JPS5928548A - Superelastic shape-memory ni-ti base alloy and manufacture thereof - Google Patents

Superelastic shape-memory ni-ti base alloy and manufacture thereof

Info

Publication number
JPS5928548A
JPS5928548A JP13706682A JP13706682A JPS5928548A JP S5928548 A JPS5928548 A JP S5928548A JP 13706682 A JP13706682 A JP 13706682A JP 13706682 A JP13706682 A JP 13706682A JP S5928548 A JPS5928548 A JP S5928548A
Authority
JP
Japan
Prior art keywords
alloy
temperature
superelasticity
memory
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13706682A
Other languages
Japanese (ja)
Other versions
JPS6159390B2 (en
Inventor
Kazuhiro Otsuka
和弘 大塚
Shuichi Miyazaki
修一 宮崎
Yutaka Omi
近江 豊
Yuichi Suzuki
雄一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13706682A priority Critical patent/JPS5928548A/en
Publication of JPS5928548A publication Critical patent/JPS5928548A/en
Publication of JPS6159390B2 publication Critical patent/JPS6159390B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To increase elasticity and shape-memory performance by the solution treatment and aging of the alloy composed of specified rate of Ni, Ti, V, Cr, Mn, Fe, Co, etc. at a specified temperature. CONSTITUTION:An alloy composed of 50-52atom% Ni and remainder Ti or an alloy of which not more than 1atom% Ni or Ti content is substituted with not less than one kind of V, Cr, Mn, Fe, Co, Cu, Zr, Nb, Mo, Ta and noble metals, is refined. After this alloy is solution-treated at a temperature of 700-1,100 deg.C, it is aged at a temperature of 300-600 deg.C. Thus, fine Ni3Ti phase is dispersed and precipitated in base phase and the alloy material excellent in superelasticity and shape-memory property can be obtained.

Description

【発明の詳細な説明】 本発明は超弾性と形状記憶性の優れたN 1−Ti基合
金材とその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an N 1-Ti-based alloy material with excellent superelasticity and shape memory, and a method for producing the same.

NiとTiを原子比で1=1又はその近傍でNiとTi
を含むN i −T i合金及びこれらcV、Cr、 
Mn。
The atomic ratio of Ni and Ti is 1=1 or near it.
Ni-Ti alloys containing cV, Cr,
Mn.

Fe、 Co、CI、 Zr、 Nb、 MO,’l’
a、又は貞金族を添加しというユニークな現象を示すこ
とが知られている。
Fe, Co, CI, Zr, Nb, MO, 'l'
It is known that a unique phenomenon is exhibited by adding a, or a metal group.

この超弾性を高性能バネ材とし、形状記憶性を温度セン
サー、アクチュエーター、又はこれ等を兼ねる素子とし
て実用化が進められているが、そのためC二は充分な性
能、例えば残留歪が少なく、寿命が長い材料が要求され
ている。
This superelasticity is used as a high-performance spring material, and its shape memory is being put into practical use as a temperature sensor, actuator, or an element that also serves as a temperature sensor, actuator, etc. Therefore, C2 has sufficient performance, such as low residual strain and long life. However, long materials are required.

N i −’]’ i基合金材の超弾性や形状記憶性の
向上には、転位すべりをモきるだけ起さず6二応力誘起
マルテンサイト変態を進行させることが有効であること
が金属学的C二予測できる。これを達成するた化させ、
これに再結晶を起さない温度及びPr間、例えば400
℃の温度で30分間の形状記憶処理を施す方法が提案さ
れている。このような方法で得られたNi−Ti基合金
材は、冷間加工によって形成された集合組織が形状配憶
処理によって消失しないため、転位すべりの発生が困難
であり、かつ外部応力(二よる応力誘起変態はそれほど
影響を受けず1″−進行する。その結果、変態温度以上
では良好な超弾性を、変態温度をまたいで良好な形状望
憶性を得ることができる。
Ni-']' Metallurgical research has shown that it is effective to advance the 62 stress-induced martensitic transformation without causing dislocation slippage to the extent possible to improve the superelasticity and shape memory of i-based alloy materials. Target C2 can be predicted. Let us help you achieve this,
In addition to this, the temperature and Pr that do not cause recrystallization, e.g. 400
A method has been proposed in which shape memory treatment is performed at a temperature of 30 minutes. In the Ni-Ti base alloy material obtained by this method, the texture formed by cold working does not disappear by shape memory treatment, so it is difficult for dislocation slip to occur and external stress The stress-induced transformation progresses by 1" without being affected much. As a result, good superelasticity can be obtained above the transformation temperature, and good shape memory can be obtained beyond the transformation temperature.

