JP2003342703A - Two way shape memory alloy wire and production method therefor - Google Patents

Two way shape memory alloy wire and production method therefor

Info

Publication number
JP2003342703A
JP2003342703A JP2002143555A JP2002143555A JP2003342703A JP 2003342703 A JP2003342703 A JP 2003342703A JP 2002143555 A JP2002143555 A JP 2002143555A JP 2002143555 A JP2002143555 A JP 2002143555A JP 2003342703 A JP2003342703 A JP 2003342703A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
alloy wire
temperature
cold working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002143555A
Other languages
Japanese (ja)
Other versions
JP3755032B2 (en
Inventor
Tsugi Kyo
亜 許
Kazuhiro Otsuka
和弘 大塚
Teruo Kishi
輝雄 岸
Yoshio Akimune
淑雄 秋宗
Hitoshi Yoshida
均 吉田
Hidemiki Nagai
英幹 永井
Ryutaro Oishi
竜太郎 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002143555A priority Critical patent/JP3755032B2/en
Publication of JP2003342703A publication Critical patent/JP2003342703A/en
Application granted granted Critical
Publication of JP3755032B2 publication Critical patent/JP3755032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method by which two way memory effect can simply be obtained by utilizing an ordinary production process for TiNi shape memory alloy wire without performing other complicated treatment. <P>SOLUTION: In the method of producing TiNi based shape memory alloy wherein dissolution casting, hot working, swaging, intermediate annealing and cold working are performed, the working quantity in the final cold working is controlled to 15 to 35%, and thereafter, a short time heat treatment is carried out at an inverse transformation finishing temperature Af or higher, so that the two way shape memory alloy wire is produced. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、製造が簡単、容
易で、温度の変化による伸び、収縮できる二方向性Ti
Ni系形状記憶合金ワイヤの製造方法に関するものであ
る。さらに詳しくは、この発明は、TiNi形状記憶合
金ワイヤの通常の製造過程を利用し、最後の冷間加工率
を制御することとその後の逆変態温度以上での熱処理だ
けで、温度の変化による伸び、収縮変形できる二方向性
TiNi系形状記憶合金ワイヤの製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a bidirectional Ti which is simple and easy to manufacture, and which can expand and contract due to temperature changes.
The present invention relates to a method for manufacturing a Ni-based shape memory alloy wire. More specifically, the present invention utilizes the normal manufacturing process of TiNi shape memory alloy wire, and by controlling the final cold working rate and the subsequent heat treatment at a temperature higher than the reverse transformation temperature, the elongation due to the change in temperature can be achieved. The present invention relates to a method for manufacturing a bidirectional TiNi-based shape memory alloy wire that can be shrunk and deformed.

【0002】[0002]

