JPS60169552A - Manufacture of shape memory alloy - Google Patents

Manufacture of shape memory alloy

Info

Publication number
JPS60169552A
JPS60169552A JP1466384A JP1466384A JPS60169552A JP S60169552 A JPS60169552 A JP S60169552A JP 1466384 A JP1466384 A JP 1466384A JP 1466384 A JP1466384 A JP 1466384A JP S60169552 A JPS60169552 A JP S60169552A
Authority
JP
Japan
Prior art keywords
phase
shape memory
memory alloy
alloy
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1466384A
Other languages
Japanese (ja)
Other versions
JPS622028B2 (en
Inventor
Hiroki Nakanishi
中西 寛紀
Tsutomu Inui
乾 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1466384A priority Critical patent/JPS60169552A/en
Publication of JPS60169552A publication Critical patent/JPS60169552A/en
Publication of JPS622028B2 publication Critical patent/JPS622028B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the hysteresis of transformation of a shape memory Ti-Ni alloy from a high temp. phase to a low temp. phase by subjecting the Ti-Ni alloy contg. Ni in excess and having TiNi and TiNi3 phases to soln. heat treatment and aging each at a specified temp. CONSTITUTION:A shape memory Ti-Ni alloy contg. Ni in excess and having TiNi and TiNi3 phases is worked and constrained to a prescribed shape to be memorized. The alloy is then subjected to soln. heat treatment at 500-1,100 deg.C, quenching and aging at 200-700 deg.C. Working, soln. heat treatment, constraint and aging, or working, soln. heat treatment, aging, constraint and memory treatment may be carried out in order. By the soln. heat treatment and aging, supersatd. Ni is precipitated as TiNi3 grains, so the hysteresis of transformation from a high temp. phase to a low temp. phase is extremely reduced.

Description

【発明の詳細な説明】 本発明は’L’iN+相およびTiNi3相の二相を有
するNi過剰組成のTi−N1系形状記憶合金に500
〜1100℃の温度範囲での溶体化処理および200〜
700℃の温度範囲での時効処理を施すことにより高温
相→低温相の変態ヒステリシスが極めて小さい形状記憶
合金を得るととを特徴とするTi−Ni系形状記憶合金
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a Ti-N1 shape memory alloy with a Ni-excessive composition having two phases of 'L'iN+ phase and TiNi3 phase.
Solution treatment in the temperature range of ~1100°C and 200°C ~
The present invention relates to a method for producing a Ti--Ni shape memory alloy, characterized in that a shape memory alloy having an extremely small transformation hysteresis from a high temperature phase to a low temperature phase is obtained by aging treatment in a temperature range of 700°C.

′1゛1〜Ni系形状記憶合金は顕著な形状記憶効果を
示すこと訃よび優れた機械的性質、耐食性等を有するこ
とから最も広範囲な実用化の検討がなされているもので
ある。
Ni-based shape memory alloys exhibit a remarkable shape memory effect and have excellent mechanical properties, corrosion resistance, etc., and are therefore being studied in the widest range for practical use.