しかしながらこのような方法は冷間加工を充分(二施す
ことが前提条件であるため、細線や薄板のように加工が
内部にまで容易に施される場合には有効であるが、太線
や厚板或いはバルク形状のように加工が内部品二まで均
−監=施されないものや。
However, since this method requires sufficient cold working (two times), it is effective when processing is easily carried out to the inside, such as thin wires and thin plates, but it is effective for thick wires and thick plates. Or, like bulk shapes, processing is not evenly supervised up to the internal parts.

Ni含有傷が51.Oa 1%を越えて硬くなり、組成
的に冷間加工が困難なものでは充分な冷間加工が不可能
なため実施できない欠点がある。
Ni-containing scratches are 51. If the Oa exceeds 1%, it becomes hard and compositionally difficult to cold-work, there is a drawback that sufficient cold-working is impossible and therefore it cannot be carried out.

本発明はこれに鑑み種々研究の結果、合金の母相中に微
細なNi3Ti相を分散析出させることC二より、冷間
加工を必要とせず、良好な超り甲I/+−と形状のであ
る。
In view of this, as a result of various studies, the present invention has been developed by dispersing and precipitating a fine Ni3Ti phase in the parent phase of the alloy, which eliminates the need for cold working and achieves good overpass I/+- and shape. be.

即ち、本発明Ni−Ti系合金材は、N 150.0〜
52.0at%、残部Tiからなる合金、又はその合金
のNi又はTi含有量の1.0at%以下をV 、 C
r、 Mn、 Fe、 Co。
That is, the Ni-Ti alloy material of the present invention has N of 150.0 to
52.0 at%, balance Ti, or 1.0 at% or less of the Ni or Ti content of the alloy, V, C
r, Mn, Fe, Co.

Cu、 Zr、Nb、 Mo、Ta及び古金族から選ば
れる元素の1種又は2種以上で@換した合金の母相中に
微細なNi、Ti相を分散析出させたことを特徴とする
ものである。
It is characterized by the fact that fine Ni and Ti phases are dispersed and precipitated in the matrix of an alloy which has been replaced with one or more elements selected from Cu, Zr, Nb, Mo, Ta, and the paleometal group. It is something.

また本発明Ni−Ti基合金材の製造方法は、Ni50
.0〜52.Oa 1%、残部Tiからなる合金、又は
その合金のNi又はTi含有量の1.0atSB下を■
、Cr、Mn。
Further, the method for manufacturing the Ni-Ti based alloy material of the present invention includes Ni50
.. 0-52. An alloy consisting of 1% Oa and the balance Ti, or an alloy with a Ni or Ti content of 1.0atSB or less.
, Cr, Mn.

Fe、 Co、 Cu、Zr、 Nb、 Mo、Ta及
び責金族から選ばれる元素の1種又は2種以上で置換し
た合金を700〜1100℃の温度で溶体化処理した後
、300〜600℃の温度で時効処理することを特徴と
するものである。
An alloy substituted with one or more elements selected from the group consisting of Fe, Co, Cu, Zr, Nb, Mo, Ta, and metals is solution-treated at a temperature of 700 to 1100°C, and then heated to 300 to 600°C. It is characterized by aging treatment at a temperature of .

しかして本発明N i −T i基台金利において1合
金の組成範囲を上記の如く限定したのは次の理由による
ものである。
However, the reason why the composition range of one alloy is limited as described above in the N i -T i base rate of the present invention is as follows.

られず、52.081%を越えると、加工1イ[が著し
く低下し、熱間m造≦二おいても割れを生ずるため、実
用価値が、ないとの判断C二よるものである。また合金
)Ni又ハTi含有31(7)1.Oat%以下を■、
Cr、Mn、Fe%Co−Cu%Zr、 Nb、 Mo
、Ta及び貫金族の何れか1種又は2種以上で置換する
のは、■、Cr、 Mn、Fe、G。
If it exceeds 52.081%, processing 1) will be significantly reduced, and cracks will occur even in hot manufacturing ≦2, so it is judged to have no practical value according to C2. Also alloy) containing Ni or Ti 31 (7) 1. ■ below Oat%,
Cr, Mn, Fe%Co-Cu%Zr, Nb, Mo
, Ta, and one or more of the metals in the metal group include ■, Cr, Mn, Fe, and G.

