JP2573507B2 - Shape memory alloy and manufacturing method thereof - Google Patents

Shape memory alloy and manufacturing method thereof

Info

Publication number
JP2573507B2
JP2573507B2 JP62319027A JP31902787A JP2573507B2 JP 2573507 B2 JP2573507 B2 JP 2573507B2 JP 62319027 A JP62319027 A JP 62319027A JP 31902787 A JP31902787 A JP 31902787A JP 2573507 B2 JP2573507 B2 JP 2573507B2
Authority
JP
Japan
Prior art keywords
alloy
shape memory
temperature
atomic percent
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62319027A
Other languages
Japanese (ja)
Other versions
JPH01162738A (en
Inventor
智之 大友
正一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP62319027A priority Critical patent/JP2573507B2/en
Publication of JPH01162738A publication Critical patent/JPH01162738A/en
Application granted granted Critical
Publication of JP2573507B2 publication Critical patent/JP2573507B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Powder Metallurgy (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、30℃以下の範囲の温度で作動し、且つ高温
時と低温時の荷重差の大きな形状記憶バネに用いられる
形状記憶合金に関するものである。
The present invention relates to a shape memory alloy which operates at a temperature of 30 ° C. or lower and has a large load difference between high temperature and low temperature. Things.

[従来の技術] TiNi合金が、熱弾性型マルテンサイト変態の逆変態に
附随して顕著な形状記憶効果を示すことは良く知られて
いる。また、TiNi合金に第3元素を添加した3元合金も
TiNi合金と同様に、形状記憶効果を示すことが知られて
いる。とりわけ、Cu添加3元合金は、作動温度の組成依
存性がTiNi合金に比べて小さく、工業的製造パラメータ
の範囲内で再現が容易で経済的製造が可能となること
が、特公昭61−54850号公報に提案されている。TiNi合
金の形状記憶特性を最もよく引出す方法として、冷間加
工後500℃程度の温度で短時間処理することが、Buheler
らによって見出されており、現在ではこの方法を基本に
して各種形状記憶バネが作られ、アクチュエータとして
使用されている。
[Prior Art] It is well known that TiNi alloys exhibit a remarkable shape memory effect accompanying the reverse transformation of thermoelastic martensitic transformation. Also, ternary alloys obtained by adding a third element to TiNi alloys
Similar to TiNi alloys, it is known to exhibit a shape memory effect. In particular, the Cu-added ternary alloy has a smaller operating temperature composition dependency than the TiNi alloy, and can be easily reproduced and economically manufactured within the range of industrial manufacturing parameters. No. 1993. The best way to bring out the shape memory characteristics of TiNi alloy is to perform a short time treatment at about 500 ° C after cold working.
Various shape memory springs have been made based on this method and are now used as actuators.

[発明が解決しようとする問題点] しかしながら、Cu添加3元合金において、Cuを添加す
ることにより、そのマルテンサイト相の構造は、Cu添加
量の増加とともに単斜晶から斜方晶に変わり、それに伴
い、マルテンサイト相と母相のそれぞれが現れる温度は
序々に近接し、温度ヒステリシスが小さくなる。一方、
Cu添加量が増加すると、作動温度の組織依存性が小さく
なるので、作動温度を30℃以下とするためには主成分の
Tiを化学量論値から大きくずらさなければならない。し
かし、Ti−Ni合金の加工性(熱間、冷間)は、組成が化
学量論からずれるにつれ、序々に悪くなり、Ti48Ni52合
金、Ti52Ni48合金などは、殆ど加工ができなくなってし
まう。更に、Cu添加3元合金の場合、Cu添加量の増加と
ともにTiCu相が析出しはじめ、加工性に悪影響を及ぼす
ため、作動温度をシフトさせる目的で、Ti濃度を化学量
論値からずらしても、加工は殆どできない。
[Problems to be Solved by the Invention] However, in Cu-added ternary alloys, by adding Cu, the structure of the martensitic phase changes from monoclinic to orthorhombic with an increase in the amount of Cu added, Accordingly, the temperatures at which the martensite phase and the parent phase appear gradually approach each other, and the temperature hysteresis decreases. on the other hand,
When the amount of Cu added increases, the structure dependence of the operating temperature decreases, so in order to reduce the operating temperature to 30 ° C or lower, the main component
Ti must deviate significantly from the stoichiometric value. However, the workability (hot and cold) of the Ti—Ni alloy gradually deteriorates as the composition deviates from the stoichiometry, and the Ti48Ni52 alloy, Ti52Ni48 alloy, and the like can hardly be worked. Furthermore, in the case of a Cu-added ternary alloy, a TiCu phase begins to precipitate with an increase in the Cu addition amount, which adversely affects workability. Therefore, in order to shift the operating temperature, the Ti concentration is shifted from the stoichiometric value. Processing is almost impossible.

