JP3755032B2 - SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME - Google Patents

SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
JP3755032B2
JP3755032B2 JP2002143555A JP2002143555A JP3755032B2 JP 3755032 B2 JP3755032 B2 JP 3755032B2 JP 2002143555 A JP2002143555 A JP 2002143555A JP 2002143555 A JP2002143555 A JP 2002143555A JP 3755032 B2 JP3755032 B2 JP 3755032B2
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
temperature
alloy wire
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002143555A
Other languages
Japanese (ja)
Other versions
JP2003342703A (en
Inventor
亜 許
和弘 大塚
輝雄 岸
淑雄 秋宗
均 吉田
英幹 永井
竜太郎 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002143555A priority Critical patent/JP3755032B2/en
Publication of JP2003342703A publication Critical patent/JP2003342703A/en
Application granted granted Critical
Publication of JP3755032B2 publication Critical patent/JP3755032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、製造が簡単、容易で、温度の変化による伸び、収縮できる二方向性が要求される部位に用いるためのTiNi系形状記憶合金ワイヤの製造方法に関するものである。
さらに詳しくは、この発明は、TiNi形状記憶合金ワイヤの通常の製造過程を利用し、最後の冷間加工率を制御することとその後の逆変態温度以上での熱処理だけで、温度の変化による伸び、収縮変形できる二方向性が要求される部位に用いるためのTiNi系形状記憶合金ワイヤの製造方法に関するものである。
【0002】
【従来の技術】
高温オーステナイト相である形状に保持したまま、低温マルテンサイト相まで冷却した後、一定程度の変形を加えても、加熱して高温オーステナイト相になると、元の高温での形状に戻るという性質は、形状記憶効果と呼ばれる。TiNi合金はこのような形状記憶効果を持っている。通常の処理の場合、高温オーステナイト相の形状だけを記憶し、マルテンサイト相の形状を記憶しない。すなわち、冷却する際形状変化がない。これは一方向形状記憶効果と呼ばれている。
ところが、特別な処理により、低温マルテンサイト相での形状も記憶することができる。すなわち温度の変化だけで、高温、低温の形状が繰り返し可逆変化できる。これは二方向形状記憶効果と呼ばれる。ここで言う二方向形状記憶合金とは、別の表現をすれば、二方向性が要求される部位に用いるための形状記憶合金である。
二方向用の部位二方向性記憶効果を作りだす処理方法としては、強加工、拘束加熱、トレーニング、拘束時効などがある。通常一方向形状記憶合金とほかの部品と組み合わせ、二方向形状記憶効果を持たせてアクチュエータなどとして利用しているが、合金単体で反復動作する現象が便利なので、研究開発はさかんである。
【0003】
【発明が解決しようとする課題】
そこで、本発明は、TiNi形状記憶合金ワイヤの通常の製造過程を利用し、ほかの複雑な処理がなく、簡単に二方向記憶効果が得られる製造方法すなわち二方向性が要求される部位に用いるためのTiNi系形状記憶合金ワイヤの製造方法を提供するものである。
【0004】
【発明を解決するための手段】
この発明は、TiNi系形状記憶合金ワイヤの通常の製造過程の冷間伸線加工を強加工方法として利用することで、すなわち、冷間伸線加工を制御することにより形状記憶効果または超弾性によって回復できるひずみ量を超える領域まで合金を変形することになり、二方向性が要求される部位に用いるための形状記憶効果を作り出す。具体的には、溶解鋳造、熱間加工、スエージング、中間焼鈍と冷間加工を経るTiNi系形状記憶合金ワイヤの製造方法において、最後の冷間加工量(最終回の中間焼鈍し以後の加工量)を20%〜35%にした後、逆変態終了温度Af以上の温度で、短時間熱処理して、二方向性が要求される部位に用いるための形状記憶合金ワイヤを製造すると、二方向性が要求される部位に用いるためのTiNi系形状記憶合金が得られることが判明した。
【0005】
【発明の実施の形態】
このような研究結果を基にして、本発明の二方向性が要求される部位に用いるための形状記憶合金及びその製造方法は考え出されたものであり、特殊な処理がなく、通常の形状記憶合金の製造過程を利用し、最後の冷間加工率だけを制御した後、逆変態温度Af以上で短時間処理することで、簡単に二方向記憶効果を得られる。
【0006】
本発明において、用いることができるTiNi系形状記憶合金としては、
具体的には、Ti-49〜51at%Ni二元合金、またTiNi二元合金にCu、Feなど第三元素を添加した三元合金等が挙げられる。
本発明において、熱処理温度は、200℃乃至350℃の範囲が良く、200℃以下の温度又は500℃以上の温度で熱処理を行うと二方向記憶効果が十分に得られない。熱処理時間は、15分以下とくに3分〜10分が望ましい。また、最後の冷間加工量は、15〜35%が良く、とくに15〜25%が好ましい。この範囲を逸脱すると、二方向記憶効果が十分に得られない。
本願発明の実施の形態を纏めると、以下の通りである。
(1) 溶解鋳造、熱間加工、スエージング、中間焼鈍と冷間加工を経るTiNi系二方向性が要求される部位に用いるための形状記憶合金ワイヤの製造方法であって、最後の冷間加工量を15%〜35%にした後、逆変態終了温度Af以上の温度で、15分以下の時間熱処理して、二方向性が要求される部位に用いるための形状記憶合金ワイヤを製造する方法。
(2) 熱処理温度が、200℃乃至350℃である上記1に記載した二方向性が要求される部位に用いるための形状記憶合金ワイヤを製造する方法。
(3) 熱処理時間が、3分〜10分である上記1に記載した二方向性が要求される部位に用いるための形状記憶合金ワイヤを製造する方法。
(4) 最後の冷間加工量が、15〜25%である上記1に記載した二方向性が要求される部位に用いるための形状記憶合金ワイヤを製造する方法。
【0007】
次に、本発明の具体例について詳述するが、本発明はこれによって拘束されるものではない。
(実施例1)
Ti−49.5at%Ni、Ti−50at%Ni組成の合金を溶解鋳造、熱間加工後、中間焼きなましと冷間加工を繰り返し、最終冷間伸線加工量(最終回の中間焼鈍し以後の加工量)を20%、35%にして、直径0.4mmのワイヤを作成した。
図1は万能試験機により定荷重4MPaの状態で、温度サイクル試験を行い、測定した冷間加工状態試料の温度−ひずみ曲線である。これにより、冷間加工率20%の試料に対して、2%程度の回復ひずみが得られ、冷間加工率35%の試料に対して、2.3%の回復ひずみが得られることが分かった。
また、この温度―回復ひずみ曲線から、各冷間加工した合金の逆変態温度As,Af点は決定した。さらに、冷間加工率20%の試料に対して、一回目以後の温度サイクルで、0.5%の二方向記憶効果が現れることが分かった。
【0008】
(実施例2〜3及び比較例1)
実施例1と同じ素材を用いて、冷間加工率20%の各冷間加工率の合金を200℃(実施例2)、300℃(実施例3)及び500℃(比較例1)の各温度で短時間焼鈍し、一回逆変態させた後、定荷重4MPaの状態で温度サイクル試験を行い、温度―ひずみ曲線を測定した。結果を図5、図6、図7に示す。200℃5分間処理した場合、0.7%の二方向記憶効果がえられた(図5)。300℃5分間処理した場合、0.6%の二方向記憶効果がえられた(図6)。
これに対して、500℃で5分処理した場合、二方向記憶効果が0.3%しか得られないことが分かった(図7)。
冷間加工率35%の49.5at%試料の結果を図8、図9に示す。300℃5分間処理した場合と500℃5分間処理した場合と比較した結果、逆変態温度が変化しているが、両方とも0.1%程度の二方向記憶効果がしか得られなかった。
図10は300℃で5分間処理した20%加工率の試料に対して、二方向記憶効果の繰り返す実験結果である。図10(a)は47回温度サイクル過程中変態ひずみの変化を時間の関数として現れたものである。47回温度サイクル後、約90%の二方向記憶効果が保持していることが分かった。図10(b)は47回温度サイクル過程中変態ひずみの変化を温度の関数として現れたものである。
【0009】
【発明の効果】
本発明は、上記の機構を採用することにより、複雑な処理がなく、大量かつ簡単に伸び、収縮できる二方向性が要求される部位に用いるための記憶効果形状記憶合金が作製できる。得られた二方向記憶ひずみは0.7%程度である。二方向性が要求される部位に用いるための形状記憶合金単体として応用できるほか、形状記憶合金と圧電材料、樹脂など変形量が小さい材料と一緒に複合化し、スマート材料とストラクチャーを作製するとき、アクチュエータ、センサーとしても使えると考えられる。さらに、本発明は、形状記憶ワイヤの予歪はワイヤ製造過程の冷間線引き処理だけを利用することであるため、製造コストの大幅な低減も可能になる。
