JPS62199757A - Manufacture of shape memory alloy material - Google Patents

Manufacture of shape memory alloy material

Info

Publication number
JPS62199757A
JPS62199757A JP4040986A JP4040986A JPS62199757A JP S62199757 A JPS62199757 A JP S62199757A JP 4040986 A JP4040986 A JP 4040986A JP 4040986 A JP4040986 A JP 4040986A JP S62199757 A JPS62199757 A JP S62199757A
Authority
JP
Japan
Prior art keywords
shape memory
heat treatment
point
niti
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4040986A
Other languages
Japanese (ja)
Inventor
Yukihisa Takahashi
幸久 高橋
Masaru Shiichi
私市 優
Hiroyuki Takei
武井 裕幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP4040986A priority Critical patent/JPS62199757A/en
Publication of JPS62199757A publication Critical patent/JPS62199757A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an NiTi shape memory alloy material having reversible shape change characteristics and small hysteresis by specifying the Ni content in an NiTi alloy as stock, conditions during heat treatment, the extent of strain produced during final shape memory heat treatment, and the cold working rate. CONSTITUTION:A hot worked material of an NiTi shape memory alloy consisting of 50.0-60.0wt% Ni and the balance essentially Ti is cold worked at <=60% working rate within the range defined by a line connecting point A (50.0% Ni content, 60.0% working rate), point B (50,0% Ni content, 15.0% working rate), point C (56.0% Ni content, 1.0% working rate) and point D (60.0% Ni content, 1.0% working rate). the cold worked material is subjected to soln. heat treatment at >=650 deg.C for >=1min and 0.2-5.0% strain is produced in the material by final shape memory heat treatment at 300-650 deg.C for >=1min. Thus, a shape memory alloy material having desired characteristics is stably manufactured in such simple treatment shapes.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、感温アクチュエーターやサーモスタット、
或いはヒユーズ代用電気回路遮断部材等に好適な、可逆
形状変化特性を有し、かつヒステリシスが小さいNiT
i形状記憶合金材の製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> This invention is applicable to temperature-sensitive actuators, thermostats,
Or NiT, which has reversible shape change characteristics and low hysteresis, is suitable for use as a fuse substitute electric circuit interrupting member, etc.
This invention relates to a method for manufacturing a shape memory alloy material.

〈従来技術並びにその問題点〉 熱弾性型マルテンサイト変態を有する合金の殆どが形状
記憶効果を示すことは良く知られているが、その中でも
、NiTi合金は製造が容易な多結晶材であり、しかも
貴金属を含まないため安価で、かつ回復歪量が大きい等
の理由から最も実用化の進んでいる形状記憶合金である
<Prior art and its problems> It is well known that most alloys with thermoelastic martensitic transformation exhibit a shape memory effect, but among them, NiTi alloy is a polycrystalline material that is easy to manufacture. Moreover, since it does not contain precious metals, it is inexpensive and has a large amount of recovery strain, making it the shape memory alloy that is most commonly put into practical use.

もちろん、NiTi形状記憶合金も他の形状記憶効果を
有する合金と同様、マルテンサイト変態開始温度(Ms
点)、マルテンサイト変態終了温度(Mf点)、逆変態
開始温度(As点)、及び逆変態終了温度(Af点)を
有し、“低温のマルテンサイト状態で変形されても、A
f点を超えた高温に加熱されると元の形に形状を回復す
る”と言う同様特性を備えているが、特にNiTi形状
記憶合金においては前記変形形状回復挙動を数十刃口も
繰り返し行い得るため、パイアスカと組み合わせて種々
の感温アクチュエーターとして用いられている。
Of course, the NiTi shape memory alloy, like other alloys with shape memory effects, also has a martensitic transformation start temperature (Ms
point), martensitic transformation end temperature (Mf point), reverse transformation start temperature (As point), and reverse transformation end temperature (Af point).
NiTi shape memory alloys have a similar characteristic of "recovering to their original shape when heated to a high temperature exceeding the f point," but NiTi shape memory alloys in particular repeat this deformed shape recovery behavior over several dozen cutting edges. Therefore, it is used in various temperature-sensitive actuators in combination with Paiska.