TiNi合金で、ヒステリシスの小さいバネを作る方法
は、前記Buhelerらのほぼ500℃での短時間処理が一般化
しているが、この方法によれば、冷間加工による加工歪
みは殆ど解消されず、低温時にバネを変形させるに必要
な荷重は、溶体化処理し(700℃以上で30分間)された
ものに比べ、極めて大きく高温時(作動時)と低温時の
バネの変形荷重差が小さい。このため、TiNi2元合金の
出力(高温時の力−低温時の力)は小さく、バネ製造及
び設計上問題を残している。
In the TiNi alloy, a method of making a spring with a small hysteresis generally uses the short-time treatment at approximately 500 ° C. of the aforementioned Buheler et al. The load required to deform the spring at low temperatures is extremely large, and the difference between the deformation load of the spring at high temperatures (during operation) and at low temperatures is smaller than that of the solution that has been solution-treated (at 700 ° C. or more for 30 minutes). For this reason, the output (force at high temperature-force at low temperature) of the TiNi binary alloy is small, and there remains a problem in spring manufacturing and design.

本発明の目的は、上記難点を解消し、加工性のすぐれ
た30℃以下の範囲の温度で作動し、この時の出力の大き
な形状記憶合金及びその製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a shape memory alloy which operates at a temperature of 30 ° C. or less, which has excellent workability, and has a large output at this time, and a method of manufacturing the same.

[問題点を解決するための手段] 本発明によれば、49〜50原子パーセントの範囲内のT
i、5原子パーセントを越え20原子パーセントまでのC
u、0.5〜3.0原子パーセントの範囲内のV、および残部N
iからなることを特徴とする形状記憶合金が得られる。
[Means for Solving the Problems] According to the present invention, T in the range of 49 to 50 atomic percent
i from more than 5 atomic percent to 20 atomic percent C
u, V in the range of 0.5-3.0 atomic percent, and the balance N
Thus, a shape memory alloy characterized by comprising i is obtained.

また、本発明によれば、49〜50原子パーセントの範囲
内のTi、5原子パーセセントを越え20原子パーセントま
でのCu、0.5〜3.0原子パーセントの範囲内のV、および
残部NiからなるTiNiCuV合金インゴットに、均一化処
理、熱間加工、および冷間加工を施す形状記憶合金の製
造方法において、上記冷間加工後に、実質的に425℃の
温度で実質的に1時間の熱処理を行うことを特徴とする
形状記憶合金の製造方法が得られる。
According to the present invention, there is also provided a TiNiCuV alloy ingot comprising Ti in the range of 49 to 50 atomic percent, Cu exceeding 5 atomic percent to 20 atomic percent, V in the range of 0.5 to 3.0 atomic percent, and the balance of Ni. A method for producing a shape memory alloy which is subjected to a homogenizing treatment, a hot working and a cold working, wherein a heat treatment is carried out at a temperature of substantially 425 ° C. for substantially one hour after the cold working. Is obtained.

[実施例] 本発明の実施例について図面を参照しながら説明す
る。
Example An example of the present invention will be described with reference to the drawings.

高周波真空溶解によって得られた表1に示すような化
学組成の第1乃至第16の番号で示されるTiNi系合金を温
度900℃で2時間の均一化処理後,熱間ハンマー、熱間
ロール、及び冷間加工を行い、加工性についてしらべ
た。それらの結果を表1にしめす。
After homogenizing a TiNi-based alloy having a chemical composition as shown in Table 1 and having a chemical composition shown in Table 1 to No. 16 at a temperature of 900 ° C. for 2 hours, a hot hammer, a hot roll, And cold working was performed and the workability was examined. Table 1 shows the results.