【図面の簡単な説明】
【図1】 定荷重(4MPa)状態の温度サイクル実験で測定した冷間加工率20%のTi‐50at%Niワイヤの変態歪-温度の変化。
【図2】 定荷重(4MPa)状態の温度サイクル実験で測定した冷間加工率35%のTi‐50at%Niワイヤの変態歪-温度の変化。
【図3】 定荷重(4MPa)状態の温度サイクル実験で測定した冷間加工率20%のTi‐49.5at%Niワイヤの変態歪-温度の変化。
【図4】 定荷重(4MPa)状態の温度サイクル実験で測定した冷間加工率35%のTi‐49.5at%Niワイヤの変態歪-温度の変化。
【図5】 200℃5分間処理した冷間加工率20%のTi‐49.5at%Niワイヤの二方向記憶効果測定結果。
【図6】 300℃5分間処理した冷間加工率20%のTi‐49.5at%Niワイヤの二方向記憶効果測定結果。
【図7】 500℃5分間処理した冷間加工率20%のTi‐49.5at%Niワイヤの二方向記憶効果測定結果。
【図8】 300℃5分間処理した冷間加工率35%のTi‐49.5at%Niワイヤの二方向記憶効果測定結果。
【図9】 300℃5分間処理した冷間加工率35%のTi‐49.5at%Niワイヤの二方向記憶効果測定結果。
【図10】 300℃5分間処理した冷間加工率20%のTi‐49.5at%Niワイヤの二方向記憶効果の繰り返す実験結果;(a)温度サイクル実験中時間の関数としてひずみの変化; (b) 温度サイクル実験中温度の関数としてひずみの変化。
【符号の説明】
1.As:逆変態開始温度
2.Af:逆変態終了温度
3.Ms: マルテンサイト変態或いはR相変態開始温度
4.Mf:マルテンサイト変態終了温度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a TiNi-based shape memory alloy wire for use in a site that is simple and easy to manufacture and requires bi-directionality that can be expanded and contracted by a change in temperature.
More specifically, the present invention utilizes the normal manufacturing process of TiNi shape memory alloy wire, and controls the final cold work rate and only heat treatment at a temperature higher than the reverse transformation temperature. Further, the present invention relates to a method for manufacturing a TiNi-based shape memory alloy wire for use in a site requiring bi-directionality capable of shrinkage deformation.
[0002]
[Prior art]
While maintaining a shape that is a high temperature austenite phase, after cooling to a low temperature martensite phase, even if some deformation is applied, when heated to a high temperature austenite phase, the property of returning to the original high temperature shape is Called the shape memory effect. TiNi alloy has such a shape memory effect. In the case of normal processing, only the shape of the high temperature austenite phase is stored, and the shape of the martensite phase is not stored. That is, there is no change in shape when cooling. This is called the one-way shape memory effect.
However, the shape in the low-temperature martensite phase can be memorized by a special treatment. That is, the shape of high temperature and low temperature can be reversibly changed only by changing the temperature. This is called the two-way shape memory effect. In other words, the two-way shape memory alloy referred to here is a shape memory alloy for use in a portion where bi-directionality is required.
Examples of processing methods for creating a two-way region bi-directional memory effect include strong processing, constrained heating, training, and constrained aging. It is usually combined with a one-way shape memory alloy and other parts to give a two-way shape memory effect and used as an actuator.
[0003]
[Problems to be solved by the invention]
Therefore, the present invention uses a normal manufacturing process of a TiNi shape memory alloy wire, and is used for a manufacturing method in which a bidirectional memory effect can be easily obtained without any other complicated processing, that is, a region requiring bidirectionality. The manufacturing method of the TiNi type | mold shape memory alloy wire for this is provided.
[0004]
[Means for Solving the Invention]
This invention uses the cold wire drawing of the TiNi-based shape memory alloy wire in the normal manufacturing process as a strong working method, that is, by controlling the cold wire drawing by shape memory effect or superelasticity. The alloy will be deformed to a region that exceeds the strain that can be recovered, creating a shape memory effect for use in sites that require bi-directionality. Specifically, in the manufacturing method of TiNi-based shape memory alloy wire that undergoes melt casting, hot working, swaging, intermediate annealing and cold working, the final cold working amount (working after the final intermediate annealing) When the shape memory alloy wire for use in a part requiring bi-directionality is manufactured by performing heat treatment for a short time at a temperature equal to or higher than the reverse transformation end temperature Af after the amount is 20% to 35%, It has been found that a TiNi-based shape memory alloy can be obtained for use in a site where properties are required .