しかしながら、実用上置も重宝されているNiTi形状
記憶合金にも、前記Ms点とAf点の温度差(即ちMf
点とAs点の温度差でもあり、以下、“ヒステリシス”
と称す)が第2図に示されるように30〜40℃と大き
く、しかも低温のマルテンサイト相から高温の母相へ逆
変態するときにのみ作動する所謂“一方向作動性能”し
か有していないとの問題点が指摘されていたのである。
However, the temperature difference between the Ms point and Af point (i.e., Mf
It is also the temperature difference between the point and the As point, hereinafter referred to as “hysteresis”.
As shown in Figure 2, the temperature is as high as 30 to 40°C, and it only has the so-called ``unidirectional operating performance'' that operates only when there is a reverse transformation from the low-temperature martensite phase to the high-temperature parent phase. The problem was pointed out that there was no such thing.

このようなことから、過去、NiTi形状記憶合金にみ
られる上記欠点を改善し、パイアスカに頼ることな(、
NiTi形状記憶合金自体に第3図に示す如き可逆的作
動機能を備えしめようとした[500〜600°C以上
の固溶化熱処理後、拘束歪量で600℃以下の最終形状
記憶熱処理を施す」とのNiTi形状記憶合金の処理方
法も提案されたが、NiTi形状記tα合金の可逆的形
状記憶効果は“合金の組成”、“熱処理温度及びその時
間”並びに“拘束歪量”等の総合的要素に微妙に影響さ
れるものであって、以前に提案された上記方法をそのま
ま実施したとしても所望特性を安定して現出させること
は極めて困難だったのである。
For this reason, we have improved the above-mentioned drawbacks seen in NiTi shape memory alloys in the past, and have decided not to rely on Piasuka (
We attempted to equip the NiTi shape memory alloy itself with a reversible operating function as shown in Figure 3 [After solution heat treatment at 500 to 600°C or higher, final shape memory heat treatment at 600°C or lower with a constrained strain amount is performed. A processing method for NiTi shape memory alloy has also been proposed, but the reversible shape memory effect of NiTi shape memory tα alloy depends on comprehensive factors such as ``alloy composition,'' ``heat treatment temperature and time,'' and ``amount of restraint strain.'' Since the characteristics are subtly influenced by various factors, it has been extremely difficult to stably exhibit the desired characteristics even if the previously proposed methods described above were implemented as they are.