尚、表1において、No.1〜4、8、9、11、および13
〜15は比較例であり、No.5〜7、10、12、および16は本
発明の実施例である。
In Table 1, Nos. 1 to 4, 8, 9, 11, and 13
15 to 15 are comparative examples, and Nos. 5 to 7, 10, 12, and 16 are examples of the present invention.

表中○は加工性良好、△は加工性普通×は加工性不可
を表す。また、作動温度の*印は、ヒステリシスの大な
ることを示す。表において熱間加工は、1回で30パーセ
ントの加工率で行われた。その結果、比較例に係わる第
4の合金は、加工中クラックが発生し、やや加工性に難
点が在ったのに対し、実施例に係わる第7の合金は、ス
ムーズに加工された(第4と第7の合金は主元素のTiは
同じ量である。)。また、冷間加工は直径3mmから1mmま
で、温度750℃の焼きなましを繰返しながら行われ、最
終焼鈍を直径1・3mmで行い、その後直径1.0mmまで加工
された。その結果、 前記第4及び第7それぞれの合金において、加工性に
顕著な差を生じ、実施例に係る第7の合金が、比較例に
係る第4に比べて、加工性に優れることが判った。
In the table, ○ indicates good processability, Δ indicates normal processability, and × indicates no processability. An asterisk of the operating temperature indicates that the hysteresis is large. In the table, hot working was performed at a working rate of 30% at a time. As a result, the fourth alloy according to the comparative example had cracks during processing and had some difficulty in workability, whereas the seventh alloy according to the example was processed smoothly (No. The fourth and seventh alloys have the same amount of Ti as the main element.) In addition, cold working was performed from 3 mm to 1 mm in diameter while repeating annealing at a temperature of 750 ° C., and final annealing was performed at 1.3 mm in diameter, and then processed to 1.0 mm in diameter. as a result, A remarkable difference was observed in the workability between the fourth and seventh alloys, and it was found that the seventh alloy according to the example had better workability than the fourth alloy according to the comparative example.

冷間加工が可能であった表中の合金線は、夫々425℃
で30分間の処理を施され、0.25パーセントの伸び、歪み
の下での温度荷重曲線が測定された。実施例に係る第6
の合金についての測定結果を第1図に示す。比較例に係
る第1及び第3の合金の測定曲線を第2図、及び第3図
に夫々示す。各曲線11、13及び16ともにヒステリシスル
ープを描く。また表中に示されている作動温度は、第1
図乃至第3図においては、各曲線11、13、16上に示され
るAf11,Af13,Af1,を示し、これらの温度は、合金線が加
熱され、形状回復が完了したときの温度Afを示してい
る。
The alloy wires in the table that were cold workable were 425 ° C each.
And a temperature load curve under strain of 0.25% elongation and strain was measured. Sixth Example
FIG. 1 shows the measurement results of the alloy No. 1. Measurement curves of the first and third alloys according to the comparative example are shown in FIGS. 2 and 3, respectively. Each of the curves 11, 13 and 16 draws a hysteresis loop. The operating temperatures shown in the table are the first
In FIGS. 3 to 3, Af11, Af13, and Af1 shown on the curves 11, 13, and 16 are shown, and these temperatures indicate the temperature Af when the alloy wire is heated and the shape recovery is completed. ing.