及びCuによる置換は、合金の超弾性及び形状記憶性を
あまり変化させることなく、変態温度を下げ、変態温度
を低温側ζニコントロールすることができる効果を有し
、Zr、Nb%MO%Ta及び責金族6二よる置換は合
金の超弾性及び形状記憶性をあまり貧化させることなく
耐食性を向上する効果を有するも。
The substitution with Zr, Nb%MO%Ta has the effect of lowering the transformation temperature and controlling the transformation temperature on the low temperature side without significantly changing the superelasticity and shape memory properties of the alloy. The substitution with metal group 62 has the effect of improving the corrosion resistance without significantly impairing the superelasticity and shape memory properties of the alloy.

これ等元素の置換量の合計が、Ni又はTi含有量のl
at%を越えると、加工性を損なうばかりか、超弾性及
び形状記憶性をも劣化するためである。
The total amount of substitution of these elements is l of the Ni or Ti content.
This is because if it exceeds at%, not only the workability is impaired but also the superelasticity and shape memory properties are deteriorated.

また本発明Ni−Ti基合金材の製造方法6二おいて、
上記Ni−Ti基合金を700〜1100℃の温度で溶
体化処理した後、300〜600°Cの高度で時効処理
するのは、合金の母相中−二微細なNi3’[i+目な
う)[(94f !、+41させて、超弾性及び形状1
Ll憶性を劣化させることなく。
In addition, in the method 62 for producing the Ni-Ti based alloy material of the present invention,
The above Ni-Ti base alloy is solution-treated at a temperature of 700-1100°C and then aged at a high temperature of 300-600°C. ) [(94f !, let +41, superelastic and shape 1
Without deteriorating memory.

転位すべりの発生を困IAL Lで、残留止を′υなく
するためである。しかして溶体化処理温度を7()0〜
1100℃と限定したのは処理温度が700°C未満で
は溶体化が充分5二行なわれず、 1100℃を越える
と一部に溶融が生じたり、メは変形を起すようになるた
めである。
This is to prevent the occurrence of dislocation slips and to eliminate residual stoppage. Therefore, the solution treatment temperature is set to 7()0~
The reason why the temperature was limited to 1100°C is that if the treatment temperature is less than 700°C, solution treatment will not be carried out sufficiently, and if it exceeds 1100°C, some parts will melt or deformation will occur.

溶体化処理は不活性ガス、例えばアルゴン雰囲気中で7
00〜1100℃の温度C二加熱する。この温度範囲内
であれば同様の結果が得られ、加熱時開も0.5〜lO
時間の範囲内であれば同様の結果がfqtられる。
Solution treatment is carried out in an inert gas atmosphere, for example argon.
Heat to a temperature of 00 to 1100°C. Similar results can be obtained within this temperature range, and the opening when heated is 0.5 to 1O
Similar results are fqt within the time range.

焼入れも空気焼入れ程度で)!l+定の特性をイー)る
ことかできるが、肖現tl:を確保す仝点から水焼入れ
することが望ましい。
The quenching is also at the same level as air quenching)! Although it is possible to obtain the characteristics of tl+, it is desirable to water-quench the material to ensure the appearance tl:.

また溶体化処理後の時効処理温度を300〜600℃と
限定したのは、300℃未満の温度では時効析出が不充
分で、良好な特性が得られず一600℃を越える2A′
:lI’l’(ではNi3’l”i単相の領域に入るた
め一良好な特性が得られないためである。尚、処理時1
岸は処理材の大きさく二もよるが400”Cの温度で1
〜10時間の範囲内であれば同様の結果が得られ、実用
的C二は350〜450℃の温度で1〜2時間で良好な
結果が得られる。
In addition, the aging treatment temperature after solution treatment was limited to 300 to 600°C because aging precipitation is insufficient at temperatures below 300°C and good properties cannot be obtained.
:lI'l'(This is because good characteristics cannot be obtained because Ni3'l''i enters the single phase region.
Although it depends on the size of the treated material, the temperature of the shore is 1 at 400"C.
Similar results can be obtained within the range of ~10 hours, and good results can be obtained for practical C2 at temperatures of 350 to 450°C for 1 to 2 hours.

以−ド、本発明を実施例C二ついて詳細6二説明する。Hereinafter, the present invention will be explained in detail using two embodiments C.