〈問題点を解決するための手段〉 本発明者等は、上述のような観点に立ってこれまで積み
重ねてきた実験研究により、可逆的形状記憶効果を備え
、しかもヒステリシスの小さいNiTi形状記憶合金材
の安定製造にはいくばくかの可能性があるとの感触を得
、更にその実現を1指して、「可逆的形状記憶効果が現
出たれる場合には、合金冷却途上での母相からマルテン
サイト相へ変態する際に、第4図(a)に示される如く
、“中間相変態”を伴うと言う現象が一般的に起きる」
との事実を踏まえつつ、Ni含有割合を広い範囲で変化
させたNiTi合金を作成し、その熱間加工条件、冷間
加工条件、熱処理条件等を系統的に種々変化させて“中
間相”の出現挙動及び“可逆的形状記憶効果” につい
ての基礎的な研究を続けたところ、次に示すような知見
を得るに到った。即ち、(al  N i T i形状
記憶合金では、やはり、熱間加工材においては熱処理温
度、熱処理時間及び付与歪量が、そして冷間加工材にお
いては冷間加工率、熱処理温度、熱処理時間及び付与歪
量がそれぞれ密接に絡み合って形状記憶合金特性に影響
を与えており、これらが微妙に絡み合った総合条件を無
視しては十分な可逆的形状記憶効果を安定して現出する
ことが不可能であること、 (b)シかしながら、特定割合でNiを含有するNiT
i形状記憶合金の熱間加工材に、そのNi含を割合をも
考慮した特定加工率の冷間加工を施し、更に必要に応じ
て固溶化熱処理を含む300℃以上の熱処理を1分以上
にわたって1回若しくは複数回施し、かつ最終の形状記
憶熱処理を、最終の加工形状材に0.2〜5.0%の歪
を付与しつつ実施すれば、前述した“中間相”生成が極
めて容易にかつ安定状態でなされることとなって可逆的
形状記憶効果が円滑に安定して現出される上、小ヒステ
リシス出現に“中間相変態”が密接に関連していること
もあって、第5図に示したような“昇温過程と降温過程
での作動曲線の温度差(ΔH)が小さい材料”が期せず
して実現されること。
<Means for Solving the Problems> The present inventors have developed a NiTi shape memory alloy material that has a reversible shape memory effect and has small hysteresis based on the experimental research that has been accumulated so far from the viewpoints described above. He felt that there was some possibility for stable production of the alloy, and pointed to one way to realize it: ``If a reversible shape memory effect appears, it would be possible to remove marten from the matrix during cooling of the alloy.'' When transforming to the site phase, a phenomenon that is accompanied by ``intermediate phase transformation'' generally occurs, as shown in Figure 4 (a).
Taking this fact into account, we created NiTi alloys with Ni content varying over a wide range, and systematically varied the hot working conditions, cold working conditions, heat treatment conditions, etc. to develop the "intermediate phase". As we continued our basic research on appearance behavior and the "reversible shape memory effect," we came to the following findings. In other words, (alNi Ti shape memory alloy), the heat treatment temperature, heat treatment time, and amount of strain are the same for hot-worked materials, and the cold working rate, heat treatment temperature, heat treatment time, and amount of strain are for cold-worked materials. The amount of applied strain is closely intertwined with each other and affects the properties of the shape memory alloy, and if the comprehensive conditions in which these are delicately intertwined are ignored, it is impossible to stably produce a sufficient reversible shape memory effect. (b) NiT containing Ni in a specific proportion while
i Hot-worked shape memory alloy material is subjected to cold working at a specific working rate that also takes into account its Ni content, and if necessary, heat treatment at 300°C or higher, including solution heat treatment, for 1 minute or more. If the shape memory heat treatment is performed once or multiple times and the final shape memory heat treatment is performed while applying a strain of 0.2 to 5.0% to the final processed shaped material, the above-mentioned "intermediate phase" generation will be extremely easy. Moreover, since it is performed in a stable state, the reversible shape memory effect appears smoothly and stably, and also because "intermediate phase transformation" is closely related to the appearance of small hysteresis, the fifth As shown in the figure, "a material with a small temperature difference (ΔH) between the operating curves during the temperature rising process and the temperature cooling process" was unexpectedly realized.

この発明は、上記知見に基づいてなされたものであり、 50.0〜60.0%(以下、成分割合を表す%は重量
%とする)のNiを含有するとともに、残部が実質的に
Tiから成るNiTi形状記憶合金の熱間加工材に、第
1図における点A、B、C,Dを結んだ線上以上60%
以下の冷間加工を施すか、或いは該冷間加工に次いで6
50’Cを超える温度で1分以上の固溶化熱処理を行う
かした後、更に300〜650℃での最終形状記憶熱処
理を0.2〜5.0%の歪付与下にて1分以上施すこと
によって、可逆形状変化特性を有し、しかもヒステリシ
スが極めて小さいNiTi形状記憶合金材を簡単に、か
つ安定して製造し得ることを可能にした点、 に特徴を有するものである。
This invention was made based on the above findings, and contains 50.0 to 60.0% (hereinafter, % representing the component ratio is expressed as weight %) of Ni, and the remainder is substantially Ti. 60% or more on the line connecting points A, B, C, and D in FIG.
The following cold working is performed, or the cold working is followed by 6
After performing solution heat treatment for 1 minute or more at a temperature exceeding 50'C, further perform final shape memory heat treatment at 300 to 650 °C for 1 minute or more under strain of 0.2 to 5.0%. This feature makes it possible to easily and stably produce a NiTi shape memory alloy material that has reversible shape change characteristics and extremely small hysteresis.