形状記憶効果は低温でマルテンサイト状態にある材料を
変形した後加熱すると元の形状に戻るものであり、こう
した効果を生ずる温度は通常合金の逆変態開始温度(A
、点)、逆変態終了温度(Ar点)、マルテンサイト変
態開始温度(A、s点)およびマルテンサイト変態開始
温度(Mr点)によって決定され、A3点において形状
記憶効果が開始されAr点で終了するものである。この
形状記憶効果を生ずる際の回復力は50〜601c9/
’II+7’lに及ぶものであり、この回復力を種々の
応用品へ利用する検討がなされている。その応用の代表
例に第1図に示すような形状記憶効果を繰り返し生じさ
せることを利用したアクチュエーターがある。とのアク
チュエーターバネイアスカとじての通常のコイルバネ(
バイアスバネ)と形状記憶合金コイルバネとが組み合わ
されたものであり、低温においては形状記憶合金がバイ
アスバネよりも降伏応力の小さなマルテンサイト相の状
態であるためにバイアスバネの方が強く、形状記憶合金
を変形するように動作し、逆に高温においては形状記憶
合金がバイアスバネよりも降伏応力の大きなβ相の状態
となり、形状記憶合金がバイアスバネを変形するように
動作する。
The shape memory effect occurs when a material that is in a martensitic state at low temperatures is deformed and then returns to its original shape when heated.
, point), the end temperature of reverse transformation (Ar point), the start temperature of martensitic transformation (point A, s), and the start temperature of martensitic transformation (point Mr), and the shape memory effect starts at point A3 and at point Ar. It ends. The recovery power when producing this shape memory effect is 50 to 601c9/
It has a recovery power of up to 'II+7'l, and studies are being made to utilize this resilience in various applied products. A typical example of its application is an actuator that utilizes the repeated generation of a shape memory effect, as shown in FIG. Actuator spring with normal coil spring (
A bias spring is a combination of a shape memory alloy coil spring (bias spring) and a shape memory alloy coil spring.At low temperatures, the shape memory alloy is in a martensitic phase state with a lower yield stress than the bias spring, so the bias spring is stronger and has a shape memory alloy. Conversely, at high temperatures, the shape memory alloy enters a β-phase state with a higher yield stress than the bias spring, and the shape memory alloy operates to deform the bias spring.

この場合高温相→低温相の変態ヒステリシスが小さい程
小さな温度範囲においてアクチュエーターとしての動作
が簀易に得られる。
In this case, the smaller the transformation hysteresis from the high temperature phase to the low temperature phase, the easier it is to operate as an actuator in a small temperature range.

しかし、従来のIlliNを系合金においては高温相→
低温相の変態ヒステリシスが30℃程度と犬きく、この
ため低温和、高温相を可逆的に得てアクチュエーターを
動作させる温度範囲が大きくならざるを得す、動作θ、
111度範囲が限定される欠点があった。
However, in conventional IlliN-based alloys, high-temperature phase →
The transformation hysteresis of the low-temperature phase is as high as about 30°C, so the temperature range in which the actuator is operated by reversibly obtaining the low-temperature sum and high-temperature phase must be widened.
There was a drawback that the range of 111 degrees was limited.

こうした観点から本発明者らは高昌相→低温相の変態ヒ
ス7’IJシスが小さく、第1図に示すようなアクブー
ユニーターの動作を容易にする合金を得ろ/こめにli
t、N、相および”?INrs相の二相を有するN1過
剰組成の’I’1−Ni系形状記憶合金形状記憶合金範
囲に記載の処理を施したところ有益な効果をもだらずこ
とを発見したものである。すなわち、溶体化処理および
時効処理により過飽和Niが′1゛INi3粒子となっ
てマトリックス中に析出し、これに伴なって中間相変態
が導入され、変態が2段階的に起こるようになり、高温
相→低温相(中間相)の変態が非常に小さくなる。
From this point of view, the present inventors sought to obtain an alloy with a low transformation histology (7'IJ) from the high-temperature phase to the low-temperature phase, which facilitates the operation of the Akbu uniter as shown in Figure 1.
'I'1-Ni-based shape memory alloy with N1-excess composition having two phases: t, N, phase and "?INrs phase" It was found that no beneficial effects were obtained when the treatment described in the shape memory alloy range was applied. That is, by solution treatment and aging treatment, supersaturated Ni becomes '1''INi3 particles and precipitates in the matrix, and along with this, mesophase transformation is introduced, and the transformation occurs in two stages. The transformation from high temperature phase to low temperature phase (intermediate phase) becomes very small.

次に本発明における処理条件の限定理由について述べる
Next, the reasons for limiting the processing conditions in the present invention will be described.

