が
形成された箇所で使用される場合が多く、SCC
対策が重要である。現在、原子炉用ばねとしては
高強度と高耐食性に優れたインコネル(商品名)
×750が用いられており、そのほとんどが固溶化
処理後に30〜40%の冷間加工を施し、その後に時
効処理(直接時効)する工程で製作されている。
固溶化処理後の冷間加工は結晶粒の微細化をはか
ることを目的としているが、一方冷間加工に引き
続く時効処理は原子炉用ばね材としてのばね特性
並びに高温強度向上に寄与するものである。しか
し、固溶化処理と時効処理との中間に30〜40%の
冷間加工を施しても、30〜40%の冷間加工が実用
上で問題となる耐隙間SCC性に有効か否かの検
討が十分になされていない。 また、特開昭54−69517に固溶強化型合金の粒
界腐食について言及はされているものの、析出強
化型合金の耐SCC性については述べられていな
い。析出強化型合金の隙間SCC感受性は固溶強
化型合金と異なり、粒界腐食とSCCとの相関性
は認められない。 本発明はこのような従来の問題点を解消し、耐
SCC性に優れた原子炉用隙間構造部材に用いら
れるNi基合金製部材を提供することを目的とす
るものである。 本発明者らは、固溶化処理と時効処理との中間
に実施する冷間加工度を変え、耐隙間SCC性に
及ぼす冷間加工度の影響を高温高圧純水中隙間付
定歪試験と光学顕微鏡組織観察の両面から検討し
た。また同時に時効処理条件(直接時効及び二段
時効)についても同様の検討を加えた。その結
果、次の様な新たな事実を発見した。固溶化処
理と直接時効処理との中間に10〜30%の冷間加工
を施すと隙間SCC感受性が大きく示される。し
かし、60%の冷間加工を施せば耐隙間SCC性の
向上が認められるが、この場合、金属組織から隙
間SCC感受性の大小を判定することが困難であ
る。固溶化処理と二段時効処理との中間に10〜
20%の冷間加工を施した場合には、隙間SCC感
受性が顕著に認められるが、25%以上の冷間加工
になると隙間SCC感受性は著しく減少する。こ
の場合、金属組織から冷間加工度と隙間SCC感
受性との関連を容易に判定することが出来る。す
なわち、隙間SCC感受性が著しく小さく示され
る25%以上の冷間加工の場合に、一次再結晶粒が
認められるのに対して、隙間SCC感受性が大き
く示された10〜20%の冷間加工では、それが認め
られない。これより、二段時効処理材に生じる高
温水中隙間SCCは直接時効処理材の場合とSCC
の発生メカニズムが異なつているものと推定さ
れ、Cr炭化物の析出に伴なうCr欠乏型とは別
に、一次再結晶挙動との係わりが大であることを
発見した。 本発明はこのような知見に基づいてなされたも
のであつて、第1の発明は、重量%で、Cr14〜
25%、Fe30%以下、Al0.2〜2%、Ti0.5〜3%、
Nb0.7〜4.5%、残部Ni及び不可避の不純物からな
る合金であつて、固溶化処理され、次いで断面減
少率25%以上の冷間塑性加工が施され、さらに一
次再結晶組織が形成される温度で加熱し、それよ
り低い温度で二段時効処理されることにより析出
強化され、一次再結晶組織を有することを特徴と
する原子炉用隙間構造部材に用いられる耐応力腐
食割れ性に優れたNi基合金製部材を要旨とする
ものである。実質的にCr炭化物のないものが好
ましい。 また第2の発明は、重量%で、Cr14〜25%、
Fe30%以下、Al0.2〜2%、Ti0.5〜3%、Nb4.5
〜8%、Mo8%以下、残部Ni及び不可避の不純物
からなる合金であつて、固溶化処理され、次いで
断面減少率25%以上の冷間塑性加工が施され、さ
らに一次再結晶組織が形成される温度で加熱し、
それより低い温度で二段時効処理されることによ
り析出強化され、一次再結晶組織を有することを
特徴とする原子炉用隙間構造部材に用いられる耐
応力腐食割れ性に優れたNi基合金製部材を要旨
とするものである。 Cr:Crは耐SCC性の点では少なくとも14%が
必要であるが、一方、25%を超えると熱間加工性
が損なわれ、またTCP相として知られる有害相
の生成によつて冷間加工性、機械的性質および耐
食性が低下するので14〜25%とした。 Fe:Feは基地の組織を安定化し、耐食性を向
上させる。しかし、Feの含有量が多過ぎると
Laves相など有害相を生ぜしめるため、30%≧Fe
とした。 Al,Ti及びNbはいずれもNiとの金属間化合物
を形成し析出強化に寄与する。時効硬化能を与え
るためには少なくとも0.2%以上のAlおよび0.5%
以上のTiの組合せが必要であり、AlおよびTiの
量を増加させ、かつNbを添加することにより目
的に応じた高強度の合金が得られる。一方含有量
が過多であると特性が劣化するので、Alは0.2〜
2%、Tiは0.5〜3%とし、しかして第1の発明
においてはNbは0.7〜4.5%とした。 また第2の発明においてはさらにMoを含有す
る。MoはCrと共存して十分な耐SCC性を確保す
る。しかし、Moの量が多くなり過ぎると加工性
が悪くなり、耐食性や機械的性質を損なう有害相
が生成しやすくなるため、Moは8%以下とし
た。 また第2の発明においても、NbはAlやTiに比
べて析出強化に対する効果が大きく、ばねに必要
な高い硬化能を得るためにはNbの添加が必要で
あるが多過ぎると粗大な炭化物や金属間化合物の
生成による機械的特性の劣化や加工性の低下が生
じることがある。そのため第2の発明においては
Nbを4.5〜8%とした。 上記本発明において、固溶化処理の温度として
は、950〜1150゜が好適である。溶体化温度は重
要であり、耐SCC性の良好な温度範囲で、しか
も結晶粒粗大化防止のためである。また、二段時