【従来の技術】高温オーステナイト相である形状に保持
したまま、低温マルテンサイト相まで冷却した後、一定
程度の変形を加えても、加熱して高温オーステナイト相
になると、元の高温での形状に戻るという性質は、形状
記憶効果と呼ばれる。TiNi合金はこのような形状記
憶効果を持っている。通常の処理の場合、高温オーステ
ナイト相の形状だけを記憶し、マルテンサイト相の形状
を記憶しない。すなわち、冷却する際形状変化がない。
これは一方向形状記憶効果と呼ばれている。ところが、
特別な処理により、低温マルテンサイト相での形状も記
憶することができる。すなわち温度の変化だけで、高
温、低温の形状が繰り返し可逆変化できる。これは二方
向形状記憶効果と呼ばれる。二方向性記憶効果を作りだ
す処理方法としては、強加工、拘束加熱、トレーニン
グ、拘束時効などがある。通常一方向形状記憶合金とほ
かの部品と組み合わせ、二方向形状記憶効果を持たせて
アクチュエータなどとして利用しているが、合金単体で
反復動作する現象が便利なので、研究開発はさかんであ
る。しかし、従来の方法では、二方向形状記憶効果を得
るため、複雑な処理が必要である。
2. Description of the Related Art Even if a certain degree of deformation is applied after cooling to a low temperature martensite phase while maintaining the shape of a high temperature austenite phase, when the high temperature austenite phase is heated, the shape returns to the original high temperature. The property of returning is called the shape memory effect. TiNi alloy has such a shape memory effect. In the case of normal processing, only the shape of the high temperature austenite phase is memorized and the shape of the martensite phase is not memorized. That is, there is no change in shape when cooled.
This is called the one-way shape memory effect. However,
By special treatment, the shape in the low temperature martensite phase can be memorized. That is, the shape of high temperature and low temperature can be repeatedly and reversibly changed only by changing the temperature. This is called the two-way shape memory effect. Treatment methods that create the bidirectional memory effect include strong working, restraint heating, training, and restraint aging. Normally, one-way shape memory alloys are combined with other parts to give a two-way shape memory effect and are used as actuators, etc. However, since the phenomenon of repeated operation of a single alloy is convenient, research and development is vigorous. However, the conventional method requires complicated processing to obtain the two-way shape memory effect.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明は、T
iNi形状記憶合金ワイヤの通常の製造過程を利用し、
ほかの複雑な処理がなく、簡単に二方向記憶効果が得ら
れる製造方法を提供するものである。
Therefore, according to the present invention, the T
Using the normal manufacturing process of iNi shape memory alloy wire,
It is intended to provide a manufacturing method capable of easily obtaining a two-way memory effect without any other complicated processing.

【0004】[0004]

【発明を解決するための手段】この発明は、TiNi系
形状記憶合金ワイヤの通常の製造過程の冷間伸線加工を
強加工方法として利用することで、すなわち、冷間伸線
加工を制御することにより形状記憶効果または超弾性に
よって回復できるひずみ量を超える領域まで合金を変形
することになり、二方向性形状記憶効果を作り出す。具
体的には、 溶解鋳造、熱間加工、スエージング、中間
焼鈍と冷間加工を経るTiNi系形状記憶合金ワイヤの
製造方法において、最後の冷間加工量(最終回の中間焼
鈍し以後の加工量)を20%〜35%にした後、逆変態
終了温度Af以上の温度で、短時間熱処理して、二方向
性形状記憶合金ワイヤを製造すると、二方向性TiNi
系形状記憶合金が得られることが判明した。
SUMMARY OF THE INVENTION The present invention controls cold drawing by utilizing cold drawing in a normal manufacturing process of TiNi type shape memory alloy wire as a strong working method. As a result, the alloy is deformed to a region exceeding the amount of strain that can be recovered by the shape memory effect or superelasticity, and the bidirectional shape memory effect is created. Specifically, in the manufacturing method of TiNi-based shape memory alloy wire that undergoes melt casting, hot working, swaging, intermediate annealing and cold working, the final cold working amount (working after the final intermediate annealing Amount) to 20% to 35% and then heat treated for a short time at a temperature equal to or higher than the reverse transformation end temperature Af to produce a bidirectional shape memory alloy wire.
It was found that a system shape memory alloy can be obtained.

【0005】[0005]

【発明の実施の形態】このような研究結果を基にして、
本発明の二方向性形状記憶合金及びその製造方法は考え
出されたものであり、特殊な処理がなく、通常の形状記
憶合金の製造過程を利用し、最後の冷間加工率だけを制
御した後、逆変態温度Af以上で短時間処理すること
で、簡単に二方向記憶効果を得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Based on such research results,
The bidirectional shape memory alloy of the present invention and the method for producing the same have been devised, and there is no special treatment, and the ordinary manufacturing process of the shape memory alloy was used to control only the final cold work rate. After that, the two-way memory effect can be easily obtained by performing the processing at the reverse transformation temperature Af or higher for a short time.

