JPH0128252B2 - - Google Patents

Info

Publication number
JPH0128252B2
JPH0128252B2 JP10173482A JP10173482A JPH0128252B2 JP H0128252 B2 JPH0128252 B2 JP H0128252B2 JP 10173482 A JP10173482 A JP 10173482A JP 10173482 A JP10173482 A JP 10173482A JP H0128252 B2 JPH0128252 B2 JP H0128252B2
Authority
JP
Japan
Prior art keywords
spring
strain
superelastic
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10173482A
Other languages
Japanese (ja)
Other versions
JPS58217834A (en
Inventor
Akira Oono
Yutaka Utsunomya
Hiroshi Koyama
Shigemi Sato
Shigeru Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP10173482A priority Critical patent/JPS58217834A/en
Publication of JPS58217834A publication Critical patent/JPS58217834A/en
Publication of JPH0128252B2 publication Critical patent/JPH0128252B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)

Description

【発明の詳細な説明】 本発明は、ばね材として熱弾性型マルテンサイ
ト変態を示す合金を用いた超弾性ばねに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superelastic spring using an alloy exhibiting thermoelastic martensitic transformation as a spring material.

従来、超弾性ばねに用いられる材料はTi−Ni、
Ti−Ni−X(X:Cu、Fe、Cr等)の熱弾性型マ
ルテンサイト変態をする合金であつて、逆変態終
了温度Afを室温以下(使用温度以下)になるよ
うにした合金組成の超弾性合金が使用されてい
る。
Conventionally, the materials used for superelastic springs are Ti-Ni,
It is an alloy of Ti-Ni-X (X: Cu, Fe, Cr, etc.) that undergoes thermoelastic martensitic transformation, and has an alloy composition whose reverse transformation end temperature Af is below room temperature (below the operating temperature). Superelastic alloys are used.

この種の合金は、第1図に例示したように、超
弾性変形域S1以内であれば、かなり大きなひずみ
(例えば6%程度)を与えても除荷すると元の形
状に復帰することが知られている。
As illustrated in Figure 1, this type of alloy can return to its original shape after unloading even if a fairly large strain (for example, about 6%) is applied as long as it is within the superelastic deformation region S1 . Are known.

一方、同じく熱弾性型マルテンサイト変態を示
す金属として、形状記憶効果をもつ合金も知られ
ている。このものはAf点が室温以上(例えば数
十度C)であることから、第2図に例示したよう
に、除荷後に加熱することにより、逆変態を生じ
て母相に戻り、形状が復帰する。すなわち形状復
帰に際して加熱操作が必要であることから、超弾
性ばねとして使用するには不向きである。
On the other hand, alloys with shape memory effects are also known as metals that also exhibit thermoelastic martensitic transformation. Since the Af point of this material is above room temperature (for example, several tens of degrees Celsius), as illustrated in Figure 2, by heating it after unloading, it undergoes reverse transformation and returns to the parent phase, and its shape is restored. do. That is, since a heating operation is required to restore the shape, it is not suitable for use as a superelastic spring.

ところで前記超弾性合金を用いたばねを得るに
は、一例として第3図に示したように、超弾性合
金をばね形状に成形後、所定形状に治具で固定し
て、400〜1000℃に加熱し、水などに焼入れして
製作する方法が採用されている。
By the way, in order to obtain a spring using the superelastic alloy, as shown in FIG. 3, the superelastic alloy is formed into a spring shape, fixed in a predetermined shape with a jig, and heated to 400 to 1000°C. However, a method of manufacturing by quenching in water etc. is adopted.

このようにして製造されたばねは、Af点以下
では形状記憶合金と同様の挙動を示すため、Af
点以下の温度では超弾性ばねとしては機能できな
い。しかもAf点以上では応力誘超マルテンサイ
ト変態により超弾性を示すものであるから、ある
温度領域(例えばAf点+30℃程度)を超えると
次第にすべりによる変形が加わり、永久ひずみが
生ずるため、ばねとして不適当な特性となる。
The spring manufactured in this way behaves similar to a shape memory alloy below the Af point, so the Af
It cannot function as a superelastic spring at temperatures below that point. Moreover, above the Af point, it exhibits superelasticity due to stress-induced supermartensitic transformation, so when it exceeds a certain temperature range (for example, Af point + 30°C), deformation due to slipping gradually occurs and permanent strain occurs, so it cannot be used as a spring. This is an inappropriate characteristic.