効処理としては、800〜900℃に1ないし30時間保
持した後、冷却し、次いで600〜750℃で1ないし
30時間行なうようにするのが好適である。 しかして本発明は原子炉用ばね、ボルトとして
特に好適である。第1図は各種の原子炉用ばね、
ボルトの形状を示すものである。以下にこのば
ね、ボルトおよびその製造方法を説明する。 第1図a,bはインデツクスチユーブ10内壁
にグラフアイトシール11を取り付けるために用
いられるエクスパンシヨンスプリング12を示す
ものである。このエクスパンシヨンスプリング1
2は切り込み13を有する帯状のリングであつ
て、幅は10mm、直径は60mmである。このエクスパ
ンシヨンスプリング12は、溶製後、圧延、固溶
化、冷延、成形(25%以上の加工)、二段時効の
各処理によつて製造されたものである。 第1図c,dはピストンチユーブ20にグラフ
アイトシール21を取り付けるためのガータスプ
リング22を示すものである。このガータスプリ
ング22は、コイル状であつて、コイル部長さ
166mm、芯線直径0.36mmである。これは、溶製
後、固溶化、伸線、コイリング(この際に25%以
上の加工が加えられる)、二段時効処理によつて
製造されたものである。 第1図eはタイプレート30とチヤンネルボツ
クス31との間に設けられたスプリング32を示
し、第1図fはキヤツプスクリユウ40に設けら
れたスプリング41を示す図である。これらのス
プリング32,41はそれぞれ第1図a,bのエ
クスパンシヨンスプリング12と同様にして製造
されたものである。第1図fにおいて42はガー
ドである。キヤツプスクリユウ40は鍛造又は圧
延後、固溶化し、転造または機械加工によりネジ
加工される。その後前述の二段時効される。 以下、本発明の一実施例を説明する。素材はイ
ンコネル×750(商品名)とインコネル718(商品
名)である。その主な化学成分はインコネル×
750が、72.92%Ni、15.48%Cr、6.91%Fe、0.57
%Al、2.60%Ti、0.95%Nb+Ta、0.04%Cで、
インコネル718が52.47%Ni、18.37%Cr、0.40%
Al、0.85%Ti、5.06%Nb+Taである。第1表は
高温高圧純水中における隙間付定歪試験結果を示
す。試験条件は次の通りである。試験温度:288
℃、圧力:86Kg/cm2、溶存酸素:8ppm、隙間形
成材:グラフアイト・フアイバーウール、ひず
み:約1.0%、試験時間:500時間。
The present invention is a Ni-based alloy with excellent stress corrosion cracking resistance that is used in gap structure members for nuclear reactors in which gaps are formed in high-temperature, high-pressure pure water and under high stress in contact with other members. The present invention relates to manufactured parts, and particularly to those suitable for use in springs and bolts for nuclear reactors. Conventional springs for nuclear reactors have been produced primarily by subjecting them to solution treatment after melting, followed by cold rolling to give them 30% to 40% processing, and then subjecting them to aging treatment. These are manufacturing methods that use cold working and aging to ensure the high-temperature strength and spring properties required for spring materials for nuclear reactors, but stress corrosion resistance in the crevices is a particular problem when applied to actual equipment. There was a drawback in that cracking resistance (hereinafter referred to as SCC resistance) had not always been sufficiently studied. In particular, reactor springs (e.g. C-springs in BWR control rod drive mechanisms) are often used in locations where gaps are formed under high stress action, and SCC
Countermeasures are important. Currently, Inconel (trade name) is used as a spring for nuclear reactors because it has high strength and high corrosion resistance.