次いで、この発明の方法において、対象素材たる旧Ti
合金のNi含有割合、熱処理条件、最終形状記憶熱処理
時の歪付与量、並びに冷間加工率を上述のように限定し
た理由を説明する。
Next, in the method of this invention, the target material old Ti
The reason why the Ni content of the alloy, the heat treatment conditions, the amount of strain imparted during the final shape memory heat treatment, and the cold working rate are limited as described above will be explained.

A)  NiTi合金のNi含有割合 素材たるNiTi合金のNi含有割合が50.0%を下
回っても、また60.0%を上回ってもその熱間加工性
及び冷間加工性が著しく劣化し、成形加工が困難となる
ばかりか、所望特性を有する形状記憶合金材を安定して
実現できなくなることから、NiTi合金のNi含を割
合は50.0〜60.0%と定めた。
A) Ni content ratio of NiTi alloy Even if the Ni content ratio of the NiTi alloy as a raw material is less than 50.0% or exceeds 60.0%, its hot workability and cold workability deteriorate significantly, Since not only would molding become difficult, but also a shape memory alloy material with desired characteristics could not be stably realized, the Ni content of the NiTi alloy was determined to be 50.0 to 60.0%.

B)最終形状記憶熱処理温度及び保持時間最終形状記憶
熱処理温度が300℃未満では形状記憶効果に有効な析
出物や結晶構造を得ることができないので、拘束歪力(
最終形状記憶熱処理時に付与される歪力)との相乗効果
によって実現されるNiTi形状記憶合金中の“内部応
力場”が長時間熱処理によっても生成されず、一方、該
温度が650℃を超えた場合には前記析出物量いは結晶
構造の固溶や消失が生じて、やはり300 ”C未満の
場合と同様、短時間熱処理での“内部応力場”生成が望
めなくなり、いずれにしても所望の形状記憶効果を得る
ことができない。
B) Final shape memory heat treatment temperature and holding time If the final shape memory heat treatment temperature is less than 300°C, it is not possible to obtain precipitates or crystal structures that are effective for the shape memory effect.
The "internal stress field" in the NiTi shape memory alloy, which is realized by the synergistic effect with the strain force applied during the final shape memory heat treatment, is not generated even by long heat treatment, and on the other hand, when the temperature exceeds 650 °C In this case, the amount of the precipitates or the crystal structure dissolves or disappears, and as in the case of less than 300"C, it is no longer possible to generate an "internal stress field" in a short heat treatment, and in any case, the desired result cannot be achieved. Shape memory effect cannot be obtained.

また、このときの熱処理時間が1分未満であっても、上
記「加熱温度300℃未満の場合」と同様、十分な形状
記憶効果を安定して備えしめることができない。
Further, even if the heat treatment time at this time is less than 1 minute, it is not possible to stably provide a sufficient shape memory effect, as in the case of the above-mentioned "heating temperature of less than 300°C".

従って、最終形状記憶熱処理においては、加熱保持温度
を300〜650℃に、そして加熱保持時間を1分以上
に、それぞれ定めた。
Therefore, in the final shape memory heat treatment, the heating holding temperature was set at 300 to 650°C, and the heating holding time was set at 1 minute or more.

C)最終形状記憶熱処理時の歪付与量 最終形状記憶熱処理における歪付与量(拘束歪量)が0
.2%未満であると前記“内部応力場”生成に十分な寄
与がなされず、一方、5.0%を超える場合には材料の
変形量が大きくなり過ぎて拘束自体が不可能となるか、
或いは適応力場が生じて中間相の生成がなされなくなる
かして、可逆的形状記憶効果が実現されなかったり、ヒ
ステリシスが大きくなる等の不都合を招いてしまう。
C) Amount of strain imparted during final shape memory heat treatment Amount of strain imparted during final shape memory heat treatment (constraint strain amount) is 0
.. If it is less than 2%, sufficient contribution will not be made to the generation of the "internal stress field", while if it exceeds 5.0%, the amount of deformation of the material will become too large and the restraint itself will become impossible.
Alternatively, an adaptive force field may occur and the intermediate phase may not be generated, resulting in inconveniences such as the reversible shape memory effect not being realized or hysteresis increasing.