第1表に示す組成の合金を1000℃の温度C加熱して
水焼入れした後、500℃の温度で1時間時効処理し、
これについてマルテンサイト逆変態点(Af点)、超弾
性及び形状記憶性を測定した。その結果を第1表に併記
した。尚、参考のため溶体化処理後の超弾性及び形状記
憶性を測定し、その結果を第1表i二併紀した。
An alloy having the composition shown in Table 1 was water-quenched by heating at a temperature of 1000°C, and then aged at a temperature of 500°C for 1 hour.
Regarding this, the martensite reverse transformation point (Af point), superelasticity, and shape memory were measured. The results are also listed in Table 1. For reference, the superelasticity and shape memory properties after solution treatment were measured, and the results are shown in Table 1.

各合金は常法により黒鉛ルツボを用いて真空高周波溶解
炉C二より溶解し、水冷鋳型に鋳造した鋳塊に熱間鍛造
と熱間圧延を加えた後中間焼鈍と冷間伸線加工を繰返し
て直径1.0鮪の線に仕上げた。
Each alloy is melted in a vacuum high-frequency melting furnace C2 using a graphite crucible using a conventional method, and the ingot is cast into a water-cooled mold and subjected to hot forging and hot rolling, followed by repeated intermediate annealing and cold wire drawing. I finished it with a line with a diameter of 1.0 tuna.

ただし、本発明合金A65区二6いては、伸線加工が困
難であったため、圧延加工により厚さl+mの板己仕上
げ、これより砥石tJJ 断(二よってi〕3 am−
長さ150mに切断して板状試料とした。これ等線材及
び板材について表面のスケールを除去した後、アルゴン
雰囲気中、 1000℃の温度で1時間溶体化処理し、
氷水中(二焼入れ、これを石英管内に装入して500℃
の温度で1時間時効処理した。
However, since it was difficult to wire-draw the alloy A65 of the present invention, a sheet with a thickness of 1+m was finished by rolling.
A plate-shaped sample was cut into a length of 150 m. After removing the scale on the surface of these wire rods and plate materials, they were subjected to solution treatment at a temperature of 1000℃ for 1 hour in an argon atmosphere.
In ice water (second quenching, put it into a quartz tube and heat it at 500℃)
Aging treatment was performed at a temperature of 1 hour.

形状記憶性は線材又は板材を11径IQmsの鉄製枠に
欧態温度より20℃以上低いl晶度で巻き付け、そのま
まの状態で棒から外し、温水中で加熱して変聾温IW以
上(二なった時の直線形状への回復度を角度(二より測
定し、該角度が175°以上のものを◎印で、135°
以上、175未満のものを○印、135゜未満のものを
Δ印で示した。尚、変態温度が室温以Fのもの(二つい
てはドライアイスとアルコールの混合液中で巻付けを行
なった。
Shape memory properties are determined by winding a wire or plate material around an iron frame with a diameter of 11 IQms at a crystallinity of at least 20°C lower than the European temperature, removing it from the rod in that state, and heating it in warm water to achieve a deafening temperature of at least IW (20°C or more). The degree of recovery to a straight line shape when
In the above, those less than 175 degrees are marked with ○, and those less than 135 degrees are marked with Δ. Note that the transformation temperature was lower than room temperature F (for the two cases, winding was performed in a mixed solution of dry ice and alcohol).

また超弾性は線材又は板材を直径10龍の鉄製棒C二変
態温度より商い温度で巻き付けた後、巻き付は力を除去
し、その際のスプリングバックで回復した後の角度を測
定し、形状記憶性と同様にして示した。
In addition, superelasticity is measured by winding a wire or plate material at a temperature lower than the two-transformation temperature of an iron rod with a diameter of 10 mm, removing the winding force, and measuring the angle after recovery due to springback. This was shown in the same way as memorability.

第1表から明らかなように本発明合金材は溶体化処理後
6二時効処理すること(二より、特ζ二超弾性が大巾(
二向上することが判る。また形状記憶性(二ついても繰
返し特性(二注目すると、大巾(二jじ状紀憶性が向上
している。例えば溶体化処理のままの材料では数百回の
繰返し変形で永久歪が残留するが、時効処理した本発明
合金材では実ζ二十万回の繰返しが可能であった。
As is clear from Table 1, the alloy material of the present invention is subjected to aging treatment after solution treatment.
It turns out that there is a second improvement. In addition, shape memory (repetitive characteristics) (2) If you pay attention, the shape memory is improved. For example, with a material that has been solution-treated, permanent deformation occurs after several hundred repeated deformations. However, with the aged alloy material of the present invention, it was actually possible to repeat ζ 200,000 times.