【0006】本発明において、用いることができるTi
Ni系形状記憶合金としては、具体的には、Ti-49〜
51at%Ni二元合金、またTiNi二元合金にCu、Feなど第
三元素を添加した三元合金等が挙げられる。本発明にお
いて、熱処理温度は、200℃乃至350℃の範囲が良
く、200℃以下の温度又は500℃以上の温度で熱処
理を行うと二方向記憶効果が十分に得られない。熱処理
時間は、15分以下とくに3分〜10分が望ましい。ま
た、最後の冷間加工量は、15〜35%が良く、とくに
15〜25%が好ましい。この範囲を逸脱すると、二方
向記憶効果が十分に得られない。本願発明の実施の形態
を纏めると、以下の通りである。 (1)溶解鋳造、熱間加工、スエージング、中間焼鈍と
冷間加工を経るTiNi系形状記憶合金ワイヤの製造方
法において、最後の冷間加工量を15%〜35%にした
後、逆変態終了温度Af以上の温度で、短時間熱処理し
て、二方向性形状記憶合金ワイヤを製造する方法。 (2)熱処理温度が、200℃乃至350℃である上記
1に記載した二方向性形状記憶合金ワイヤを製造する方
法。 (3) 熱処理時間が、15分以下である上記1に記載
した二方向性形状記憶合金ワイヤを製造する方法。 (4) 最後の冷間加工量が、15〜25%である上記
1に記載した二方向性形状記憶合金ワイヤを製造する方
法。
Ti which can be used in the present invention
As the Ni-based shape memory alloy, specifically, Ti-49-
Examples include 51 at% Ni binary alloy, and ternary alloy in which a third element such as Cu or Fe is added to a TiNi binary alloy. In the present invention, the heat treatment temperature is preferably in the range of 200 ° C. to 350 ° C., and if the heat treatment is performed at a temperature of 200 ° C. or lower or a temperature of 500 ° C. or higher, the two-way memory effect cannot be sufficiently obtained. The heat treatment time is preferably 15 minutes or less, particularly 3 minutes to 10 minutes. The final cold working amount is preferably 15 to 35%, and particularly preferably 15 to 25%. Outside this range, the two-way memory effect cannot be sufficiently obtained. The embodiments of the present invention are summarized as follows. (1) In the method for manufacturing a TiNi-based shape memory alloy wire that undergoes melt casting, hot working, swaging, intermediate annealing and cold working, after the final cold working amount is set to 15% to 35%, reverse transformation is performed. A method of manufacturing a bidirectional shape memory alloy wire by performing a heat treatment for a short time at a temperature equal to or higher than a finishing temperature Af. (2) The method for producing the bidirectional shape memory alloy wire as described in 1 above, wherein the heat treatment temperature is 200 ° C. to 350 ° C. (3) The method for producing the bidirectional shape memory alloy wire as described in 1 above, wherein the heat treatment time is 15 minutes or less. (4) The method for producing the bidirectional shape memory alloy wire as described in 1 above, wherein the final cold working amount is 15 to 25%.