溶体化処理温度については500’C未満においてはT
1Niマトリックス中へTiNi3の十分な固溶度がr
Oらfしないものと考えら力、その効果が十分認められ
ない。また1100℃をこえると酸化にょる′1゛1元
素の滅失が問題となる。以上の観点から500〜110
0℃の温度範囲に限定し、た。
Regarding the solution treatment temperature, T is less than 500'C.
The sufficient solid solubility of TiNi3 in the 1Ni matrix is r
If you think of it as something that doesn't affect you, its effects are not fully recognized. Moreover, when the temperature exceeds 1100°C, loss of the '1'1 element due to oxidation becomes a problem. 500-110 from the above point of view
The temperature range was limited to 0°C.

時効処理兜度については200’C未満においては十分
な゛I’1Ni3粒子の析出が起こらず、また700℃
をこえると中間相変態が導入できなぐなシ、高温相−〉
低温和(中間相)変態による小ヒステリシスが得られな
くなる。以上の観点から200〜700℃の温度範囲に
限定した。
Regarding the degree of aging treatment, sufficient precipitation of I'1Ni3 particles does not occur at temperatures below 200'C, and at temperatures below 700'C.
If the temperature exceeds , intermediate phase transformation cannot be introduced, and a high temperature phase occurs.
Small hysteresis due to low-temperature summation (intermediate phase) transformation cannot be obtained. From the above point of view, the temperature range was limited to 200 to 700°C.

紀伝処理温度についてけ700’Cを越える温度におい
ては形状記憶効果が劣化し、また中(HJ相変態が消失
し高温相−)低温和(中間相)変態による小ヒスプリシ
スが得もハなく々る。以上の観点から700℃以下の温
度範囲に限定した。
Regarding the Kiden treatment temperature, at temperatures exceeding 700'C, the shape memory effect deteriorates, and small hysteresis due to medium (HJ phase transformation disappears and high temperature phase -) low temperature summation (intermediate phase) transformation occurs. . From the above point of view, the temperature range was limited to 700°C or less.

4お、溶体化処理前および時効処理前に記憶すべき所定
の形状lこ拘束する場合には時効処理?ζより形状を記
憶させることが可能であるので記憶処理を必要としな−
か、時効処理後に拘束する場合には記憶処理が必要とな
る。iだ記憶すべき所定の形状への拘束の時期について
は特許請求の範囲に記載のいずfl、lこおいても良好
な結果が得られる。
4. Is there a predetermined shape that should be memorized before solution treatment and aging treatment? It is possible to memorize the shape from ζ, so there is no need for memory processing.
Or, if the person is to be restrained after the statute of limitations has passed, amnestic processing is required. With regard to the timing of constraint to a predetermined shape to be memorized, good results can be obtained regardless of the timing set forth in the claims.

以下本発明を実施例に基づき説明する。The present invention will be explained below based on examples.

〔実施例1〕 Ill、N、相および’l’iNi3相の二相を有する
Ni過剰組成のTi−50,7’7’%Ni合金を高周
波誘導溶解した後1000℃にて2時7141真空焼鈍
を行なって均一化処理を施し、その後900℃にて鍛造
を行なってφ12の棒とした。この棒を更に熱間加工お
よび冷間加工を施しφ1の線としだ。次にこの線を第1
図に示すようなコイルバネに成形し拘束した後800℃
にて2時1i、JJ溶体化処理も行ない、更に400℃
にて5時間時効処理を施した後変位一温度曲線の測定お
よび示W走査熱h1計(DSC)を用いた変態点の測定
を行ない高温相−→低温相(中間相)の変態ヒステリシ
ス6:確認した。
[Example 1] A Ti-50,7'7'%Ni alloy with a Ni-excessive composition having two phases of Ill, N, phase and 'l'iNi3 phase was melted by high frequency induction at 1000°C for 2 hours in 7141 vacuum. It was annealed and homogenized, and then forged at 900°C to obtain a φ12 bar. This rod was further hot-worked and cold-worked to form a wire of φ1. Next, set this line to
800℃ after being formed into a coil spring as shown in the figure and restrained.
At 2 o'clock 1i, JJ solution treatment was also performed and further heated to 400℃.
After aging for 5 hours, the displacement-temperature curve was measured and the transformation point was measured using a W scanning calorimeter (DSC) to determine the transformation hysteresis of the high temperature phase -> low temperature phase (intermediate phase) 6: confirmed.