従って、最終形状記憶熱処理時の歪付与量は0.2〜5
.0%と定めた。
Therefore, the amount of strain imparted during the final shape memory heat treatment is 0.2 to 5.
.. It was set as 0%.

D) 冷間加工率 冷間加工率が第1図における点A (Ni量: 50.
0%、加工率: 60.0%) 、B (Ni量: 5
0.0%、加工率715.0%) 、C(Ni量: 5
6.0%、加工率=1.0%) 、D (Ni量: 6
0.0%、加工率:1.0%)を結んだ線上の値未満で
あると、最終形状記憶熱処理時における中間相の生成改
善効果やヒステリシス低減効果が十分に顕著とならず、
一方、該冷間加工率が60%を超えると有害な表面割れ
や破断を生しる恐れが出てくることから、前記冷間加工
率は、第1図における点A、、B、C,Dを結んだ線上
以上60%以下と定めた。
D) Cold working rate The cold working rate is at point A in Figure 1 (Ni content: 50.
0%, processing rate: 60.0%), B (Ni amount: 5
0.0%, processing rate 715.0%), C (Ni amount: 5
6.0%, processing rate = 1.0%), D (Ni amount: 6
0.0%, processing rate: 1.0%), the effect of improving the formation of an intermediate phase and reducing the hysteresis during the final shape memory heat treatment will not be sufficiently noticeable.
On the other hand, if the cold working rate exceeds 60%, there is a risk that harmful surface cracks or fractures will occur. It was set as above the line connecting D and below 60%.

D)固溶化熱処理を施す場合の処理条件固溶化熱処理時
の加熱保持温度が650℃以下であったり、保持時間が
1分未満であったりすると、十分な固溶化が達成されな
いで最終形状記憶熱処理時での析出物量が固溶化熱処理
工程を付加するに見合うだけ改善されず、可逆的形状記
憶効果の一層の向上が望めない。
D) Processing conditions for solution heat treatment If the heating holding temperature during solution heat treatment is 650°C or lower or the holding time is less than 1 minute, sufficient solution heat treatment will not be achieved and the final shape memory heat treatment will not be possible. The amount of precipitates at the time of heating is not improved to an extent commensurate with the addition of the solution heat treatment step, and further improvement of the reversible shape memory effect cannot be expected.

従って、固溶化熱処理条件は、加熱保持温度:650℃
超、保持時間:1分以上とそれぞれ定めた。
Therefore, the solution heat treatment conditions are: heating holding temperature: 650°C
and retention time: 1 minute or more, respectively.

続いて、この発明を実施例によって具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

〈実施例〉 まず、第1表に示される如き組成のNiTi合金を減圧
不活性ガス雰囲気中で溶製し、950℃をやや下回る温
度にて熱間圧延を行ってQ、3龍厚の板材を得た後、圧
延率:1〜55%の冷間圧延を施し、更にその一部に対
しては650°Cを超える温度での固溶化熱処理をも施
した。
<Example> First, a NiTi alloy having a composition as shown in Table 1 was melted in a reduced pressure inert gas atmosphere, and hot rolled at a temperature slightly below 950°C to obtain a plate material of Q, 3x thickness. After obtaining the material, it was cold rolled at a rolling reduction of 1 to 55%, and a part of it was also subjected to solution heat treatment at a temperature exceeding 650°C.

次に、このようにして得られた板材を最終の目的形状に
成形してから、次式によって算出される0゜2〜4.5
%の歪を付加した状態で、加熱保持温度:300〜70
0℃、保持時間:1〜6000分なる条件の最終形状記
憶熱処理を施し、急冷した。
Next, the plate material obtained in this way is formed into the final target shape, and then 0°2 to 4.5
Heating and holding temperature with % strain added: 300-70
A final shape memory heat treatment was performed at 0° C. for a holding time of 1 to 6000 minutes, followed by rapid cooling.

