【発明の詳細な説明】
(技術分野)
本発明は、Ti−Ni−Cu系の形状記憶合金の製造方法に
関するものである。
(背景技術)
形状記憶合金は組成で大別すると、Ni−Ti系と、Cu系
(例えば、Cu−Zn−Al系、Cu−Al−Ni系等)に分けるこ
とができる。一般的にNi−Ti系の方が信頼性が高く、ま
た、耐食性も良好で、実用例が多い。形状記憶合金は、
工業的には、センサーとアクチュエータを兼用した素子
として使用されることが多いが、そのとき、相変態開始
温度や出力荷重の変動等の劣化が少ないことは実用上極
めて重要である。また、比較的高い動作温度を必要とす
る用途は多々ある。しかしながら、現状では、ヒートサ
イクルをかけると特性が劣化することが多く、また作動
温度が比較的低いという問題があった。
形状記憶合金の特性のうち、相変態開始温度や信頼性
(寿命)は相変態の様式、つまり結晶構造変化の様式に
依存する。Ni−Ti系では3種の様式が知られており、こ
れを第1表に示す。 組成の観点から言えば、Ni−Ti合金ではマルテンサイ
ト及びR相が現れ、Ni−Ti−Cu合金ではオーソロミック
相が現れる。なお、Ni−Ti−Cu合金に種々の元素を添加
した形状記憶合金は、特公昭61−54850号公報に開示さ
れており、変態様式についての記述はないが、組成自体
は公知である。
ここで、マルテンサイト相はヒートサイクルによる劣
化が激しく、また、R相はこの劣化が非常に少ないが、
相変態開始温度が概略50℃以下と低く、高温での動作を
必要とする用途には使用できないという欠点がある。
(発明の目的)
本発明は上述のような点に鑑みてなされたものであ
り、その目的とするところは、相変態開始温度が概略50
℃以上と高く、且つヒートサイクルをかけても劣化の少
ない形状記憶合金の製造方法を提供することにある。
(発明の開示)
本発明に係る形状記憶合金の製造方法にあっては、上
記の目的を達成するために、Tiを49.5乃至50.5原子%、
Cuを5.5乃至12原子%含み、低温相がオーソロミック相
となるTi−Ni−Cu3元系の合金を冷間加工した後、350乃
至600℃の低温熱処理を施すことを特徴とするものであ
る。
本発明者らは、実験の結果、オーソロミック相変態が
ヒートサイクルの繰り返しによる劣化度が少なく、信頼
性に優れることを見出した。そこで、このオーソロミッ
ク変態が現れる範囲で、相変態開始温度を上げるべく組
成を限定した。その組成は、Ni−Ti−Cu3元系で、Tiが4
9.5乃至50.5原子%が適正である。この範囲内で相変態
開始温度が最高となり、この範囲を外すと、温度が低下
する。また、Cuの含有量は5.5乃至12原子%が適正であ
る。5.5原子%未満になると、変態様式がCuを添加しな
いNi−Ti合金と同じくマルテンサイト変態となり、12原
子%を越えると、熱間加工が困難となるからである。以
上のように、Niが49.5乃至50.5原子%、Cuが5.5乃至12
原子%の範囲がオーソロミック変態を行い、且つ、相変
態開始温度の高い範囲である。
また、上記組成の合金材料に冷間加工を施した後、低
温熱処理を施して、材料に加工歪を残し、信頼性をさら
に向上させた。冷間加工率は概略10%〜40%が適正であ
る。10%未満では信頼性(寿命)改善の効果が小さく、
40%を越えると冷間加工ができなくなるからである。熱
処理温度は350℃乃至600℃が適正である。350℃未満に
なると記憶効果が不十分で出力荷重が小さくなり、600
℃以上になると、冷間加工時の歪が除去されて、信頼性
が低下する。
実施例
所定の組成のNi−Ti−Cu合金材料をアーク炉での溶解
により得た。この合金材料を温度950℃で5時間焼鈍し
た後、圧延ロールにて熱間加工を施し、5mmφの線材を
得た。焼鈍を繰り返しながら、線引加工を行った後、90
0℃で最終焼鈍を行った。その後、加工率30%の冷間加
工を行い、0.6mmφの線材を得た。この線材を治具に巻
き付けて、コイル状に成形拘束した後、所定の温度で低
温熱処理を施し、形状記憶処理を行った。
このようにして作成した形状記憶合金について、定歪
状態(せん断歪0.7%)での温度−荷重特性、及びヒー
トサイクル試験後の温度−荷重特性を測定した。具体的
には、ヒートサイクル試験前後で、第1図に示すような
温度−荷重曲線を求めて、この曲線より相変態開始温度
As、相変態終了温度Afを求めた。また、試験前後での出
力荷重Pの比を算出して、劣化度を評価した。第1図に
おいて、Asは低温相から高温相への相変態開始温度、Af
は同じく相変態終了温度、Msは高温相から低温相への相
変態開始温度、Mfは同じく相変態終了温度、Pは出力荷
重、Tは温度である。ヒートサイクル試験は低温側0
℃、高温側100℃とし、相変態開始温度Asと相変態終了
温度Afをはさむ温度範囲での温度上昇と温度下降を繰り
返すことにより行った。なお、サイクル数は300回とし
た。
第2表から分かるように、本発明による形状記憶合金
は、低温相から高温相への相変態開始温度Asが高く、概
略50℃以上である。また、ヒートサイクル試験の前後
で、出力荷重比が70%以上であり、相変態開始温度Asや
相変態終了温度Afの変動は1℃以下である。したがっ
て、劣化度が少なく、繰り返し使用時の作動温度や出力