×750 is used, and most of them are produced by applying 30 to 40% cold working after solution treatment, followed by aging treatment (direct aging).
The purpose of cold working after solution treatment is to refine the crystal grains, but on the other hand, the aging treatment that follows cold working contributes to improving the spring properties and high-temperature strength of spring materials for nuclear reactors. be. However, even if 30 to 40% cold working is performed between solution treatment and aging treatment, it is unclear whether 30 to 40% cold working is effective for improving clearance SCC resistance, which is a practical problem. It has not been sufficiently considered. Further, although JP-A-54-69517 mentions intergranular corrosion of solid solution strengthened alloys, it does not mention SCC resistance of precipitation strengthened alloys. The interstitial SCC susceptibility of precipitation strengthened alloys is different from that of solid solution strengthened alloys, and no correlation between intergranular corrosion and SCC is observed. The present invention solves these conventional problems and improves durability.
The object of the present invention is to provide a Ni-based alloy member used for a gap structure member for a nuclear reactor that has excellent SCC properties. The present inventors changed the degree of cold working carried out between the solution treatment and the aging treatment, and investigated the effect of the degree of cold working on the gap SCC resistance using constant strain tests with gaps in high-temperature, high-pressure pure water. This was investigated from both aspects of microscopic tissue observation. At the same time, a similar study was conducted regarding aging treatment conditions (direct aging and two-stage aging). As a result, we discovered the following new facts. If 10 to 30% cold working is applied between solution treatment and direct aging treatment, the gap SCC susceptibility is greatly increased. However, if 60% cold working is applied, the gap SCC resistance is improved, but in this case, it is difficult to determine the magnitude of the gap SCC susceptibility from the metal structure. 10 ~ between solution treatment and two-stage aging treatment
When 20% cold working is applied, the gap SCC susceptibility is noticeable, but when the cold working is 25% or more, the gap SCC susceptibility decreases markedly. In this case, the relationship between the degree of cold work and clearance SCC susceptibility can be easily determined from the metallographic structure. In other words, primary recrystallized grains are observed in cold working of 25% or more, where the gap SCC susceptibility is extremely small, whereas in cold working of 10 to 20%, where the gap SCC susceptibility is large. , that is not accepted. From this, the high-temperature underwater gap SCC that occurs in the two-stage aged material is different from that in the directly aged material.
It is presumed that the mechanism of occurrence of Cr is different, and it was found that it is largely related to the primary recrystallization behavior, apart from the Cr-deficient type caused by the precipitation of Cr carbides. The present invention has been made based on such knowledge, and the first invention is based on Cr14 to Cr14 in weight%.