これ(二対し比較合金4J/l612.Δ613から判
るよう(二Ni含有蔭が50.Oa 1%未満では溶体
化処理と皆効処理亀二よって特性の改善が全く見られず
、またNi含有量が52.0 a 1%を越える合金材
口ついて実施例を示さなかったが、加工性が著しく悪く
なり、熱間鍛造(二よっても割れが発生するため実用価
値がないものと判断した。またNi又はTi含有量のl
at%を越えてpdで置換した比較合金材414及びl
’eで置換した比較合金材A15では溶体化処理後、時
効処理を施しても、特性、特監二超弾性の向上が聴めら
れなかった。
As can be seen from the comparison alloy 4J/l612.Δ613 (2), when the Ni content is less than 50.Oa, no improvement in properties is seen at all due to solution treatment and total effect treatment, and 52.0a Although we did not show any examples of the alloy material having a content of more than 1%, it was judged that it had no practical value because the workability deteriorated significantly and cracking occurred even after hot forging (2). l of Ni or Ti content
Comparative alloy materials 414 and l in which more than at% was replaced with pd
Comparative alloy material A15 in which 'e was substituted did not show any improvement in properties or special superelasticity even if it was subjected to aging treatment after solution treatment.

尚、第1表(二はNi又はTl含有量の置換元素として
PdとF2O例を示したが、Zr、Nb、MOlTa及
び責金族の置換はPdと同様の効果を示し、■、Cr、
Mn、00、及びCuの置換はFeと同様の効果を示し
た。特≦二pdを始めZr + Nb、 Mo−’l’
a及び口金族C=よる置換は超弾性及び形状記憶性を損
なうことなく耐食性を向上し−F eを始めV−Cr、
 Mn、 Co及びCu l二よる置換は合金材の特性
を損なうことなく変態温度を下げる効果があり、変態温
度を低温側(ニコントロールするのに有効である。
Note that Table 1 (2) shows examples of Pd and F2O as substitution elements for Ni or Tl content, but substitution of Zr, Nb, MOLTa, and the metal group shows the same effect as Pd;
Substitutions of Mn, 00, and Cu showed similar effects as Fe. Special ≦2 pd, Zr + Nb, Mo-'l'
Substitution with a and base group C= improves corrosion resistance without impairing superelasticity and shape memory properties, including -Fe, V-Cr,
Substitution with Mn, Co, and CuI has the effect of lowering the transformation temperature without impairing the properties of the alloy material, and is effective in controlling the transformation temperature to a lower temperature side.

このように本発明によればNi−’l’i基合金を溶体
化処理後C二時効処理することにより、冷間加工を必要
とせず(二、高性能の超弾性、J19状記憶性が得られ
るもので、工業上顕著な効果を奏するものである。
As described above, according to the present invention, the Ni-'l'i-based alloy is subjected to C2 aging treatment after solution treatment, thereby eliminating the need for cold working (2. High performance superelasticity and J19 shape memory). The obtained product has a remarkable industrial effect.

Claims (1)