【0007】次に、本発明の具体例について詳述する
が、本発明はこれによって拘束されるものではない。 (実施例1)Ti−49.5at%Ni、Ti−50a
t%Ni組成の合金を溶解鋳造、熱間加工後、中間焼き
なましと冷間加工を繰り返し、最終冷間伸線加工量(最
終回の中間焼鈍し以後の加工量)を20%、35%にし
て、直径0.4mmのワイヤを作成した。図1は万能試
験機により定荷重4MPaの状態で、温度サイクル試験を
行い、測定した冷間加工状態試料の温度−ひずみ曲線で
ある。これにより、冷間加工率20%の試料に対して、
2%程度の回復ひずみが得られ、冷間加工率35%の試
料に対して、2.3%の回復ひずみが得られることが分
かった。また、この温度―回復ひずみ曲線から、各冷間
加工した合金の逆変態温度As,Af点は決定した。さ
らに、冷間加工率20%の試料に対して、一回目以後の
温度サイクルで、0.5%の二方向記憶効果が現れるこ
とが分かった。
Next, specific examples of the present invention will be described in detail, but the present invention is not limited thereto. (Example 1) Ti-49.5 at% Ni, Ti-50a
Melt casting of alloy with t% Ni composition, hot working, then intermediate annealing and cold working are repeated, and final cold wire drawing working amount (working amount after the final intermediate annealing) is set to 20% and 35%. A wire having a diameter of 0.4 mm was prepared. FIG. 1 is a temperature-strain curve of a cold-worked sample measured by performing a temperature cycle test under a constant load of 4 MPa by a universal testing machine. As a result, for a sample with a cold working rate of 20%,
It was found that a recovery strain of about 2% was obtained, and a recovery strain of 2.3% was obtained for a sample with a cold work ratio of 35%. Further, the reverse transformation temperatures As and Af points of each cold worked alloy were determined from this temperature-recovery strain curve. Further, it was found that the two-way memory effect of 0.5% appeared in the temperature cycle after the first time for the sample having the cold working rate of 20%.

【0008】(実施例2〜3及び比較例1)実施例1と
同じ素材を用いて、冷間加工率20%の各冷間加工率の
合金を200℃(実施例2)、300℃(実施例3)及
び500℃(比較例1)の各温度で短時間焼鈍し、一回
逆変態させた後、定荷重4MPaの状態で温度サイクル試
験を行い、温度―ひずみ曲線を測定した。結果を図5、
図6、図7に示す。200℃5分間処理した場合、0.
7%の二方向記憶効果がえられた(図5)。300℃5分
間処理した場合、0.6%の二方向記憶効果がえられた
(図6)。これに対して、500℃で5分処理した場合、
二方向記憶効果が0.3%しか得られないことが分かっ
た(図7)。冷間加工率35%の49.5at%試料の結果
を図8、図9に示す。300℃5分間処理した場合と5
00℃5分間処理した場合と比較した結果、逆変態温度
が変化しているが、両方とも0.1%程度の二方向記憶
効果がしか得られなかった。図10は300℃で5分間
処理した20%加工率の試料に対して、二方向記憶効果
の繰り返す実験結果である。図10(a)は47回温度サ
イクル過程中変態ひずみの変化を時間の関数として現れ
たものである。47回温度サイクル後、約90%の二方
向記憶効果が保持していることが分かった。図10(b)
は47回温度サイクル過程中変態ひずみの変化を温度の
関数として現れたものである。
(Examples 2 to 3 and Comparative Example 1) Using the same materials as in Example 1, alloys with a cold working rate of 20% and cold working rates of 200 ° C. (Example 2) and 300 ° C. ( Example 3) and 500 ° C. (Comparative Example 1) were annealed for a short time at each temperature, and after reverse transformation once, a temperature cycle test was performed under a constant load of 4 MPa to measure a temperature-strain curve. The results are shown in Figure 5.
This is shown in FIGS. When treated at 200 ° C. for 5 minutes, 0.
A bidirectional memory effect of 7% was obtained (Fig. 5). When treated at 300 ° C for 5 minutes, a two-way memory effect of 0.6% was obtained.
(Figure 6). On the other hand, when treated at 500 ° C for 5 minutes,
It was found that the bidirectional memory effect was only 0.3% (Fig. 7). The results of the 49.5 at% sample with the cold working rate of 35% are shown in FIGS. 8 and 9. When treated at 300 ° C for 5 minutes and 5
As a result of comparison with the case of treatment at 00 ° C. for 5 minutes, the reverse transformation temperature was changed, but in both cases, the two-way memory effect of only about 0.1% was obtained. FIG. 10 shows the results of an experiment in which the two-way memory effect is repeated for a sample with a processing rate of 20% that is processed at 300 ° C. for 5 minutes. FIG. 10 (a) shows changes in transformation strain as a function of time during the 47-time temperature cycle process. After 47 temperature cycles, it was found that about 90% of the two-way memory effect was retained. Figure 10 (b)
Shows the change in transformation strain as a function of temperature during the 47th temperature cycle process.