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Based on such research results, the shape memory alloy and its manufacturing method for use in a site where bi-directionality of the present invention is required have been devised, and there is no special treatment, and the normal shape By using the memory alloy manufacturing process and controlling only the final cold working rate, the two-way memory effect can be easily obtained by performing a short-time treatment at the reverse transformation temperature Af or higher.
[0006]
In the present invention, as a TiNi-based shape memory alloy that can be used,
Specific examples include Ti-49 to 51 at% Ni binary alloys, and ternary alloys obtained by adding third elements such as Cu and Fe to TiNi binary alloys.
In the present invention, the heat treatment temperature is preferably in the range of 200 ° C. to 350 ° C. If the heat treatment is performed at a temperature of 200 ° C. or lower or a temperature of 500 ° C. or higher, the two-way memory effect cannot be sufficiently obtained. The heat treatment time is preferably 15 minutes or less, particularly 3 minutes to 10 minutes. Further, the final cold work amount is preferably 15 to 35%, particularly preferably 15 to 25%. If it deviates from this range, the two-way memory effect cannot be sufficiently obtained.
The embodiments of the present invention are summarized as follows.
(1) A method of manufacturing a shape memory alloy wire for use in a portion requiring TiNi-based bi-directionality through melt casting, hot working, swaging, intermediate annealing and cold working , the last cold After the processing amount is reduced to 15% to 35%, heat treatment is performed for 15 minutes or less at a temperature equal to or higher than the reverse transformation end temperature Af to manufacture a shape memory alloy wire for use in a portion requiring bi-directionality . Method.
(2) A method for producing a shape memory alloy wire for use in a site requiring bi-directionality as described in 1 above, wherein the heat treatment temperature is 200 ° C. to 350 ° C.
(3) A method for producing a shape memory alloy wire for use in a site requiring bi-directionality as described in 1 above, wherein the heat treatment time is 3 minutes to 10 minutes.
(4) A method for producing a shape memory alloy wire for use in a portion requiring bi-directionality as described in 1 above, wherein the final cold work amount is 15 to 25%.
[0007]
Next, although the specific example of this invention is explained in full detail, this invention is not restrained by this.
Example 1
Alloys with Ti-49.5at% Ni and Ti-50at% Ni composition are melt cast, hot processed, intermediate annealing and cold processing are repeated, and the final cold wire drawing amount (after the final intermediate annealing) Wires having a diameter of 0.4 mm were prepared with a processing amount of 20% and 35%.
FIG. 1 is a temperature-strain curve of a cold-worked sample measured by performing a temperature cycle test with a universal tester under a constant load of 4 MPa. As a result, a recovery strain of about 2% is obtained for a sample with a cold work rate of 20%, and a recovery strain of 2.3% is obtained for a sample with a cold work rate of 35%. It was.
Further, from this temperature-recovery strain curve, the reverse transformation temperatures As and Af of each cold-worked alloy were determined. Further, it was found that a sample having a cold working rate of 20% has a two-way memory effect of 0.5% in the first and subsequent temperature cycles.
[0008]
(Examples 2-3 and Comparative Example 1)
Using the same material as in Example 1, each cold working rate alloy with a cold working rate of 20% is 200 ° C. (Example 2), 300 ° C. (Example 3) and 500 ° C. (Comparative Example 1). After annealing at a temperature for a short time and reverse transformation once, a temperature cycle test was conducted at a constant load of 4 MPa, and a temperature-strain curve was measured. The results are shown in FIG. 5, FIG. 6, and FIG. When treated at 200 ° C. for 5 minutes, a two-way memory effect of 0.7% was obtained (FIG. 5). When treated at 300 ° C. for 5 minutes, a two-way memory effect of 0.6% was obtained (FIG. 6).