第2図1こ実施例1における時効処理後のDSCによる
変態点の測定結果を示す。従来の合金においては低温相
J高温相の変態に起因するDSCピークが加熱時および
冷却時に1つづつ認められるのに対し、本発明方法によ
る合金は中間相変態が導入され、加熱、冷却時に各々2
つづつのピークを有する。これに伴なって冷却時のピー
クは加熱時の変態終了温度とほとんど同じ温度で開始す
るようになり、高温相→低温相(中間相)の変態ヒステ
リシスがほとんど0℃となる。また第6図に実施例1の
コイルバネにおもりにより一定荷重を付加した場合の変
位一温度曲線を示すが、従来材に比べ極めてヒステリシ
スが小さくなっていン]ととが明らかである。なお、比
較のために従来HのI)SCによる変態点測定結果およ
び変位+7iA度曲線を第4図および第5図に示し7た
FIG. 2 shows the measurement results of the transformation point by DSC after the aging treatment in Example 1. In conventional alloys, one DSC peak due to the transformation of the low-temperature phase J high-temperature phase is observed during heating and one during cooling, whereas in the alloy produced by the method of the present invention, an intermediate phase transformation is introduced, and the DSC peaks are observed at each time during heating and cooling. 2
It has one peak after another. Along with this, the peak during cooling starts at almost the same temperature as the transformation end temperature during heating, and the transformation hysteresis from the high temperature phase to the low temperature phase (intermediate phase) becomes almost 0°C. Further, FIG. 6 shows a displacement-temperature curve when a constant load is applied to the coil spring of Example 1 by a weight, and it is clear that the hysteresis is extremely small compared to the conventional material. For comparison, the transformation point measurement results by I)SC and the displacement +7iA degree curve of conventional H are shown in FIGS. 4 and 5.

〔実施例2′J ’11.”i−51,Qa、t%歯金合金実施例1の場
合と同様な方法によりφ1の線とした後800℃にて2
時間溶体化処理を行なった。次に実施例1の場合と同様
な方法によりコイルバネに成形し拘束した後500’C
にて2時間時効処理を施した。第6図に実施例2におけ
る時効処理後のDSCによる変態点の測定結果を示す。
[Example 2'J'11. "i-51, Qa, t% tooth metal alloy After forming a wire of φ1 in the same manner as in Example 1,
A time solution treatment was performed. Next, it was molded into a coil spring by the same method as in Example 1 and restrained, and then heated to 50'C.
Aging treatment was performed for 2 hours at . FIG. 6 shows the measurement results of the transformation point by DSC after the aging treatment in Example 2.

図から明らかなように中間相変態が認められ、これに伴
なって高温相→低温相(中間相)の変態ヒスプリシスは
2℃程度の非常に小さい値が得られている。なお、この
場合には、時効処理〆晶度の影響により加熱時の2つの
ピークがほぼ同じ温度に重なっている。また第7図に実
施例2のコイルバネにおもりにより一定荷重を付加した
場合の変位−717,ロズ(曲線を示すが、従来材に比
べ極めて良θfなヒスプリシスが得られていることが明
らかである。
As is clear from the figure, intermediate phase transformation is observed, and along with this, the transformation hysteresis from high temperature phase to low temperature phase (intermediate phase) has a very small value of about 2°C. In this case, the two peaks during heating overlap at approximately the same temperature due to the influence of the crystallinity of the aging treatment. In addition, Fig. 7 shows the displacement -717, ros (curve) when a constant load is applied to the coil spring of Example 2 by a weight, and it is clear that an extremely good θf hysteresis has been obtained compared to the conventional material. .