25%, Fe30% or less, Al0.2~2%, Ti0.5~3%,
An alloy consisting of 0.7 to 4.5% Nb, the balance Ni and unavoidable impurities, which is subjected to solid solution treatment, then subjected to cold plastic working with an area reduction rate of 25% or more, and then a primary recrystallized structure is formed. It is precipitation-strengthened by heating at a high temperature and then subjected to a two-stage aging treatment at a lower temperature, and has a primary recrystallized structure, and has excellent stress corrosion cracking resistance for use in nuclear reactor gap structure members. The gist is a member made of a Ni-based alloy. Preferably, it is substantially free of Cr carbides. In addition, the second invention has Cr14 to 25% in weight%,
Fe30% or less, Al0.2-2%, Ti0.5-3%, Nb4.5
~8% Mo, less than 8% Mo, the balance Ni and unavoidable impurities, and is solution treated, then subjected to cold plastic working with an area reduction rate of 25% or more, and then a primary recrystallized structure is formed. Heat to a temperature that
Ni-based alloy members with excellent stress corrosion cracking resistance used in nuclear reactor gap structure members that are precipitation-strengthened through two-stage aging treatment at a lower temperature and have a primary recrystallized structure. The main points are as follows. Cr: Cr needs to be at least 14% for SCC resistance, while more than 25% impairs hot workability and inhibits cold workability due to the formation of a harmful phase known as the TCP phase. The content was set at 14 to 25% because the properties, mechanical properties, and corrosion resistance deteriorate. Fe: Fe stabilizes the base structure and improves corrosion resistance. However, if the Fe content is too high
30% ≧ Fe to generate harmful phases such as Laves phase.
And so. Al, Ti, and Nb all form intermetallic compounds with Ni and contribute to precipitation strengthening. At least 0.2% Al and 0.5% to give age hardenability
The above combination of Ti is necessary, and by increasing the amounts of Al and Ti and adding Nb, a high-strength alloy suitable for the purpose can be obtained. On the other hand, if the content is too high, the properties will deteriorate, so Al should be 0.2~
2%, Ti is 0.5-3%, and in the first invention, Nb is 0.7-4.5%. Moreover, in the second invention, Mo is further contained. Mo coexists with Cr to ensure sufficient SCC resistance. However, if the amount of Mo is too large, workability deteriorates and harmful phases that impair corrosion resistance and mechanical properties are likely to be generated, so the Mo content was set to 8% or less. Also in the second invention, Nb has a greater effect on precipitation strengthening than Al or Ti, and it is necessary to add Nb to obtain the high hardening ability required for springs, but if too much Nb is added, coarse carbides and Deterioration of mechanical properties and reduction in workability may occur due to the formation of intermetallic compounds. Therefore, in the second invention
Nb was set at 4.5 to 8%. In the present invention, the temperature for the solution treatment is preferably 950 to 1150°. The solution temperature is important, and it is necessary to maintain a temperature range that provides good SCC resistance and prevents coarsening of crystal grains. In addition, as a two-stage aging treatment, after holding at 800 to 900°C for 1 to 30 hours, cooling, and then at 600 to 750°C for 1 to 30 hours.
It is preferable to carry out the treatment for 30 hours. Therefore, the present invention is particularly suitable for springs and bolts for nuclear reactors. Figure 1 shows various springs for nuclear reactors.
This shows the shape of the bolt. This spring, bolt, and method of manufacturing the same will be explained below. FIGS. 1a and 1b show an expansion spring 12 used to attach a graphite seal 11 to the inner wall of an index tube 10. FIG. This expansion spring 1
2 is a band-shaped ring having a notch 13, and has a width of 10 mm and a diameter of 60 mm. This expansion spring 12 is produced by melting, rolling, solution treatment, cold rolling, forming (processing of 25% or more), and two-stage aging. FIGS. 1c and 1d show a garter spring 22 for attaching a graphite seal 21 to a piston tube 20. FIG. This garter spring 22 has a coil shape, and the length of the coil portion is
166mm, core wire diameter 0.36mm. This is manufactured by melting, solid solution treatment, wire drawing, coiling (at this time, 25% or more processing is added), and two-stage aging treatment. 1e shows a spring 32 provided between the tie plate 30 and the channel box 31, and FIG. 1f shows a spring 41 provided in the cap screw 40. These springs 32 and 41 are manufactured in the same manner as the expansion spring 12 shown in FIGS. 1a and 1b, respectively. In FIG. 1f, 42 is a guard. After being forged or rolled, the cap screw 40 is solid-solutionized, and threaded by rolling or machining. It is then aged in the two stages mentioned above. An embodiment of the present invention will be described below. The materials are Inconel x 750 (product name) and Inconel 718 (product name). Its main chemical components are Inconel x
750, 72.92% Ni, 15.48% Cr, 6.91% Fe, 0.57
%Al, 2.60%Ti, 0.95%Nb+Ta, 0.04%C,
Inconel 718 52.47% Ni, 18.37% Cr, 0.40%
Al, 0.85% Ti, 5.06% Nb+Ta. Table 1 shows the results of a constant strain test with a gap in high-temperature, high-pressure pure water. The test conditions are as follows. Test temperature: 288
°C, pressure: 86Kg/cm 2 , dissolved oxygen: 8ppm, gap forming material: graphite fiber wool, strain: approximately 1.0%, test time: 500 hours.