付加歪M(%) 次いで、示差走査型熱量計により第4図(a)に示した
中間相変態ピークの存在を調べるとともに、中間相変態
ピークを有するものは第4図(b)のように示差走査型
熱量計を走査してAf点と中間相変態開始温度(Ms 
’ )との温度差を測定した。
Added Strain M (%) Next, the existence of the mesophase transformation peak shown in Figure 4(a) was investigated using a differential scanning calorimeter, and those having the mesophase transformation peak were examined as shown in Figure 4(b). The Af point and mesophase transformation start temperature (Ms
' ) was measured.

また、第3図で示した如くに温度変化で自発的に形状変
化するか否かを調べ、これにより可逆的形状記憶効果の
有無を決定するとともに、第5図で示したような「昇温
及び降温過程の作動曲線」よりΔHを求た。
In addition, we investigated whether the shape changes spontaneously due to temperature changes as shown in Figure 3, and from this we determine whether there is a reversible shape memory effect. ΔH was determined from the temperature-lowering process operating curve.

これらの結果を第1表に示した。These results are shown in Table 1.

第1表に示される結果からも、本発明で規定する条件通
りに製造されたNiTi形状記憶合金材は“中間相”及
び“可逆的形状記憶機能゛を有し、Ms’点とAf点と
の温度差(ヒステリシス)も4〜6℃と小さく、またΔ
Hも1〜2℃と非常に小さいものであることが明らかで
あるのに対して、本発明の規定から外れた製造条件によ
って得られた材料は“中間相”や“可逆的形状記憶機能
”を有さず、Ms点とAf点との温度差も大きいことが
分かる。
The results shown in Table 1 also show that the NiTi shape memory alloy material produced according to the conditions specified in the present invention has an "intermediate phase" and a "reversible shape memory function", and has a Ms' point and an Af point. The temperature difference (hysteresis) is small at 4 to 6℃, and Δ
It is clear that H is also very small at 1 to 2°C, whereas materials obtained under manufacturing conditions that deviate from the specifications of the present invention have "intermediate phase" and "reversible shape memory function". It can be seen that the temperature difference between the Ms point and the Af point is large.

なお、この実施例では板材試料に関する結果のみを示し
たが、材料形状として線材或いはその他の形状を付与し
たものであっても同様の効果が得られることは言うまで
もない。
In this example, only the results regarding the plate sample are shown, but it goes without saying that similar effects can be obtained even when the material is shaped like a wire rod or any other shape.