荷重の信頼性が高いと言える。
(発明の効果)
本発明は上述のように、Ti−Ni−Cu系の形状記憶合金
において、相変態開始温度が高く、且つ低温相がオーソ
ロミック相となるような組成の合金材料を冷間加工した
後、低温熱処理を施すようにしたので、比較的高い一定
の温度で動作し、しかも、ヒートサイクルによる劣化が
少ない形状記憶合金が得られるという効果がある。Description: TECHNICAL FIELD The present invention relates to a method for producing a Ti—Ni—Cu based shape memory alloy. (Background Art) Shape memory alloys can be broadly classified into Ni-Ti-based and Cu-based (for example, Cu-Zn-Al-based, Cu-Al-Ni-based, etc.) compositions. Generally, the Ni-Ti system has higher reliability and good corrosion resistance, and has many practical examples. Shape memory alloys
Industrially, it is often used as an element that serves both as a sensor and an actuator. At that time, it is extremely important in practical use that deterioration such as a change in the phase transformation start temperature and a change in output load is small. There are many applications that require relatively high operating temperatures. However, at present, there is a problem that the characteristics are often deteriorated when a heat cycle is applied, and the operating temperature is relatively low. Among the properties of the shape memory alloy, the phase transformation onset temperature and reliability (lifetime) depend on the mode of phase transformation, that is, the mode of crystal structure change. In the Ni-Ti system, three types are known, and these are shown in Table 1. From the viewpoint of composition, martensite and an R phase appear in the Ni-Ti alloy, and an orthoromic phase appears in the Ni-Ti-Cu alloy. Incidentally, a shape memory alloy obtained by adding various elements to a Ni-Ti-Cu alloy is disclosed in Japanese Patent Publication No. 61-54850, and the composition itself is publicly known, although there is no description about the variant formula. Here, the martensite phase is severely deteriorated by the heat cycle, and the R phase is very little deteriorated.
There is a drawback that the phase transformation starting temperature is as low as about 50 ° C. or less, and cannot be used for applications requiring operation at a high temperature. (Object of the Invention) The present invention has been made in view of the above-mentioned points, and an object thereof is to achieve a phase transformation start temperature of about 50%.