【表】【table】

【表】 インコネル×750の場合、固溶化処理(1066℃
×1h→水冷)と直接時効処理(704℃×4または
20h→空冷)との中間に断面減少率10〜60%の冷
間加工を施すと、10%、20%及び30%の冷間加工
で隙間SCC感受性が大きく示され、30%以下の
冷間加工は隙間SCC性に関して有害であること
が第1表より認められる。直接時効処理の場合で
も冷間加工度が60%になると隙間SCC性は著し
く小さくなるが、強加工となる。なお金属組織か
ら直接時効処理材の隙間SCC感受性の程度を判
定することは困難である。 固溶化処理(1066℃×1h→水冷)と二段時効
処理(843℃×24h→空冷+704℃×4または20h
→空冷)との中間に前述と同様の冷間加工を施す
と、10%及び20%の冷間加工で隙間SCC感受性
が大きく示されるが、30%以上の冷間加工では耐
隙間SCC性が著しく改善される。 第2図および第3図はインコネル×750の隙間
SCC感受性と金属組織との関連を示す顕微鏡写
真であつて、混酸(92mlHcl+3mlHNO3+5ml
H2SO4)に浸漬して腐食させたものである。第2
図は直接時効処理したもの、第3図は二段時効処
理したものであつて、各図において、aは冷間加
工度10%、bは同20%、cは同30%、dは同60%
である。直接時効処理の場合、冷間加工度の増大
に伴つて結晶粒は微細化するが、隙間SCC感受
性と金属組織との間に相関が認められない。一
方、二段時効処理の場合、隙間SCC感受性が大
きく示された金属組織は粒界腐食のみが認められ
るのに対して、隙間SCC感受性が著しく小さく
示された金属組織は、粒界腐食と比較的多くの一
次再結晶粒が認められる。Cr炭化物は見られな
い。 本結果は高温水中隙間SCCが一次再結晶挙動
と良い相関関係にあることを示しており、本合金
の耐隙間SCC性を向上させるに当つては、冷間
加工度と熱処理との組合せにより最終金属組織を
一次再結晶組織とすることが効果的であることを
示している。この一次再結晶は冷間加工度と中間
熱処理条件で決定づけられ、冷間加工度の増大に
伴つて進行し、耐隙間SCC性を著しく改善させ
る。 これらのことから耐隙間SCC性に優れた原子
炉用ばね、ボルトを製作するに当つては、固溶化
処理と二段時効処理との中間に25%以上の冷間加
工を施すことが実用的でかつ、有益であることが
知られた。またこの場合、耐隙間SCC性の優劣
は金属組織(一次再結晶挙動)からも容易に判定
できることを発見した。 インコネル718の場合も、前述インコネル×750
の場合と同様に、最終時効処理後の金属組織を再
結晶組織にすれば耐隙間SCC性が極めて良好と
なることが認められた。 以上のように本発明によれば、固溶化処理と二
段時効処理との中間に断面減少率25%以上の冷間
塑性加工を施すことにより、析出強化され一次結
晶組織を有し、耐隙間SCC性がより一層優れた
原子炉用隙間構造部材に用いられるNi基合金製
部材を提供できる。さらに、固溶化処理と二段時
効処理との中間に冷間塑性加工を施して製作され
る原子炉用隙間構造部材に用いられるNi基合金
製部材の耐隙間SCC性の優劣は金属組織の一次
再結晶組織から容易に判定できる。 以上の通り本発明によれば、耐SCC性に優れ
た原子炉用隙間構造部材を提供できる。
[Table] Inconel x 750, solid solution treatment (1066℃
x 1h → water cooling) and direct aging treatment (704℃ x 4 or
When cold working with a cross-section reduction rate of 10 to 60% is performed between 20h → air cooling), the susceptibility to gap SCC is large at 10%, 20%, and 30% cold working, and when the cold working is 30% or less, It is recognized from Table 1 that machining is harmful to the gap SCC property. Even in the case of direct aging treatment, when the degree of cold work reaches 60%, the gap SCC property becomes significantly smaller, but the work becomes stronger. Note that it is difficult to judge the degree of crevice SCC susceptibility of aged materials directly from the metallographic structure. Solid solution treatment (1066℃ x 1h → water cooling) and two-stage aging treatment (843℃ x 24h → air cooling + 704℃ x 4 or 20h
→ Air cooling) When the same cold working as described above is applied, the susceptibility to gap SCC is large at 10% and 20% cold working, but the gap SCC resistance is low at cold working of 30% or more. Significantly improved. Figures 2 and 3 are Inconel x 750 gaps.