〔実施例ろ〕[Example]

Ti−51,2at係N+合金を実施例1の場合と同様
な方法によりφ1の線とした後900°Cにて2時間溶
体化処理を行なった。次に400℃にて10時間時効処
J!I’!、を施しだ後実施例1と同様な方法によりコ
イルバネに成形し拘束し、更に400°Gにて30分間
記1、ハ処理を行なった。との時の高温相→低温相(中
間相)の変態ヒステリシスは1”Cであり、またコイル
バネの変位一温度曲線においても良好なヒステリシスが
確認された。
A Ti-51,2at N+ alloy was made into a wire of φ1 in the same manner as in Example 1, and then solution-treated at 900° C. for 2 hours. Next, aging treatment at 400℃ for 10 hours J! I'! After applying , it was formed into a coil spring and restrained by the same method as in Example 1, and was further subjected to the treatments described in 1 and 3 at 400°G for 30 minutes. The transformation hysteresis from high-temperature phase to low-temperature phase (intermediate phase) when

以上実施例で述べたように本発明による合金は従来の合
金に比べ高温相→低温相(rlj間a)の変態ヒステリ
シスが極めて小さく、アクチュエーター等に使用される
場合の動作温度範囲の制限を著しく緩和すると同時に熱
応答性を高めるものであり極めて有益である。
As described in the examples above, the alloy according to the present invention has extremely small transformation hysteresis from high temperature phase to low temperature phase (rlj to a) compared to conventional alloys, and significantly limits the operating temperature range when used in actuators etc. It is extremely beneficial as it both relaxes and enhances thermal responsiveness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は形状記憶合金を用いたアクチュエーターを示す
図、第2図は実施例10合金のI)SCによる変態点測
定結果を、第3図は実施例1のコイルバネの変位一温度
曲線を示す図、第4図は従来の合金のI>SCによる変
態点測定結果を、第5図は従来の合金の変位一温度曲線
を示す図、第6図は実施例20合金のDSCによる変態
点」り定結果を、第7図は実施例2のコイルバネの変位
一温度曲線を示す図である。 1゛コイルバネ、2゛形状記憶合金コイルバネ。 出願人日立金属株式会社 第1図 箒2図 第3図 第4図 X5図 宅ら図 箒7図 温度(0C) 66ullv)f’□不4゛形状記憶合金の製造方V、
1山jlを4ると litしく1)閉1X1111、′1出咄l(二11・
・11重臣t1;「・代Il1区丸σ)内)1°l−1
1爵2)ンH・l!+15L181111’l’、余圧
1”Ji入会r1代ノ、古河11!i+典火 成1甲ノ、 1・、′l・jl中中Iil′IN(Il1区丸0内ゝ
怪、1111番2号1山11の文、1室 明細■の特許請求の範囲の榴 補正の内管 ’91Nli@t(’)!F:Iil’l’Nt’i)
RO)範nO,)lIYl′fX:?X(1)、J:ウ
ニ]iEづ−る。 [−↓T1Ni相およびTiN1s相の二相ゲ有1−る
N1過剰組成のTi−Ni糸形状記憶合金において、加
工後記憶さセるべぎF9r定の形状に拘束し、次に50
0〜J、]、O0℃の1lrX度賀1.囲において溶体
化処理した後急冷処理4r施し、そり後更に20G−7
00℃の温度範囲において時効処理を施すこと乞特徴と
する形状記憶合金の製造方法。 Z’I’jN1相およびTiNi3相θジニ相乞有する
Ni過刺荊(成の゛L’j−Nl糸形状記憶合金におい
て、加工後!i0C)”:1.IOO”Qの洗1度範囲
において溶体化処理した後急冷処理ケ施し、次に記憶さ
せるべき所定の形状に拘束し、その後更に200−70
0°Cの温度範囲において時効処β11を施すこと7特
徴と−す−る形状記憶合金の製造方法。 3、T1Ni相およびTiN1s相り二相乞イj″1−
るN1過刺組成のTi−Ni糸形状記憶合金において加
工後500〜110(1’cの温度範囲において溶体化
処理した後急冷処理ン施し、次に20附700℃の温度
範囲において時効処理を施した後記憶すべき所定の形状
に拘束し、その後更に700℃以下の温度範囲において
記憶処理2行なうこと乞特徴とする形状記憶合金の製造
方法。−1 以上