比較例に係る第2及び第3の合金は、合金中のTi濃度
を減少させて、作動温度を下げたものであるが、Cu添加
効果が大きく40℃が限界である。更に、Ti濃度を減少さ
せると加工が困難と。なる。 それに対して実施例に係
る第5乃至第7の合金は、比較例に比べてCu添加効果を
小さくし、作動温度は顕著に下がっている。また加工性
も悪くなっていない。また、低温時と高温時の荷重差を
みると、比例例に係る第1が、約3kgを示すに対してCu
添加合金第3及び第6は夫々約7kgを示している。この
結果から、実施例に係る第6の合金はその出力効果即ち
低温時と高温時の荷重差を失わずに、作動温度を低温側
にシフトさせることを可能としている。Cu添加によって
出力効果が生じることはよく知られている。尚、比較例
8は、Tiが49原子パーセントに満たないときに加工性が
悪くなることを示す例であり、比較例9は、Vの量が0.
5に満たなく0.1と低いと作動温度が30℃を越えてしまう
例であり、実施例10および比較例11は、Vの量が3.0で
あれば、加工性もまた受容でき、しかも低い作動温度を
達成できるが、3.0を越えて、5.0となると、加工性が極
めて悪くなることを示す例であり、実施例12と比較例13
は、Cuの量が20.0であれば、加工性もまた受容でき、し
かも低い作動温度を達成できるが、20.0を越えて25.0と
なると加工性が極めて悪くなることを示す例であり、比
較例14および15は、Cuの量が、5以下では加工性は良い
が、30℃以上の作動温度を達成できないことを示す例で
あり、実施例16は、Cuの量が15であっても、加工性およ
び作動温度とも満足するものが得られることを示す例で
ある。
In the second and third alloys according to the comparative examples, the operating temperature was lowered by decreasing the Ti concentration in the alloy, but the effect of adding Cu was large and the limit was 40 ° C. Furthermore, it is difficult to process when the Ti concentration is reduced. Become. On the other hand, in the fifth to seventh alloys according to the example, the effect of adding Cu is smaller than that of the comparative example, and the operating temperature is remarkably lowered. Also, the workability has not deteriorated. Looking at the load difference between low temperature and high temperature, the first of the proportional examples shows that
Each of the third and sixth additive alloys indicates about 7 kg. From this result, the sixth alloy according to the embodiment makes it possible to shift the operating temperature to the low temperature side without losing its output effect, that is, the load difference between the low temperature and the high temperature. It is well known that the addition of Cu produces an output effect. Comparative Example 8 is an example showing that the workability deteriorates when Ti is less than 49 atomic percent, and Comparative Example 9 shows that the amount of V is 0.
If it is less than 5 and it is as low as 0.1, the operating temperature will exceed 30 ° C. In Example 10 and Comparative Example 11, if the amount of V is 3.0, the workability is also acceptable and the operating temperature is low. Can be achieved, but exceeds 3.0, and when it reaches 5.0, it is an example showing that the workability is extremely poor, Example 12 and Comparative Example 13
Is an example showing that if the amount of Cu is 20.0, the workability is also acceptable and a low operating temperature can be achieved, but if it exceeds 20.0 and becomes 25.0, the workability becomes extremely poor.Comparative Example 14 And 15 are examples showing that workability is good when the amount of Cu is 5 or less, but an operating temperature of 30 ° C. or more cannot be achieved. Example 16 shows that even when the amount of Cu is 15, This is an example showing that a material satisfying both the properties and the operating temperature can be obtained.

以上の例から、49〜50原子パーセントの範囲内のTi、
5原子パーセントを越え20原子パーセントまでのCu、0.
5〜3.0原子パーセントの範囲内のV、および残部Niから
なる形状記憶合金は、加工性に優れ、かつ作動温度が30
℃以下であることが分かる。
From the above example, Ti in the range of 49-50 atomic percent,
More than 5 atomic percent and up to 20 atomic percent Cu,
A shape memory alloy composed of V in the range of 5 to 3.0 atomic percent and the balance of Ni has excellent workability and an operating temperature of 30%.
It turns out that it is below ° C.