【0009】[0009]

【発明の効果】本発明は、上記の機構を採用することに
より、複雑な処理がなく、大量かつ簡単に伸び、収縮で
きる二方向記憶効果形状記憶合金が作製できる。得られ
た二方向記憶ひずみは0.7%程度である。二方向性形
状記憶合金単体として応用できるほか、形状記憶合金と
圧電材料、樹脂など変形量が小さい材料と一緒に複合化
し、スマート材料とストラクチャーを作製するとき、ア
クチュエータ、センサーとしても使えると考えられる。
さらに、本発明は、形状記憶ワイヤの予歪はワイヤ製造
過程の冷間線引き処理だけを利用することであるため、
製造コストの大幅な低減も可能になる。
INDUSTRIAL APPLICABILITY By adopting the above mechanism, the present invention can produce a two-way memory effect shape memory alloy which can be easily expanded and contracted in a large amount without complicated treatment. The obtained bidirectional memory strain is about 0.7%. It can be applied not only as a bidirectional shape memory alloy, but also as a actuator and a sensor when composited with a shape memory alloy and a material with small deformation such as a piezoelectric material and resin to create smart materials and structures. .
Further, the present invention is because the pre-strain of the shape memory wire is to utilize only the cold drawing process of the wire manufacturing process,
It also enables a significant reduction in manufacturing costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】 定荷重(4MPa)状態の温度サイクル実験で
測定した冷間加工率20%のTi‐50at%Niワイヤの変
態歪-温度の変化。
FIG. 1 shows transformation strain-temperature change of Ti-50at% Ni wire with a cold working rate of 20% measured in a temperature cycle experiment under a constant load (4 MPa) state.

【図2】 定荷重(4MPa)状態の温度サイクル実験で
測定した冷間加工率35%のTi‐50at%Niワイヤの変
態歪-温度の変化。
[Fig. 2] Transformation strain-temperature change of Ti-50at% Ni wire with a cold working rate of 35% measured in a temperature cycle experiment under a constant load (4MPa) state.

【図3】 定荷重(4MPa)状態の温度サイクル実験で
測定した冷間加工率20%のTi‐49.5at%Niワイヤ
の変態歪-温度の変化。
[Fig. 3] Transformation strain-temperature change of Ti-49.5at% Ni wire with a cold working rate of 20% measured in a temperature cycle experiment under a constant load (4MPa).

【図4】 定荷重(4MPa)状態の温度サイクル実験で
測定した冷間加工率20%のTi‐49.5at%Niワイヤ
の変態歪-温度の変化。
[Fig. 4] Transformation strain-temperature change of Ti-49.5at% Ni wire with 20% cold workability measured in a temperature cycle experiment under a constant load (4MPa).

【図5】 200℃5分間処理した冷間加工率20%の
Ti‐49.5at%Niワイヤの二方向記憶効果測定結果。
FIG. 5 shows a cold working rate of 20% after being treated at 200 ° C. for 5 minutes.
Two-way memory effect measurement result of Ti-49.5 at% Ni wire.

【図6】 300℃5分間処理した冷間加工率20%の
Ti‐49.5at%Niワイヤの二方向記憶効果測定結果。
FIG. 6 shows a cold working rate of 20% after treatment at 300 ° C. for 5 minutes.
Two-way memory effect measurement result of Ti-49.5 at% Ni wire.

【図7】500℃5分間処理した冷間加工率20%のTi
‐49.5at%Niワイヤの二方向記憶効果測定結果。
FIG. 7: Ti with a cold work rate of 20% treated at 500 ° C. for 5 minutes
Two-way memory effect measurement results of -49.5 at% Ni wire.