第4図AないしHは従来の超弾性ばねの使用温
度ごとの応力−ひずみ特性を示し、また第5図は
残留せん断ひずみ(6.1%のせん断ひずみを付加
した後)と、最大荷重とを示したものであつて、
それぞれ試験品として、線径0.4mmの引張りコイ
ルばね、合金組成はTi−50.5at%Niを用いた場
合である。これらの図から知れるように、0℃以
下ではAf点以下であることから超弾性を示さず、
また60℃以上では残留せん断ひずみが認められる
ようになり、超弾性を示す温度範囲が狭いことが
わかる。
Figures 4A to 4H show the stress-strain characteristics of conventional superelastic springs at different operating temperatures, and Figure 5 shows the residual shear strain (after adding 6.1% shear strain) and the maximum load. It is something that
The test items used were tension coil springs with a wire diameter of 0.4 mm and an alloy composition of Ti-50.5at%Ni. As can be seen from these figures, at temperatures below 0°C, the temperature is below the Af point, so it does not exhibit superelasticity.
Moreover, residual shear strain becomes apparent at temperatures above 60°C, indicating that the temperature range in which superelasticity is exhibited is narrow.

しかも従来の超弾性ばねでは、第4図、第5図
からも判るように、温度の上昇とともに荷重が大
きく増加してしまい、温度ごとの応力−ひずみ特
性に大きな変動を生じるという欠点がある。ま
た、応力誘起マルテンサイトによつて超弾性を示
すものであるから、応力−ひずみ特性が非線形と
なり、線型特性が必要なところには使用できない
という欠点もある。しかも、合金組成のわずかな
変動がAf点に大きく影響するため、合金の組成
管理に高度の技術を要し、量産性、コスト上から
大きな欠点となつている。
Moreover, as can be seen from FIGS. 4 and 5, conventional superelastic springs have the disadvantage that the load increases greatly as the temperature rises, causing large fluctuations in the stress-strain characteristics depending on the temperature. Furthermore, since it exhibits superelasticity due to stress-induced martensite, it has the disadvantage that its stress-strain characteristics are non-linear and it cannot be used where linear characteristics are required. Furthermore, since slight variations in the alloy composition greatly affect the Af point, advanced technology is required to control the alloy composition, which is a major drawback in terms of mass production and cost.

しかも従来は、前記したようにコイル成形後に
高温熱処理を行なう必要があるため、特にTiの
ように酸化し易い成分を含む場合には、無酸化熱
処理が必要であるなど、製造に手数がかかりコス
ト高になるという問題もあつた。
Moreover, in the past, as mentioned above, it was necessary to perform high-temperature heat treatment after forming the coil, which meant that non-oxidation heat treatment was required, especially when it contained easily oxidized components such as Ti, making manufacturing time-consuming and costly. There was also the problem of getting high.

本発明は上記事情にもとづきなされたものでそ
の目的とするところは、上記欠点を解決でき、使
用温度範囲が広くかつ酸化や荷重変化の少ない優
れた特性をもつ超弾性ばねを提供することにあ
る。
The present invention was made based on the above circumstances, and its purpose is to provide a superelastic spring that can solve the above drawbacks, has a wide operating temperature range, and has excellent characteristics with little oxidation and load change. .

すなわち本発明は、熱弾性型マルテンサイト変
態を示す合金材料にすべり変形による加工硬化領
域にまでひずみを与えて塑性変形させることによ
り永久ひずみを残留させ、これをばねとして用い
ることを特徴とする超弾性ばねである。
That is, the present invention provides an ultra-high-performance alloy material that is characterized by applying strain to an alloy material exhibiting thermoelastic martensitic transformation and plastically deforming it to the work-hardened region due to sliding deformation, thereby leaving a permanent strain, and using this as a spring. It is an elastic spring.