[発明の効果] 以上述べた通り本発明によれば、加工性にすぐれた、
30℃以下の温度で作動可能でかつ出力の大きい形状記憶
バネを得ることが可能であり、さらにバネのみならずク
ランプ、固定用部材など、種々の工業製品への適用を可
能にする。
[Effects of the Invention] As described above, according to the present invention, excellent workability is achieved.
It is possible to obtain a shape memory spring that can operate at a temperature of 30 ° C. or less and has a large output, and can be applied not only to the spring but also to various industrial products such as clamps and fixing members.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の実施例に係る形状記憶合金の荷重温
度曲線を示す図、第2図は、比較例に係る形状記憶合金
の荷重温度曲線を示す図、第3図は、他の比較例に係る
形状記憶合金の荷重温度曲線を示す図である。
FIG. 1 is a diagram showing a load temperature curve of a shape memory alloy according to an example of the present invention, FIG. 2 is a diagram showing a load temperature curve of a shape memory alloy according to a comparative example, and FIG. It is a figure showing a load temperature curve of a shape memory alloy concerning a comparative example.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】49〜50原子パーセントの範囲内のTi、5原
子パーセントを越え20原子パーセントまでのCu、0.5〜
3.0原子パーセントの範囲内のV、および残部Niからな
ることを特徴とする形状記憶合金。
1. The method according to claim 1, wherein Ti in the range of 49 to 50 atomic percent, Cu in excess of 5 at.
A shape memory alloy comprising V in the range of 3.0 atomic percent and the balance Ni.
【請求項2】49〜50原子パーセントの範囲内のTi、5原
子パーセントを越え20原子パーセントまでのCu、0.5〜
3.0原子パーセントの範囲内のV、および残部Niからな
るTiNiCuV合金インゴットに、均一化処理、熱間加工、
および冷間加工を施す形状記憶合金の製造方法におい
て、上記冷間加工後に、実質的に425℃の温度で実質的
に1時間の熱処理を行うことを特徴とする形状記憶合金
の製造方法。
2. Ti in the range of 49 to 50 at.%, Cu in excess of 5 at.
In a TiNiCuV alloy ingot consisting of V in the range of 3.0 atomic percent and the balance of Ni, homogenization treatment, hot working,
And performing a heat treatment at a temperature of substantially 425 ° C. for substantially one hour after the cold working.
JP62319027A 1987-12-18 1987-12-18 Shape memory alloy and manufacturing method thereof Expired - Lifetime JP2573507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62319027A JP2573507B2 (en) 1987-12-18 1987-12-18 Shape memory alloy and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62319027A JP2573507B2 (en) 1987-12-18 1987-12-18 Shape memory alloy and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01162738A JPH01162738A (en) 1989-06-27
JP2573507B2 true JP2573507B2 (en) 1997-01-22

Family

ID=18105691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62319027A Expired - Lifetime JP2573507B2 (en) 1987-12-18 1987-12-18 Shape memory alloy and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2573507B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431246A (en) * 2017-10-10 2019-11-08 古河科技材料株式会社 The manufacturing method of Ti-Ni system alloy, the wire rod, Electric Actuator and the temperature sensor that have used the Ti-Ni system alloy and Ti-Ni system alloy material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573499B2 (en) * 1987-09-05 1997-01-22 株式会社トーキン TiNiCuV quaternary shape memory alloy

Also Published As

Publication number Publication date
JPH01162738A (en) 1989-06-27

Similar Documents

Publication Publication Date Title
JPH0665742B2 (en) Shape memory TiNiV alloy manufacturing method
JPS6237353A (en) Manufacture of shape memory alloy
JP6269836B2 (en) Titanium alloy member having shape change characteristic in the same direction as the machining direction
JP2573507B2 (en) Shape memory alloy and manufacturing method thereof
JP2541802B2 (en) Shape memory TiNiV alloy and manufacturing method thereof
JP2573499B2 (en) TiNiCuV quaternary shape memory alloy
JP2004197112A (en) Method of producing biological superelastic titanium alloy
JPS61183455A (en) Manufacture of ni-ti type shape memory material
JPH059686A (en) Production of shape memory niti alloy
JP2706273B2 (en) Superelastic Ni-Ti-Cu alloy and method for producing the same
JP2732525B2 (en) Manufacturing method of shape memory alloy
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JPS62199757A (en) Manufacture of shape memory alloy material
JP7176692B2 (en) High temperature shape memory alloy, manufacturing method thereof, actuator and engine using same
JPS59215448A (en) Functional alloy
JP3755032B2 (en) SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME
JP2603463B2 (en) Low temperature reversible shape memory alloy
JPH0238547A (en) Manufacture of ti-ni shape memory alloy
JPH03150333A (en) Shape memory alloy and its manufacture
JP3271329B2 (en) Shape memory alloy
JPH09118967A (en) Manufacture of nickel-titanium shape memory alloy for coil spring
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JPH108168A (en) Nickel-titanium-zirconium(hafnium) shape memory alloy improved in workability
JPS61276947A (en) Shape memory ti-ni alloy having small hysteresis and its manufacture
JP2691567B2 (en) Super elastic element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12