It is an object of the present invention to provide a method for producing a shape memory alloy having a temperature as high as not less than ° C. and having little deterioration even when subjected to a heat cycle. (Disclosure of the Invention) In the method for producing a shape memory alloy according to the present invention, in order to achieve the above object, Ti is contained in 49.5 to 50.5 atomic%,
It is characterized in that after cold-working a Ti-Ni-Cu ternary alloy containing 5.5 to 12 atomic% of Cu and whose low-temperature phase is an orthoromic phase, a low-temperature heat treatment at 350 to 600 ° C is performed. The present inventors have found that, as a result of experiments, the orthoromic phase transformation has a low degree of deterioration due to repeated heat cycles and is excellent in reliability. Therefore, the composition was limited in order to increase the phase transformation onset temperature within the range where the orthoromic transformation appears. Its composition is Ni-Ti-Cu ternary system, Ti is 4
9.5 to 50.5 atomic% is appropriate. Within this range, the phase transformation start temperature is the highest, and outside this range, the temperature decreases. It is appropriate that the content of Cu is 5.5 to 12 atomic%. If the content is less than 5.5 at%, the transformation formula becomes martensitic transformation as in the case of the Ni-Ti alloy to which Cu is not added, and if it exceeds 12 at%, hot working becomes difficult. As described above, 49.5 to 50.5 at% of Ni and 5.5 to 12 at% of Cu
The range of atomic% is a range in which orthoromic transformation is performed and the phase transformation start temperature is high. Further, after performing cold working on the alloy material having the above composition, a low-temperature heat treatment was performed to leave working strain in the material, thereby further improving reliability. The appropriate cold working rate is approximately 10% to 40%. If it is less than 10%, the effect of improving reliability (lifetime) is small,
If it exceeds 40%, cold working cannot be performed. The appropriate heat treatment temperature is 350 ° C to 600 ° C. Below 350 ° C, the memory effect is insufficient and the output load decreases,
When the temperature is higher than ° C., distortion during cold working is removed, and reliability is reduced. Example A Ni-Ti-Cu alloy material having a predetermined composition was obtained by melting in an arc furnace. After annealing this alloy material at a temperature of 950 ° C. for 5 hours, it was subjected to hot working with a rolling roll to obtain a 5 mmφ wire. After wire drawing while repeating annealing, 90
A final anneal was performed at 0 ° C. Thereafter, cold working was performed at a working ratio of 30% to obtain a 0.6 mmφ wire. After winding this wire around a jig and constraining it in a coil shape, a low-temperature heat treatment was performed at a predetermined temperature to perform a shape memory process. With respect to the shape memory alloy thus prepared, temperature-load characteristics in a constant strain state (shear strain 0.7%) and temperature-load characteristics after a heat cycle test were measured. Specifically, before and after the heat cycle test, a temperature-load curve as shown in FIG.
As and the phase transformation end temperature Af were determined. The ratio of the output load P before and after the test was calculated to evaluate the degree of deterioration. In FIG. 1, As is the onset temperature of the phase transformation from the low-temperature phase to the high-temperature phase, Af
Is the phase transformation end temperature, Ms is the phase transformation start temperature from the high temperature phase to the low temperature phase, Mf is the phase transformation end temperature, P is the output load, and T is the temperature. Heat cycle test is 0
C., 100 ° C. on the high temperature side, and the temperature was raised and lowered repeatedly in a temperature range between the phase transformation start temperature As and the phase transformation end temperature Af. The number of cycles was 300 times. As can be seen from Table 2, the shape memory alloy according to the present invention has a high phase transformation start temperature As from a low-temperature phase to a high-temperature phase, which is approximately 50 ° C. or more. Before and after the heat cycle test, the output load ratio is 70% or more, and the variation of the phase transformation start temperature As and the phase transformation end temperature Af is 1 ° C. or less. Therefore, it can be said that the degree of deterioration is small, and the reliability of the operating temperature and output load during repeated use is high. (Effect of the Invention) As described above, the present invention provides a Ti-Ni-Cu-based shape memory alloy by cold working an alloy material having a high phase transformation onset temperature and a composition in which the low-temperature phase becomes an orthoromic phase. After that, a low-temperature heat treatment is performed, so that there is an effect that a shape memory alloy that operates at a relatively high constant temperature and that is less deteriorated by a heat cycle can be obtained.
【図面の簡単な説明】
第1図は本発明の方法により製造される形状記憶合金の
温度−荷重特性を示す図である。
Asは相変態開始温度、Pは出力荷重である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing temperature-load characteristics of a shape memory alloy manufactured by the method of the present invention. As is the phase transformation start temperature, and P is the output load.