【特許請求の範囲】 fil N i 50.0〜52.Oa 1%、残部T
i力らなる合金、又ハその合金のNi又はTi含有量の
l、Q a 1%以下を■、Cr、 Mn、 Fe、 
Co、Cu%7rr、 Nb、 Mo、 Ta、及び青
金族か1ら選ばれる元素の1種又は2種以上で置換した
合金の母、tflj 中(二微細なNi5Ti相を分散
析出させたことを特徴とする超弾性、形状記憶性N i
 −T i基合金材。 f21 N i 50.0〜52.0 a 1%、残部
Ti力らなる合金、又ハその合金のNi又はTi含有l
の1.Qat%以下を■、Cr、 Mn、 Fe、 C
o、Cu、 Z rfi b、 Mo、Ta、及び青金
族から選ばれる元素の1種又は2種以上で置換した合金
を700〜1100℃の温度で溶体化処理した後、30
0〜600℃の温度で時効処理することを特徴とする超
弾性、形状記憶性N i −T i基合金材の製造方法
。 (31溶体化処理後の冷却な水規入する特許請求の金材
の製造方法。
[Claims] fil N i 50.0-52. Oa 1%, balance T
1% or less of the Ni or Ti content of the alloy, Cr, Mn, Fe,
Co, Cu%7rr, Nb, Mo, Ta, and alloy matrix substituted with one or more elements selected from the blue metal group, tflj (two fine Ni5Ti phases were dispersed and precipitated) Superelasticity, shape memory Ni characterized by
-Ti-based alloy material. f21 An alloy consisting of Ni 50.0 to 52.0 a 1%, the balance being Ti, or the alloy containing Ni or Ti
1. Qat% or less ■, Cr, Mn, Fe, C
After solution treatment of an alloy substituted with one or more elements selected from O, Cu, Zrfib, Mo, Ta, and blue metal group at a temperature of 700 to 1100°C, 30
A method for producing a superelastic, shape-memory Ni-Ti-based alloy material, which comprises aging treatment at a temperature of 0 to 600°C. (31. The method for manufacturing a metal material claimed in the patent, which involves adding cooling water after solution treatment.
JP13706682A 1982-08-06 1982-08-06 Superelastic shape-memory ni-ti base alloy and manufacture thereof Granted JPS5928548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13706682A JPS5928548A (en) 1982-08-06 1982-08-06 Superelastic shape-memory ni-ti base alloy and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13706682A JPS5928548A (en) 1982-08-06 1982-08-06 Superelastic shape-memory ni-ti base alloy and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5928548A true JPS5928548A (en) 1984-02-15
JPS6159390B2 JPS6159390B2 (en) 1986-12-16

Family

ID=15190094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13706682A Granted JPS5928548A (en) 1982-08-06 1982-08-06 Superelastic shape-memory ni-ti base alloy and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5928548A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155657A (en) * 1984-01-12 1985-08-15 Hitachi Metals Ltd Production of ti-ni superelastic alloy
JPS60155656A (en) * 1984-01-12 1985-08-15 Hitachi Metals Ltd Production of ti-ni superelastic alloy
JPS60169552A (en) * 1984-01-30 1985-09-03 Hitachi Metals Ltd Manufacture of shape memory alloy
JPS60248856A (en) * 1984-05-23 1985-12-09 Daido Steel Co Ltd Ni-ti alloy
JPS61235528A (en) * 1985-04-09 1986-10-20 Keijiyou Kioku Gokin Gijutsu Kenkyu Kumiai Superelastic ni-ti-cr alloy
JPS6210233A (en) * 1985-07-09 1987-01-19 Tohoku Metal Ind Ltd Shape memory alloy
JPS6210234A (en) * 1985-07-09 1987-01-19 Tohoku Metal Ind Ltd Shape memory alloy
JPS6247445A (en) * 1985-08-24 1987-03-02 Tohoku Metal Ind Ltd Pseudoelastic alloy
JPS62170443A (en) * 1986-01-23 1987-07-27 Daido Steel Co Ltd Shape memory alloy material and its production
JPS6311636A (en) * 1986-07-01 1988-01-19 Keijiyou Kioku Gokin Gijutsu Kenkyu Kumiai Shape memory alloy
JPS6314834A (en) * 1986-07-07 1988-01-22 Tohoku Metal Ind Ltd Tiniv shape memory alloy
JPS6383252A (en) * 1986-09-26 1988-04-13 Furukawa Electric Co Ltd:The Method and device for heat treating superelastic shape memory material
US4770725A (en) * 1984-11-06 1988-09-13 Raychem Corporation Nickel/titanium/niobium shape memory alloy & article
JPS63235444A (en) * 1987-03-24 1988-09-30 Tokin Corp Ti-ni-al based shape memory alloy and its production
JPH01177329A (en) * 1988-01-05 1989-07-13 Tokin Corp Alloy for high-temperature thermomotive element and high-temperature thermomotive element
US4874577A (en) * 1985-12-23 1989-10-17 Mitsubishi Kinzoku Kabushiki Kaisha Wear-resistant intermetallic compound alloy having improved machineability
JPH07300638A (en) * 1995-05-29 1995-11-14 Daido Steel Co Ltd Shape memory alloy material and its production
JPH09104936A (en) * 1996-08-09 1997-04-22 Daido Steel Co Ltd Shape memory alloy material
JP2006523770A (en) * 2003-04-18 2006-10-19 ザ ユニバーシティ オブ ホンコン Shape memory material and method of manufacturing the same
WO2007108180A1 (en) * 2006-03-20 2007-09-27 University Of Tsukuba High-temperature shape memory alloy, actuator and motor
US8007604B2 (en) 2006-03-17 2011-08-30 University Of Tsukuba Titanium-tantalum base shape memory alloys, actuator and engine
WO2011053737A3 (en) * 2009-11-02 2011-09-29 Saes Smart Materials Ni-Ti SEMI-FINISHED PRODUCTS AND RELATED METHODS
CN104099544A (en) * 2013-04-07 2014-10-15 北京有色金属研究总院 Whole course memory effect acquisition method for shape memory alloy
CN104946956A (en) * 2015-06-09 2015-09-30 哈尔滨工程大学 TiNiCuNb shape memory alloy and preparation method thereof
CN105033252A (en) * 2015-07-23 2015-11-11 南京航空航天大学 Method for preparing shape memory alloy intravascular stent based on automatic powder laying laser combination machining technology
CN107523719A (en) * 2017-09-22 2017-12-29 北京航空航天大学 A kind of new high rigidity NiTi based alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534303U (en) * 1991-10-14 1993-05-07 河村電器産業株式会社 Equipment storage box mounting structure