〈総括的な効果〉 以上に説明した如く、この発明によれば、可逆形状変化
特性を有し、しかもヒステリシスが小さいN1Tt形状
記憶合金材を簡単な処理工程で実現することができ、そ
れ単独での使用或いは補助的なパイアスカとの併用の如
何を問わず、形状記憶合金の利用分野を更に拡大し、感
温アクチュエーターやサーモスタット等の諸機器類の性
能を一段と向上することが可能となるなど、産業上極め
て有用な効果がもたらされるのである。
<Overall Effects> As explained above, according to the present invention, it is possible to realize an N1Tt shape memory alloy material having reversible shape change characteristics and low hysteresis through a simple processing process, and it is possible to realize it by itself. Regardless of whether it is used in conjunction with a auxiliary PIASUKA, it will be possible to further expand the field of use of shape memory alloys and further improve the performance of various devices such as temperature-sensitive actuators and thermostats. This brings about extremely useful effects industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、NfTi形状記憶合金に所望の優れた可逆的
形状記憶効果を現出するために必要な冷間加工率の範囲
を、Nt含有割合との関係で示すグラフ、第2図は、示
差走査型熱量計による従来のN1Tj形状記憶合金の変
態点測定結果を示すグラフ、第3図は、拘束歪付与下で
実施される最終形状記憶熱処理時の試料形状並びに可逆
的形状記憶機能を有する試料の形状変化例を示、す模式
図であり、第3図(a)は最終形状記憶熱処理時の試料
形状を、そして第3図(b)は可逆的形状記憶機能を有
する試料の形状変化例をそれぞれ示す、第4図は、中間
相の出現した示差走査型熱量計による変態点測定曲線並
びにMs’点とAf点との温度差を測定するための示差
走査型熱量計による変態点測定曲線であり、第4図(a
)°は中間相の出現した示差走査型熱量計による変態点
測定曲線を、そして第4図(b)はMs’点とAf点と
の温度差を測定するための示差走査型熱量計による変態
点測定曲線をそれぞれ示す、 第5図は、NiTi形状記憶合金材の昇温・降温過程の
作動曲線である。 出願人  日本ステンレス株式会社 代理人  弁理士 今 井  毅 第 I I 12図 第3図 (b) χ4図
Fig. 1 is a graph showing the range of cold working rate necessary for producing the desired excellent reversible shape memory effect in NfTi shape memory alloy in relation to the Nt content. A graph showing the transformation point measurement results of a conventional N1Tj shape memory alloy using a differential scanning calorimeter, Figure 3 shows the sample shape during the final shape memory heat treatment carried out under constraint strain and has a reversible shape memory function. FIG. 3(a) is a schematic diagram showing an example of shape change of a sample; FIG. 3(a) shows the shape of the sample during final shape memory heat treatment, and FIG. 3(b) shows shape change of a sample with reversible shape memory function. FIG. 4, which shows examples, shows a transformation point measurement curve using a differential scanning calorimeter where an intermediate phase has appeared, and a transformation point measurement curve using a differential scanning calorimeter for measuring the temperature difference between the Ms' point and the Af point. It is a curve, as shown in Figure 4 (a
)° is the transformation point measured curve using a differential scanning calorimeter where an intermediate phase has appeared, and Fig. 4(b) shows the transformation curve measured using a differential scanning calorimeter to measure the temperature difference between the Ms' point and the Af point. FIG. 5, which shows point measurement curves, is an operating curve of the NiTi shape memory alloy material in the temperature rising and cooling process. Applicant Nippon Stainless Co., Ltd. Agent Patent Attorney Takeshi Imai I I Figure 12 Figure 3 (b) χ4 diagram

Claims (1)

【特許請求の範囲】[Claims] (1)重量割合にて50.0〜60.0%のNiを含有
するとともに、残部が実質的にTiから成るNiTi形
状記憶合金の熱間加工材に、第1図における点A、B、
C、Dを結んだ線上以上60%以下の冷間加工を施し、
続いて300〜650℃での最終形状記憶熱処理を0.
2〜5.0%の歪付与下にて1分以上施すことを特徴と
する、可逆形状変化特性を有し、かつヒステリシスが小
さいNiTi形状記憶合金材の製造方法。(2)重量割
合にて50.0〜60.0%のNiを含有するとともに
、残部が実質的にTiから成るNiTi形状記憶合金の
熱間加工材に、第1図における点A、B、C、Dを結ん
だ線上以上60%以下の冷間加工を施し、続いて650
℃を超える温度で1分以上の固溶化熱処理を行った後、
更に300〜650℃での最終形状記憶熱処理を0.2
〜5.0%の歪付与下にて1分以上施すことを特徴とす
る、可逆形状変化特性を有し、かつヒステリシスが小さ
いNiTi形状記憶合金材の製造方法。
(1) Points A, B in FIG. 1,
Perform cold working on the line connecting C and D to 60% or less,
Subsequently, a final shape memory heat treatment at 300-650°C was performed to a temperature of 0.
A method for producing a NiTi shape memory alloy material having reversible shape change characteristics and small hysteresis, the method comprising applying a strain of 2 to 5.0% for 1 minute or more. (2) Points A, B in FIG. Cold working is performed on the line connecting C and D to 60% or less, and then 650%
After performing solution heat treatment for 1 minute or more at a temperature exceeding ℃,
Furthermore, the final shape memory heat treatment at 300-650℃ was performed by 0.2
A method for producing a NiTi shape memory alloy material having reversible shape change characteristics and having small hysteresis, the method comprising applying a strain of ~5.0% for 1 minute or more.
JP4040986A 1986-02-27 1986-02-27 Manufacture of shape memory alloy material Pending JPS62199757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4040986A JPS62199757A (en) 1986-02-27 1986-02-27 Manufacture of shape memory alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4040986A JPS62199757A (en) 1986-02-27 1986-02-27 Manufacture of shape memory alloy material