以下本発明の一実施例について第6図ないし第
9図を参照して説明する。本実施例ではばね材と
してTi−Niの超弾性合金を使用し、この超弾性
合金を、第6図に示した材料製造工程1あるいは
ばね成形工程2において、超弾性領域S1を超える
ひずみ(例えば20%程度)を与えて塑性変形さ
せ、第7図に示されるように永久ひずみを10%以
上(例ば20%程度)残留させる。この永久ひずみ
は、ばね成形後の製品段階で10%以上残留してい
ればよいから、例えば上記材料製造工程1におい
て最終工程で焼なましを行ない、ひずみを完全に
除去した場合は、ばね成形工程2において超弾性
領域S1を超えるひずみを与えてコイリングあるい
はばね板成型を行なう。また、ばね成型時におい
て付与できるひずみ量が小さい場合には、材料製
造工程1において圧延、引抜き加工等の加工率を
大きくしてひずみ量を大きくとり、ばね成形工程
2を実施したのちの合計のひずみ量が超弾性領域
S1を超えるようにする。
An embodiment of the present invention will be described below with reference to FIGS. 6 to 9. In this example, a Ti-Ni superelastic alloy is used as the spring material, and this superelastic alloy is subjected to strain exceeding the superelastic region S 1 ( For example, about 20%) to cause plastic deformation, and as shown in FIG. 7, a permanent strain of 10% or more (for example, about 20%) remains. This permanent strain only needs to remain at least 10% in the product stage after spring forming, so for example, if the strain is completely removed by annealing in the final step of the material manufacturing process 1 above, spring forming In step 2, coiling or spring plate molding is performed by applying a strain exceeding the superelastic region S1 . In addition, if the amount of strain that can be applied during spring forming is small, increase the processing rate of rolling, drawing, etc. in material manufacturing process 1 to obtain a large amount of strain, and perform spring forming process 2. The amount of strain is in the hyperelastic region
Make sure it exceeds S 1 .

以上のように超弾性合金に超弾性領域を超える
大きなひずみを与えると、すべり変形による加工
硬化領域に入り、加工硬化を生じるとともに、す
べりによる塑性変形のために除荷後に永久ひずみ
が残留する。この永久ひずみは、負荷を与えて例
えば20%程度のひずみを与えた場合、除荷後に18
%程度残留する。
As described above, when a superelastic alloy is subjected to a large strain that exceeds the superelastic region, it enters the work hardening region due to slip deformation, resulting in work hardening, and permanent strain remains after unloading due to plastic deformation due to slip. If a load is applied and a strain of, for example, 20% is applied, the permanent strain will be 18% after unloading.
Approximately % remains.

そして上記のように永久ひずみをもたせたばね
材を、低温熱処理工程3において、例えば350℃
以下の低温で加熱する。この加熱により、ばね材
の永久ひずみが一部(数%程度)回復されるた
め、ばねの使用温度が加工・成形時の温度を超え
る場合にばねの変形を防ぐことができる。なお上
記低温熱処理工程3は、ばね形状の安定化を図る
上でなるべく長時間実施することが望ましい。ま
た上記熱処理工程3は治具によつてばねを所定の
形状に固定した状態で行なうようにしてもよい。
Then, the spring material that has been given permanent strain as described above is subjected to low temperature heat treatment step 3 at, for example, 350°C.
Heat at a low temperature below. This heating partially recovers the permanent strain of the spring material (several percent), so it is possible to prevent the spring from deforming when the operating temperature of the spring exceeds the temperature during processing and forming. Note that it is desirable that the low-temperature heat treatment step 3 is carried out for as long as possible in order to stabilize the shape of the spring. Further, the heat treatment step 3 may be performed with the spring fixed in a predetermined shape using a jig.