【図8】300℃5分間処理した冷間加工率35%のTi
‐49.5at%Niワイヤの二方向記憶効果測定結果。
FIG. 8: Ti with a cold working rate of 35% treated at 300 ° C. for 5 minutes
Two-way memory effect measurement results of -49.5 at% Ni wire.

【図9】300℃5分間処理した冷間加工率35%のTi
‐49.5at%Niワイヤの二方向記憶効果測定結果。
FIG. 9: Ti with a cold working rate of 35% treated at 300 ° C. for 5 minutes
Two-way memory effect measurement results of -49.5 at% Ni wire.

【図10】300℃5分間処理した冷間加工率20%の
Ti‐49.5at%Niワイヤの二方向記憶効果の繰り返す
実験結果;(a)温度サイクル実験中時間の関数としてひ
ずみの変化; (b) 温度サイクル実験中温度の関数とし
てひずみの変化。
FIG. 10 shows a cold working rate of 20% after treatment at 300 ° C. for 5 minutes.
Repeated experimental results of the two-way memory effect of Ti-49.5 at% Ni wire; (a) Change of strain as a function of time during temperature cycle experiment; (b) Change of strain as a function of temperature during temperature cycle experiment.

【符号の説明】[Explanation of symbols]

1.As:逆変態開始温度 2.Af:逆変態終了温度 3.Ms: マルテンサイト変態或いはR相変態開始温度 4.Mf:マルテンサイト変態終了温度 1. As: Reverse transformation start temperature 2. Af: reverse transformation end temperature 3. Ms: Martensitic transformation or R-phase transformation start temperature 4. Mf: Martensite transformation end temperature

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 686 C22F 1/00 686A 691 691B 691C 694 694A (72)発明者 岸 輝雄 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 (72)発明者 秋宗 淑雄 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 (72)発明者 吉田 均 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 (72)発明者 永井 英幹 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 (72)発明者 大石 竜太郎 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI Theme Coat (reference) C22F 1/00 686 C22F 1/00 686A 691 691B 691C 694 694A (72) Inventor Teruo Kishi 1 East, Tsukuba, Ibaraki Prefecture -1-1 Independent Administrative Law, National Institute of Advanced Industrial Science and Technology Tsukuba Center (72) Inventor Yoshio Akiso 1-1-1 East, Tsukuba City, Ibaraki Prefecture Independent Administrative Law, National Institute of Advanced Industrial Science and Technology (72) Inventor Hitoshi Yoshida 1-1-1 East, Tsukuba City, Ibaraki Prefecture Independent Administrative Law Institute of Industrial Science and Technology, Tsukuba Center (72) Inventor Hideki Nagai 1-1-1 East, Tsukuba City, Ibaraki Prefecture Tsukuba, National Institute of Advanced Industrial Science and Technology In the center (72) Inventor Ryutaro Oishi 1-1-1 East, Tsukuba City, Ibaraki Prefecture Inside the Tsukuba Center, National Institute of Advanced Industrial Science and Technology

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 溶解鋳造、熱間加工、スエージング、中
間焼鈍と冷間加工を経るTiNi系形状記憶合金ワイヤ
の製造方法において、最後の冷間加工量を15%〜35
%にした後、逆変態終了温度Af以上の温度で、短時間
熱処理して、二方向性形状記憶合金ワイヤを製造する方
法。
1. In a method for producing a TiNi-based shape memory alloy wire that undergoes melt casting, hot working, swaging, intermediate annealing and cold working, the final cold working amount is 15% to 35%.
%, And then heat treated for a short time at a temperature equal to or higher than the reverse transformation end temperature Af to produce a bidirectional shape memory alloy wire.
【請求項2】 熱処理温度が、200℃乃至350℃で
ある請求項1に記載した二方向性形状記憶合金ワイヤを
製造する方法。
2. The method for producing a bidirectional shape memory alloy wire according to claim 1, wherein the heat treatment temperature is 200 ° C. to 350 ° C.
【請求項3】 熱処理時間が、15分以下である請求項
1に記載した二方向性形状記憶合金ワイヤを製造する方
法。
3. The method for producing a bidirectional shape memory alloy wire according to claim 1, wherein the heat treatment time is 15 minutes or less.
【請求項4】 最後の冷間加工量が、15〜25%であ
る請求項1に記載した二方向性形状記憶合金ワイヤを製
造する方法。
4. The method for producing a bidirectional shape memory alloy wire according to claim 1, wherein the final cold working amount is 15 to 25%.
JP2002143555A 2002-05-17 2002-05-17 SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME Expired - Lifetime JP3755032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002143555A JP3755032B2 (en) 2002-05-17 2002-05-17 SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002143555A JP3755032B2 (en) 2002-05-17 2002-05-17 SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME

Publications (2)

Publication Number Publication Date
JP2003342703A true JP2003342703A (en) 2003-12-03
JP3755032B2 JP3755032B2 (en) 2006-03-15

Family

ID=29766251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002143555A Expired - Lifetime JP3755032B2 (en) 2002-05-17 2002-05-17 SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME

Country Status (1)

Country Link
JP (1) JP3755032B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044815A1 (en) * 2006-10-12 2008-04-17 Industry-Academic Cooperation Foundation, Yonsei University Two-way shape memory material, method of manufacturing same, and heat insulating product employing same
CN103014414A (en) * 2013-01-04 2013-04-03 哈尔滨工程大学 TiNi-base shape memory alloy containing components in graded distribution and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747356B2 (en) 2010-05-17 2015-07-15 国立大学法人東京農工大学 Actuator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044815A1 (en) * 2006-10-12 2008-04-17 Industry-Academic Cooperation Foundation, Yonsei University Two-way shape memory material, method of manufacturing same, and heat insulating product employing same
KR100834554B1 (en) 2006-10-12 2008-06-02 연세대학교 산학협력단 Two-way shape memory material, method of manufacturing same, and heat insulating product employing same
CN103014414A (en) * 2013-01-04 2013-04-03 哈尔滨工程大学 TiNi-base shape memory alloy containing components in graded distribution and preparation method thereof

Also Published As

Publication number Publication date
JP3755032B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
CN107250416B (en) The manufacturing method of Ni base superalloy
US5958159A (en) Process for the production of a superelastic material out of a nickel and titanium alloy
JPS6214619B2 (en)
JP4870324B2 (en) Shape memory alloy cast member and method of manufacturing the same
JP2003342703A (en) Two way shape memory alloy wire and production method therefor
JP6156865B2 (en) Super elastic alloy
JPH07233432A (en) Shape memory alloy and its production
JP2005060821A (en) beta TYPE TITANIUM ALLOY, AND COMPONENT MADE OF beta TYPE TITANIUM ALLOY
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JPS6144150B2 (en)
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JP2002167635A (en) Titanium aluminiden based alloy
JPS60169551A (en) Manufacture of shape memory alloy
JP2003213388A (en) METHOD OF PRODUCING SHAPE-MEMORY ALLOY BOLT WITH OUTER DIAMETER OF &gt;=3 mm
JP2986823B2 (en) Ti-Ni-based reversible shape memory alloy and method for producing the same
JPH02149651A (en) Manufacture of ti-ni series superelastic alloy
JP2706273B2 (en) Superelastic Ni-Ti-Cu alloy and method for producing the same
JPS61204359A (en) Manufacture of beta type titanium alloy material
JP2573507B2 (en) Shape memory alloy and manufacturing method thereof
JPH059686A (en) Production of shape memory niti alloy
CN101386965B (en) Method for processing NiTiCu shape memory alloy wire materials
JP2631989B2 (en) High temperature thermal response element
JPS622027B2 (en)
JPH0317238A (en) Cu-al-mn series shape memory alloy and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050531

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

R150 Certificate of patent or registration of utility model

Ref document number: 3755032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term