Figure 1 shows an actuator using a shape memory alloy, Figure 2 shows the I) SC transformation point measurement results for the alloy of Example 10, and Figure 3 shows the displacement-temperature curve of the coil spring of Example 1. Figure 4 shows the transformation point measurement results of the conventional alloy by I>SC, Figure 5 shows the displacement-temperature curve of the conventional alloy, and Figure 6 shows the transformation point of the Example 20 alloy by DSC. FIG. 7 is a diagram showing the displacement-temperature curve of the coil spring of Example 2. 1゛Coil spring, 2゛Shape memory alloy coil spring. Applicant: Hitachi Metals, Ltd. Figure 1 Broom 2 Figure 3 Figure 4
If 1 mountain jl is 4, it will be lit. 1) Closed 1X1111,'1 output
・11 senior vassal t1; "・dai Il1 ward circle σ) inside) 1°l-1
1st Earl 2) N H・l! +15L181111'l', extra pressure 1"Ji admission r1 generation, Koga 11! No. 1 Mountain 11 sentence, 1 room specification ■ Inner pipe of the scope of claim '91Nli@t(')!F:Iil'l'Nt'i)
RO)rangenO,)lIYl'fX:? X(1), J: Sea urchin] iEzuru. [-↓In a Ti-Ni thread shape memory alloy with a two-phase gap of T1Ni phase and TiN1s phase and a N1-excess composition, the memorized shape after processing is constrained to a constant shape, and then 50
0~J, ], 1lrX Doga 1 at 0°C. After solution treatment in
A method for producing a shape memory alloy, characterized in that aging treatment is performed in a temperature range of 0.000C. Ni over-piercing with Z'I'jN1 phase and TiNi3 phase θjini interplay (in the formed ゛L'j-Nl thread shape memory alloy, after processing!i0C)'': 1.IOO''Q cleaning 1 degree range After solution treatment at
7. A method for manufacturing a shape memory alloy, comprising: performing aging treatment β11 in a temperature range of 0°C. 3. T1Ni phase and TiN1s phase
After processing, a Ti-Ni thread shape memory alloy with an N1 overspill composition was subjected to solution treatment in a temperature range of 500 to 110 (1'C), followed by rapid cooling treatment, and then aging treatment in a temperature range of 20 to 700C. A method for manufacturing a shape memory alloy, which is characterized in that the shape memory alloy is restrained in a predetermined shape to be memorized after applying the shape memory alloy, and then further subjected to two memory treatments in a temperature range of 700°C or less.-1