This is a micrograph showing the relationship between SCC susceptibility and metallographic structure.
It is corroded by immersion in H 2 SO 4 ). Second
The figure shows the one subjected to direct aging treatment, and the one shown in Fig. 3 is the one subjected to two-stage aging treatment. 60%
It is. In the case of direct aging, the grain size becomes finer as the degree of cold working increases, but there is no correlation between crevice SCC susceptibility and metallographic structure. On the other hand, in the case of two-stage aging treatment, only intergranular corrosion is observed in metal structures that show a high susceptibility to interstitial SCC, whereas metal structures that show a significantly low susceptibility to interstitial SCC show intergranular corrosion. A large number of primary recrystallized grains are observed. No Cr carbide is seen. This result shows that the gap SCC in high-temperature water has a good correlation with the primary recrystallization behavior, and in order to improve the gap SCC resistance of this alloy, the final This shows that it is effective to make the metal structure a primary recrystallized structure. This primary recrystallization is determined by the degree of cold working and intermediate heat treatment conditions, progresses as the degree of cold working increases, and significantly improves the gap SCC resistance. For these reasons, when manufacturing nuclear reactor springs and bolts with excellent gap SCC resistance, it is practical to perform cold working of 25% or more between solution treatment and two-stage aging treatment. It was found to be both powerful and beneficial. In this case, we have also discovered that the superiority or inferiority of the gap SCC resistance can be easily determined from the metal structure (primary recrystallization behavior). In the case of Inconel 718, the above-mentioned Inconel x 750
As in the case of , it was found that if the metal structure after the final aging treatment was made into a recrystallized structure, the gap SCC resistance would be extremely good. As described above, according to the present invention, by performing cold plastic working with a cross-section reduction rate of 25% or more between the solution treatment and the two-stage aging treatment, it has a precipitation-strengthened primary crystal structure and is resistant to crevices. It is possible to provide a Ni-based alloy member used for a gap structure member for a nuclear reactor that has even better SCC properties. Furthermore, the gap SCC resistance of Ni-based alloy members used in nuclear reactor gap structure members manufactured by cold plastic working between solution treatment and two-stage aging treatment is determined by the metallographic structure. It can be easily determined from the recrystallized structure. As described above, according to the present invention, it is possible to provide a nuclear reactor gap structure member with excellent SCC resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜fは原子炉用ばねの形状を示す概略
図、第2図a〜dおよび第3図a〜dはNi基合
金の金属組織の顕微鏡写真である。 10……インデツクスチユーブ、12……エク
スパンシヨンスプリング、20……ピストンチユ
ーブ、22……ガータスプリング、30……タイ
プレート、32……スプリング、40……キヤツ
プスクリユウ。
Figures 1a to 1f are schematic diagrams showing the shape of a nuclear reactor spring, and Figures 2a to d and 3a to 3d are microscopic photographs of the metal structure of the Ni-based alloy. 10... Index tube, 12... Expansion spring, 20... Piston tube, 22... Garter spring, 30... Tie plate, 32... Spring, 40... Cap screw.