In contrast, it was found that when treated at 500 ° C. for 5 minutes, only a two-way memory effect of 0.3% was obtained (FIG. 7).
The results of the 49.5 at% sample with a cold working rate of 35% are shown in FIGS. As a result of comparison between the case of treatment at 300 ° C. for 5 minutes and the case of treatment at 500 ° C. for 5 minutes, the reverse transformation temperature was changed, but in both cases, only a two-way memory effect of about 0.1% was obtained.
FIG. 10 shows the experimental results of repeating the two-way memory effect on a sample with a processing rate of 20% processed at 300 ° C. for 5 minutes. FIG. 10 (a) shows the change in transformation strain as a function of time during the 47th temperature cycle. After 47 temperature cycles, it was found that about 90% of the bi-directional memory effect was retained. FIG. 10 (b) shows the change in transformation strain as a function of temperature during the 47th temperature cycle.
[0009]
【The invention's effect】
By adopting the above-mentioned mechanism, the present invention can produce a memory effect shape memory alloy for use in a site requiring bi-directionality that can be easily expanded and contracted in a large amount without complicated processing. The obtained bi-directional memory strain is about 0.7%. In addition to being able to be applied as a single shape memory alloy for use in areas where bi-directionality is required, when making a composite with a shape memory alloy and a material with a small amount of deformation such as a piezoelectric material and resin, when creating a smart material and structure, It can be used as an actuator or sensor. Further, according to the present invention, since the pre-strain of the shape memory wire is only using the cold drawing process in the wire manufacturing process, the manufacturing cost can be greatly reduced.
[Brief description of the drawings]
1 is a transformation strain-temperature change of a Ti-50 at% Ni wire having a cold work rate of 20%, measured in a temperature cycle experiment under a constant load (4 MPa) state.
FIG. 2 shows transformation strain-temperature change of a Ti-50 at% Ni wire having a cold work rate of 35%, measured in a temperature cycle experiment under a constant load (4 MPa) state.
FIG. 3 shows transformation strain-temperature change of a Ti-49.5 at% Ni wire with a cold work rate of 20% measured in a temperature cycle experiment under a constant load (4 MPa) state.
FIG. 4 shows transformation strain-temperature change of a Ti-49.5 at% Ni wire having a cold work rate of 35% , measured in a temperature cycle experiment under a constant load (4 MPa) state.
FIG. 5 shows two-way memory effect measurement results for a Ti-49.5 at% Ni wire with a 20% cold work rate treated at 200 ° C. for 5 minutes.
FIG. 6 shows two-way memory effect measurement results for Ti-49.5 at% Ni wire with a cold work rate of 20% treated at 300 ° C. for 5 minutes.
FIG. 7 shows the results of measuring the bidirectional memory effect of Ti-49.5 at% Ni wire with a cold work rate of 20% treated at 500 ° C. for 5 minutes.
FIG. 8 shows two-way memory effect measurement results for a Ti-49.5 at% Ni wire with a cold work rate of 35% treated at 300 ° C. for 5 minutes.
FIG. 9 shows two-way memory effect measurement results for a Ti-49.5 at% Ni wire with a cold work rate of 35% treated at 300 ° C. for 5 minutes.
FIG. 10 shows the results of repeated experiments of the bi-directional memory effect of Ti-49.5 at% Ni wire with a cold work rate of 20% treated at 300 ° C. for 5 minutes; (a) change in strain as a function of time during temperature cycling experiments; (b) Change in strain as a function of temperature during temperature cycling experiments.
[Explanation of symbols]
1. As: reverse transformation start temperature Af: reverse transformation end temperature Ms: Martensitic transformation or R phase transformation start temperature Mf: Martensitic transformation end temperature