Publications (1)

Publication Number Publication Date
JPS62199757A true JPS62199757A (en) 1987-09-03

Family

ID=12579862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4040986A Pending JPS62199757A (en) 1986-02-27 1986-02-27 Manufacture of shape memory alloy material

Country Status (1)

Country Link
JP (1) JPS62199757A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462431A (en) * 1987-08-31 1989-03-08 Fujio Miura Superelastic alloy material
US6106642A (en) * 1998-02-19 2000-08-22 Boston Scientific Limited Process for the improved ductility of nitinol
US6165292A (en) * 1990-12-18 2000-12-26 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
US6508754B1 (en) 1997-09-23 2003-01-21 Interventional Therapies Source wire for radiation treatment
US6682608B2 (en) 1990-12-18 2004-01-27 Advanced Cardiovascular Systems, Inc. Superelastic guiding member

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462431A (en) * 1987-08-31 1989-03-08 Fujio Miura Superelastic alloy material
US6165292A (en) * 1990-12-18 2000-12-26 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
US6461453B1 (en) 1990-12-18 2002-10-08 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
US6592570B2 (en) 1990-12-18 2003-07-15 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
US6638372B1 (en) 1990-12-18 2003-10-28 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
US6682608B2 (en) 1990-12-18 2004-01-27 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
US7258753B2 (en) 1990-12-18 2007-08-21 Abbott Cardiovascular Systems Inc. Superelastic guiding member
US6508754B1 (en) 1997-09-23 2003-01-21 Interventional Therapies Source wire for radiation treatment
US6106642A (en) * 1998-02-19 2000-08-22 Boston Scientific Limited Process for the improved ductility of nitinol
US6540849B2 (en) 1998-02-19 2003-04-01 Scimed Life Systems, Inc. Process for the improved ductility of nitinol

Similar Documents

Publication Publication Date Title
US4533411A (en) Method of processing nickel-titanium-base shape-memory alloys and structure
Piao et al. Characteristics of deformation and transformation in Ti44Ni47Nb9 shape memory alloy
CA1059797A (en) Alloys with repeatedly reversible shape memory effect
US4654092A (en) Nickel-titanium-base shape-memory alloy composite structure
US5958159A (en) Process for the production of a superelastic material out of a nickel and titanium alloy
JPS6214619B2 (en)
JPS6237353A (en) Manufacture of shape memory alloy
JPH01279736A (en) Heat treatment for beta titanium alloy stock
JPS58157934A (en) Shape memory alloy
JPS59150069A (en) Manufacture of shape memory alloy
JPS62199757A (en) Manufacture of shape memory alloy material
EP1574587B1 (en) METHOD OF THERMO-MECHANICAL-TREATMENT FOR Fe-Mn-Si SHAPE-MEMORY ALLOY DOPED WITH NbC
JPS62199758A (en) Manufacture of shape memory alloy material
Jardine et al. Effects of cooling rate on the shape memory effect thermodynamics of NiTi
JPH01242763A (en) Manufacture of ti-ni shape memory alloy reduced in hysteresis
JPS6144150B2 (en)
JPS60103166A (en) Manufacture of shape memory alloy
JPS624462B2 (en)
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JPH0885855A (en) Production of titanium-nickel superelastic material
JPH08209314A (en) Production of shape memory alloy with high-temperature phase-transferring function
JP3344946B2 (en) Functionally graded alloy and method for producing the same
JP2732525B2 (en) Manufacturing method of shape memory alloy
JPH108168A (en) Nickel-titanium-zirconium(hafnium) shape memory alloy improved in workability
JP4028008B2 (en) NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material