Claims (1)

【特許請求の範囲】 1 重量%で、Cr14〜25%、Fe30%以下、Al0.2
〜2%、Ti0.5〜3%、Nb0.7〜4.5%、残部Ni及
び不可避の不純物からなる合金であつて、固溶化
処理され、次いで断面減少率25%以上の冷間塑性
加工が施され、さらに一次再結晶組織が形成され
る温度で加熱し、それより低い温度で二段時効処
理されることにより析出強化され、一次再結晶組
織を有することを特徴とする原子炉用隙間構造部
材に用いられる耐応力腐食割れ性に優れたNi基
合金製部材。 2 重量%で、Cr14〜25%、Fe30%以下、Al0.2
〜2%、Ti0.5〜3%、Nb4.5〜8%、Mo8%以
下、残部Ni及び不可避の不純物からなる合金で
あつて、固溶化処理され、次いで断面減少率25%
以上の冷間塑性加工が施され、さらに一次再結晶
組織が形成される温度で加熱し、それより低い温
度で二段時効処理されることにより析出強化さ
れ、一次再結晶組織を有することを特徴とする原
子炉用隙間構造部材に用いられる耐応力腐食割れ
性に優れたNi基合金製部材。
[Claims] 1% by weight: Cr14-25%, Fe30% or less, Al0.2
~2% Ti, 0.5~3% Ti, 0.7~4.5% Nb, the balance Ni and unavoidable impurities, and is solution treated and then subjected to cold plastic working with an area reduction rate of 25% or more. A gap structure member for a nuclear reactor, characterized in that it is precipitation-strengthened by heating at a temperature at which a primary recrystallized structure is formed, and then subjected to a two-stage aging treatment at a lower temperature, and has a primary recrystallized structure. A Ni-based alloy member with excellent stress corrosion cracking resistance used in 2 Weight%: Cr14-25%, Fe30% or less, Al0.2
~2% Ti, 0.5~3% Nb, 4.5~8% Nb, 8% Mo or less, the balance Ni and unavoidable impurities, and is solution treated and then has a cross-section reduction rate of 25%.
It is characterized by being subjected to the above cold plastic working, further heated at a temperature at which a primary recrystallized structure is formed, and then precipitated strengthened by being subjected to a two-step aging treatment at a lower temperature to have a primary recrystallized structure. A Ni-based alloy member with excellent stress corrosion cracking resistance used in gap structure members for nuclear reactors.
JP5578082A 1982-04-02 1982-04-02 Ni-based alloy member and manufacture thereof Granted JPS58174538A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5578082A JPS58174538A (en) 1982-04-02 1982-04-02 Ni-based alloy member and manufacture thereof
EP83301811A EP0091279B1 (en) 1982-04-02 1983-03-30 Ni-base alloy member and method of producing the same
DE8383301811T DE3368289D1 (en) 1982-04-02 1983-03-30 Ni-base alloy member and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5578082A JPS58174538A (en) 1982-04-02 1982-04-02 Ni-based alloy member and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58174538A JPS58174538A (en) 1983-10-13
JPS6211058B2 true JPS6211058B2 (en) 1987-03-10

Family

ID=13008403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5578082A Granted JPS58174538A (en) 1982-04-02 1982-04-02 Ni-based alloy member and manufacture thereof

Country Status (3)

Country Link
EP (1) EP0091279B1 (en)
JP (1) JPS58174538A (en)
DE (1) DE3368289D1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204849A (en) * 1984-03-28 1985-10-16 Toshiba Corp Sealing ring for control rod driving mechanism of nuclear power plant
US4626408A (en) * 1984-09-20 1986-12-02 Nippon Yakin Kogyo Kabushiki Kaisha Ni-based alloy excellent in intergranular corrosion resistance, stress corrosion cracking resistance and hot workability
JPH0647701B2 (en) * 1984-12-14 1994-06-22 株式会社東芝 Electrical connection terminal clip for magnetron filament repairing
JPH0742560B2 (en) * 1984-12-14 1995-05-10 株式会社東芝 High temperature spring manufacturing method
JPH0684535B2 (en) * 1984-12-27 1994-10-26 株式会社東芝 Method for producing nickel-based alloy
US4761190A (en) * 1985-12-11 1988-08-02 Inco Alloys International, Inc. Method of manufacture of a heat resistant alloy useful in heat recuperator applications and product
EP0235075B1 (en) * 1986-01-20 1992-05-06 Mitsubishi Jukogyo Kabushiki Kaisha Ni-based alloy and method for preparing same
FR2596066B1 (en) * 1986-03-18 1994-04-08 Electricite De France AUSTENITIQUE NICKEL-CHROME-FER ALLOY
US4793868A (en) * 1986-09-15 1988-12-27 General Electric Company Thermomechanical method of forming fatigue crack resistant nickel base superalloys and product formed
JPS63198316A (en) * 1987-01-08 1988-08-17 インコ、アロイス、インターナショナルインコーポレーテッド Tray for processing silicon wafer