Claims (1)

【特許請求の範囲】 IT1Ni相および’I1.’iNi5相の二相を有す
るNi過剰組成の゛Pi−Ni系形状記憶金形状記憶合
金加工後記憶させるべき所定の形状に拘束し、次に50
0〜1100℃の温度範囲において溶体化処理した後急
冷処理を施し、その後更に200〜700℃の温度範囲
において時効処理を施すことを特徴とする形状記憶合金
の製造方法 2’]’iNi相および’piNi3相の二相を有する
Ni過剰組成のIll、N、系形状記憶合金において、
加工後500〜1100℃の温度範囲において溶体化処
理した後急冷処理を施し、次に記憶させるべき所定の形
状に拘束し、その後更に200〜700℃の温度範囲に
おいて時効処理を施すことを特徴とする形状記憶合金の
製造方法 5’1.’iNi相およびJ、’iNi5相の二相を有
するNi過剰組成のTi−Ni系形状記憶合金において
加工後500〜1100℃の温度範囲において溶体化処
理した後急冷処理を施し、次に200〜700℃の温度
範囲において時効処理を施しだ後記憶すべき所定の形状
に拘束し、その後更に700℃以下の温度範囲において
記憶処理を行なうことを特徴とする形状記憶合金の製造
方法。
[Claims] IT1Ni phase and 'I1. 'i-Ni type shape memory gold shape memory alloy with Ni excess composition having two phases of 5 phases, restrained to a predetermined shape to be memorized after processing, and then 50
Method for manufacturing a shape memory alloy 2']' iNi phase and 'In a Ni-excessive composition Ill,N,-based shape memory alloy with two phases of piNi3 phase,
After processing, the material is subjected to solution treatment in a temperature range of 500 to 1100 degrees Celsius, followed by rapid cooling treatment, then constrained to a predetermined shape to be memorized, and then further subjected to aging treatment in a temperature range of 200 to 700 degrees Celsius. Method for producing shape memory alloy 5'1. After processing, a Ti-Ni shape memory alloy with an Ni-excess composition having two phases of 'iNi phase and J, 'iNi5 phase is subjected to solution treatment in a temperature range of 500 to 1100 °C, followed by rapid cooling treatment, and then quenching treatment is performed at a temperature range of 200 to A method for manufacturing a shape memory alloy, which comprises subjecting the alloy to an aging treatment in a temperature range of 700°C, constraining it to a predetermined shape to be memorized, and then further performing a memory treatment in a temperature range of 700°C or less.
JP1466384A 1984-01-30 1984-01-30 Manufacture of shape memory alloy Granted JPS60169552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1466384A JPS60169552A (en) 1984-01-30 1984-01-30 Manufacture of shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1466384A JPS60169552A (en) 1984-01-30 1984-01-30 Manufacture of shape memory alloy

Publications (2)

Publication Number Publication Date
JPS60169552A true JPS60169552A (en) 1985-09-03
JPS622028B2 JPS622028B2 (en) 1987-01-17

Family

ID=11867450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1466384A Granted JPS60169552A (en) 1984-01-30 1984-01-30 Manufacture of shape memory alloy

Country Status (1)

Country Link
JP (1) JPS60169552A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151445A (en) * 1982-02-27 1983-09-08 Tohoku Metal Ind Ltd Titanium-nickel alloy having reversible shape storage effect and its manufacture
JPS5928548A (en) * 1982-08-06 1984-02-15 Kazuhiro Otsuka Superelastic shape-memory ni-ti base alloy and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151445A (en) * 1982-02-27 1983-09-08 Tohoku Metal Ind Ltd Titanium-nickel alloy having reversible shape storage effect and its manufacture
JPS5928548A (en) * 1982-08-06 1984-02-15 Kazuhiro Otsuka Superelastic shape-memory ni-ti base alloy and manufacture thereof

Also Published As

Publication number Publication date
JPS622028B2 (en) 1987-01-17

Similar Documents

Publication Publication Date Title
JP6560792B2 (en) Spiral spring for timer
US9878366B2 (en) Fatigue-resistant Nitinol instrument
JPS6214619B2 (en)
EP0143580A1 (en) Shape memory alloys
JPS6237353A (en) Manufacture of shape memory alloy
JPS59150069A (en) Manufacture of shape memory alloy
KR102320621B1 (en) Titanium-based spiral timepiece spring
JPH0251976B2 (en)
JPS60169552A (en) Manufacture of shape memory alloy
JPS6361377B2 (en)
JPS624462B2 (en)
Jardine et al. Effects of cooling rate on the shape memory effect thermodynamics of NiTi
JPH0665740B2 (en) Method for manufacturing NiTi-based shape memory material
JPS60141852A (en) Manufacture of shape memory alloy
JPS6157389B2 (en)
JPH01242763A (en) Manufacture of ti-ni shape memory alloy reduced in hysteresis
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JPS6157388B2 (en)
JPS6214216B2 (en)
JP2732525B2 (en) Manufacturing method of shape memory alloy
JP3755032B2 (en) SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME
JPS5935978B2 (en) shape memory titanium alloy
JPS6311636A (en) Shape memory alloy
JPH07150314A (en) Manufacture of coil spring having bidirectional shape memory effect
JPS59170246A (en) Production of titanium nickel alloy parts having reversible shape memory effect