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622026B2 (en) * 1984-01-12 1987-01-17 Hitachi Metals Ltd
JPS60155656A (en) * 1984-01-12 1985-08-15 Hitachi Metals Ltd Production of ti-ni superelastic alloy
JPS60155657A (en) * 1984-01-12 1985-08-15 Hitachi Metals Ltd Production of ti-ni superelastic alloy
JPS622027B2 (en) * 1984-01-12 1987-01-17 Hitachi Metals Ltd
JPS60169552A (en) * 1984-01-30 1985-09-03 Hitachi Metals Ltd Manufacture of shape memory alloy
JPS622028B2 (en) * 1984-01-30 1987-01-17 Hitachi Metals Ltd
JPS60248856A (en) * 1984-05-23 1985-12-09 Daido Steel Co Ltd Ni-ti alloy
US4770725A (en) * 1984-11-06 1988-09-13 Raychem Corporation Nickel/titanium/niobium shape memory alloy & article
JPS61235528A (en) * 1985-04-09 1986-10-20 Keijiyou Kioku Gokin Gijutsu Kenkyu Kumiai Superelastic ni-ti-cr alloy
JPS6210233A (en) * 1985-07-09 1987-01-19 Tohoku Metal Ind Ltd Shape memory alloy
JPS6210234A (en) * 1985-07-09 1987-01-19 Tohoku Metal Ind Ltd Shape memory alloy
JPS6247445A (en) * 1985-08-24 1987-03-02 Tohoku Metal Ind Ltd Pseudoelastic alloy
US4874577A (en) * 1985-12-23 1989-10-17 Mitsubishi Kinzoku Kabushiki Kaisha Wear-resistant intermetallic compound alloy having improved machineability
JPH0639648B2 (en) * 1986-01-23 1994-05-25 大同特殊鋼株式会社 Shape memory alloy material and manufacturing method thereof
JPS62170443A (en) * 1986-01-23 1987-07-27 Daido Steel Co Ltd Shape memory alloy material and its production
JPS6311636A (en) * 1986-07-01 1988-01-19 Keijiyou Kioku Gokin Gijutsu Kenkyu Kumiai Shape memory alloy
JP2603463B2 (en) * 1986-07-01 1997-04-23 形状記憶合金技術研究組合 Low temperature reversible shape memory alloy
JPS6314834A (en) * 1986-07-07 1988-01-22 Tohoku Metal Ind Ltd Tiniv shape memory alloy
JP2541802B2 (en) * 1986-07-07 1996-10-09 株式会社トーキン Shape memory TiNiV alloy and manufacturing method thereof
JPS6383252A (en) * 1986-09-26 1988-04-13 Furukawa Electric Co Ltd:The Method and device for heat treating superelastic shape memory material
JPH0312138B2 (en) * 1986-09-26 1991-02-19 Furukawa Electric Co Ltd
JPS63235444A (en) * 1987-03-24 1988-09-30 Tokin Corp Ti-ni-al based shape memory alloy and its production
JPH01177329A (en) * 1988-01-05 1989-07-13 Tokin Corp Alloy for high-temperature thermomotive element and high-temperature thermomotive element
JP2631989B2 (en) * 1988-01-05 1997-07-16 株式会社トーキン High temperature thermal response element
JPH07300638A (en) * 1995-05-29 1995-11-14 Daido Steel Co Ltd Shape memory alloy material and its production
JPH09104936A (en) * 1996-08-09 1997-04-22 Daido Steel Co Ltd Shape memory alloy material
US7306683B2 (en) * 2003-04-18 2007-12-11 Versitech Limited Shape memory material and method of making the same
JP2006523770A (en) * 2003-04-18 2006-10-19 ザ ユニバーシティ オブ ホンコン Shape memory material and method of manufacturing the same
US8007604B2 (en) 2006-03-17 2011-08-30 University Of Tsukuba Titanium-tantalum base shape memory alloys, actuator and engine
WO2007108180A1 (en) * 2006-03-20 2007-09-27 University Of Tsukuba High-temperature shape memory alloy, actuator and motor
EP2500443A1 (en) * 2009-11-02 2012-09-19 SAES Smart Materials NI-TI semi-finished products and related methods
US8152941B2 (en) 2009-11-02 2012-04-10 Saes Smart Materials Ni-Ti semi-finished products and related methods
EP2496724A2 (en) * 2009-11-02 2012-09-12 SAES Smart Materials Ni-Ti SEMI-FINISHED PRODUCTS AND RELATED METHODS
WO2011053737A3 (en) * 2009-11-02 2011-09-29 Saes Smart Materials Ni-Ti SEMI-FINISHED PRODUCTS AND RELATED METHODS
CN102712968A (en) * 2009-11-02 2012-10-03 赛伊斯智能材料公司 Ni-Ti semi-finished products and related methods
CN102719707A (en) * 2009-11-02 2012-10-10 赛伊斯智能材料公司 Ni-ti semi-finished products and related methods
EP2496724A4 (en) * 2009-11-02 2013-04-17 Saes Smart Materials Ni-Ti SEMI-FINISHED PRODUCTS AND RELATED METHODS
US9315880B2 (en) 2009-11-02 2016-04-19 Saes Smart Materials Ni-Ti semi-finished products and related methods
CN104099544A (en) * 2013-04-07 2014-10-15 北京有色金属研究总院 Whole course memory effect acquisition method for shape memory alloy
CN104946956A (en) * 2015-06-09 2015-09-30 哈尔滨工程大学 TiNiCuNb shape memory alloy and preparation method thereof
CN105033252A (en) * 2015-07-23 2015-11-11 南京航空航天大学 Method for preparing shape memory alloy intravascular stent based on automatic powder laying laser combination machining technology
CN107523719A (en) * 2017-09-22 2017-12-29 北京航空航天大学 A kind of new high rigidity NiTi based alloy