US4882125A (en) * 1988-04-22 1989-11-21 Inco Alloys International, Inc. Sulfidation/oxidation resistant alloys
US4909860A (en) * 1989-02-21 1990-03-20 Inco Alloys International, Inc. Method for strengthening cold worked nickel-base alloys
US5047093A (en) * 1989-06-09 1991-09-10 The Babcock & Wilcox Company Heat treatment of Alloy 718 for improved stress corrosion cracking resistance
JP4277113B2 (en) * 2002-02-27 2009-06-10 大同特殊鋼株式会社 Ni-base alloy for heat-resistant springs
US8197748B2 (en) * 2008-12-18 2012-06-12 Korea Atomic Energy Research Institute Corrosion resistant structural alloy for electrolytic reduction equipment for spent nuclear fuel
CN104988356B (en) * 2015-05-27 2017-03-22 钢铁研究总院 Method for manufacturing large high-purity nickel base alloy forging

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726153A (en) * 1980-07-23 1982-02-12 Toshiba Corp Heat treatment of nickel superalloy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3592632A (en) * 1966-07-14 1971-07-13 Int Nickel Co High temperature nickel-chromium-iron alloys particularly suitable for steam power applications
US3660177A (en) * 1970-05-18 1972-05-02 United Aircraft Corp Processing of nickel-base alloys for improved fatigue properties
FR2277901A2 (en) * 1974-07-12 1976-02-06 Creusot Loire IMPROVEMENTS TO NICKEL-IRON-CHROME BASED ALLOYS, WITH STRUCTURAL HARDENING OBTAINED BY APPROPRIATE THERMAL TREATMENT
US4225363A (en) * 1978-06-22 1980-09-30 The United States Of America As Represented By The United States Department Of Energy Method for heat treating iron-nickel-chromium alloy
JPS57123948A (en) * 1980-12-24 1982-08-02 Hitachi Ltd Austenite alloy with stress corrosion cracking resistance
CA1194346A (en) * 1981-04-17 1985-10-01 Edward F. Clatworthy Corrosion resistant high strength nickel-base alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726153A (en) * 1980-07-23 1982-02-12 Toshiba Corp Heat treatment of nickel superalloy

Also Published As

Publication number Publication date
JPS58174538A (en) 1983-10-13
EP0091279B1 (en) 1986-12-10
DE3368289D1 (en) 1987-01-22
EP0091279A1 (en) 1983-10-12

Similar Documents

Publication Publication Date Title
EP0056480B1 (en) Use of nickel base alloy having high resistance to stress corrosion cracking
JPS6211058B2 (en)
CA2151500C (en) Thermomechanical processing of metallic materials
US4512820A (en) In-pile parts for nuclear reactor and method of heat treatment therefor
US4049431A (en) High strength ferritic alloy
GB1595707A (en) Ferrous alloys
JPH0571647B2 (en)
JPH06322489A (en) Steel tube for boiler excellent in steam oxidation resistance
US20060266450A1 (en) Cerium-containing austenitic nickel-base alloy having enhanced intergranular attack and stress corrosion cracking resistances, and preparation method thereof
JP4315582B2 (en) Co-Ni base heat-resistant alloy and method for producing the same
Sireesha et al. Metallurgical changes and mechanical behaviour during high temperature aging of welds between Alloy 800 and 316LN austenitic stainless steel
JPH0114991B2 (en)
JP2002235134A (en) Heat resistant alloy having excellent strength and toughness and heat resistant alloy parts
JP4059156B2 (en) Stainless steel for nuclear power
JP2000001754A (en) Austenitic alloy and structure using the same
JPH0327626B2 (en)
Krishna Microstructural investigation of alloys used for power generation industries
JP2000239740A (en) MANUFACTURE OF Fe-BASE ALLOY MEMBER EXCELLENT IN STRESS CORROSION CRACKING RESISTANCE, AND Fe-BASE ALLOY MEMBER
JPH0377268B2 (en)
JPS60245773A (en) Manufacture of highly corrosion resistant ni base alloy
JPS59136443A (en) Bolt material excellent in stress, corrosion, cracking resistance
JPH0421746B2 (en)
JPH05255788A (en) Hydrogen induced embrittlement resistant high ni-base alloy and its manufacture
JPH07207401A (en) Ni-fe-cr-mo four-element nickel-based alloy hardened by deposition of gamma prime phase, and corrosion resisting method used especially in oil refining industry
AT235029B (en) Heat-resistant nickel-chromium alloys