Claims (4)

溶解鋳造、熱間加工、スエージング、中間焼鈍と冷間加工を経るTiNi系二方向性が要求される部位に用いるための形状記憶合金ワイヤの製造方法であって、最後の冷間加工量を15%〜35%にした後、逆変態終了温度Af以上の温度で、15分以下の時間熱処理して、二方向性が要求される部位に用いるための形状記憶合金ワイヤを製造する方法。Melting and casting, hot working, swaging, a shape memory alloy wire manufacturing method for use at a site TiNi system bidirectional undergo intermediate annealing and cold working is required, the last cold working amount A method for producing a shape memory alloy wire for use in a region requiring bi-directionality by heat treatment for 15 minutes or less at a temperature equal to or higher than the reverse transformation end temperature Af after 15% to 35%. 熱処理温度が、200℃乃至350℃である請求項1に記載した二方向性が要求される部位に用いるための形状記憶合金ワイヤを製造する方法。The method for producing a shape memory alloy wire for use in a region requiring bidirectionality according to claim 1, wherein the heat treatment temperature is 200 ° C to 350 ° C. 熱処理時間が、3分〜10分である請求項1に記載した二方向性が要求される部位に用いるための形状記憶合金ワイヤを製造する方法。The method for producing a shape memory alloy wire for use in a region requiring bidirectionality according to claim 1, wherein the heat treatment time is 3 minutes to 10 minutes. 最後の冷間加工量が、15〜25%である請求項1に記載した二方向性が要求される部位に用いるための形状記憶合金ワイヤを製造する方法。The method for producing a shape memory alloy wire for use in a region requiring bidirectionality according to claim 1, wherein the final cold work amount is 15 to 25%.
JP2002143555A 2002-05-17 2002-05-17 SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME Expired - Lifetime JP3755032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002143555A JP3755032B2 (en) 2002-05-17 2002-05-17 SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143555A JP3755032B2 (en) 2002-05-17 2002-05-17 SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME

Publications (2)

Publication Number Publication Date
JP2003342703A JP2003342703A (en) 2003-12-03
JP3755032B2 true JP3755032B2 (en) 2006-03-15

Family

ID=29766251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143555A Expired - Lifetime JP3755032B2 (en) 2002-05-17 2002-05-17 SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME

Country Status (1)

Country Link
JP (1) JP3755032B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9016057B2 (en) 2010-05-17 2015-04-28 Tokyo University Of Agricultural And Technology Actuator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100834554B1 (en) * 2006-10-12 2008-06-02 연세대학교 산학협력단 Two-way shape memory material, method of manufacturing same, and heat insulating product employing same
CN103014414B (en) * 2013-01-04 2014-08-20 哈尔滨工程大学 TiNi-base shape memory alloy containing components in graded distribution and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9016057B2 (en) 2010-05-17 2015-04-28 Tokyo University Of Agricultural And Technology Actuator

Also Published As

Publication number Publication date
JP2003342703A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP5535426B2 (en) Method for processing nickel-titanium shape memory alloy
JPS6214619B2 (en)
JPS6349741B2 (en)
US20090071577A1 (en) Process for making ti-ni based functionally graded alloys and ti-ni based functionally graded alloys produced thereby
JP6156865B2 (en) Super elastic alloy
JP3755032B2 (en) SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME
EP1997925A1 (en) Titanium-tantalum shape memory alloy, actuator, and engine
JPH0251976B2 (en)
JPS6144150B2 (en)
JPS6361377B2 (en)
JPS59170247A (en) Manufacture of niti type shape memory material
JPS61227141A (en) Niti shape memory alloy wire
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JPS61183455A (en) Manufacture of ni-ti type shape memory material
JPS624462B2 (en)
JP2603463B2 (en) Low temperature reversible shape memory alloy
JP2002356757A (en) Functional composite material using shape memory alloy, and its manufacturing method
JPS6157389B2 (en)
JP4117375B2 (en) Damage control functional composite material using shape memory alloy and manufacturing method thereof
JP2573507B2 (en) Shape memory alloy and manufacturing method thereof
JPS59162262A (en) Production of spring having two-way shape memory effect
JPH059686A (en) Production of shape memory niti alloy
JPH0238547A (en) Manufacture of ti-ni shape memory alloy
JPS622027B2 (en)
JPH059687A (en) Production of two-directional shape memory niti alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050531

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

R150 Certificate of patent or registration of utility model

Ref document number: 3755032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term