Also Published As

Publication number Publication date
JPS6159390B2 (en) 1986-12-16

Similar Documents

Publication Publication Date Title
JPS5928548A (en) Superelastic shape-memory ni-ti base alloy and manufacture thereof
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
JPH0543969A (en) Shape-memory alloy of high critical temperature
TW201026864A (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP3335224B2 (en) Method for producing high formability copper-based shape memory alloy
WO2018047787A1 (en) Fe-BASED SHAPE MEMORY ALLOY MATERIAL AND METHOD FOR PRODUCING SAME
JPS6157390B2 (en)
JPH0641623B2 (en) Controlled expansion alloy
JPH057460B2 (en)
CN115094330A (en) Precipitation hardening invar alloy and processing method thereof
JPH02270938A (en) Iron-based shape memorizing alloy and preparation thereof
JP2000169920A (en) Copper base alloy having shape memory characteristic and superelasticity, and its production
JPS6361377B2 (en)
JPS6326186B2 (en)
JPH04235262A (en) Manufacture of ti-al intermetallic compound-series ti alloy excellent in strength and ductility
JP4275334B2 (en) Copper-based alloy and manufacturing method thereof
WO1999049091A1 (en) Ti-V-Al BASED SUPERELASTICITY ALLOY
JP2022526677A (en) Copper alloys with high strength and high conductivity, and methods for making such copper alloys.
JPH1136024A (en) High-temperature-functioning shape memory alloy, and its production
KR20190076749A (en) Method of processing titanium alloys
JP2573499B2 (en) TiNiCuV quaternary shape memory alloy
JPS5935978B2 (en) shape memory titanium alloy
JPH02111828A (en) Manufacture of copper alloy for lead frame
JPH02111850A (en) Manufacture of copper alloy for lead frame
JPH036212B2 (en)