上記低温熱処理工程3を経たばねは、第7図に
示すようにひずみの一部tが回復するが、大部分
の永久ひずみは残留したままとなる。従つてこれ
に負荷を与えた場合の弾性領域は+3〜5%とな
り、超弾性が維持される。
In the spring that has undergone the low-temperature heat treatment step 3, part of the strain t is recovered as shown in FIG. 7, but most of the permanent strain remains. Therefore, when a load is applied to this, the elastic range is +3 to 5%, and superelasticity is maintained.

しかして上記のように永久ひずみを残留させた
超弾性ばねは、非常に優れた性能を発揮するもの
である。すなわち第8図AないしHは本実施例に
よる超弾性ばねの使用温度ごとの応力−ひずみ特
性を示したものであつて、試験品として、線径
0.4mm、コイル平均径2.5mm、有効巻数10巻のもの
を用い、最大撓みを30mm一定(6.1%のせん断ひ
ずみに相当)として試験を行なつた結果である。
However, a superelastic spring in which a permanent strain remains as described above exhibits extremely excellent performance. In other words, FIGS. 8A to 8H show the stress-strain characteristics of the superelastic spring according to this example at different operating temperatures.
These are the results of a test using a coil with a diameter of 0.4 mm, an average coil diameter of 2.5 mm, and an effective number of turns of 10, with the maximum deflection constant at 30 mm (corresponding to a shear strain of 6.1%).

この図から知れるように、本実施例によれば従
来の超弾性ばねの特性(第4図のもの)と比較し
て除荷後の残留ひずみがなく、かつ使用温度範囲
も−20℃から+80℃までと広いことがわかる。特
に本実施例による超弾性ばねは相変態が見られ
ず、Af点に関係なく超弾性挙動を示すため、従
来の超弾性ばねに比べて特に低温での特性が優れ
ている。しかも、荷重を与えてひずませた場合に
応力誘起マルテンサイトがほとんど生成されない
ため、使用温度が上昇しても荷重増加が少なく、
ばね設計が容易である。
As can be seen from this figure, this example has no residual strain after unloading compared to the characteristics of conventional superelastic springs (the one shown in Figure 4), and the operating temperature range is from -20℃ to +80℃. It can be seen that the range is wide up to ℃. In particular, the superelastic spring according to the present example shows no phase transformation and exhibits superelastic behavior regardless of the Af point, so it has superior characteristics particularly at low temperatures compared to conventional superelastic springs. Moreover, since almost no stress-induced martensite is generated when strain is applied, there is little increase in load even when the operating temperature increases.
Spring design is easy.

すなわち第9図に示されるように、残留せん断
ひずみが広範囲の温度領域にわたつて0であり、
しかも温度変化に伴なう最大荷重の変動も従来の
もの(第5図)に比べて僅かであり、温度の影響
を押えることができるものである。
That is, as shown in FIG. 9, the residual shear strain is 0 over a wide temperature range,
In addition, the variation in maximum load due to temperature changes is small compared to the conventional one (FIG. 5), and the influence of temperature can be suppressed.

しかも従来の超弾性ばねは相変態があるため、
応力誘起マルテンサイトが生成される時に発熱
し、逆変態で吸熱することから繰返し速度が大に
なると熱の放出・吸収が追従できなくなり折損し
易くなるが、本実施例の超弾性ばねはこのような
相変態がないため、繰返し速度が大であつても破
損し易くなることがない。
Moreover, since conventional superelastic springs undergo phase transformation,
Heat is generated when stress-induced martensite is generated, and heat is absorbed during reverse transformation, so when the repetition rate becomes high, the release and absorption of heat cannot follow the same, and the superelastic spring of this example is like this. Since there is no phase transformation, the product does not become easily damaged even at high repetition rates.

なお上記実施例では超弾性合金を用いたが、本
発明は形状記憶合金(Af点が室温以上)を用い
ても同様の効果を得ることができる。すなわち形
状記憶合金を用いる場合、第10図に示されるよ
うに形状記憶変形域S2を超えるひずみを材料製造
時あるいはばね成形時に与えて、すべりによる加
工硬化領域までひずませ、ばねとしての製品段階
で永久ひずみを残留させればよい。形状記憶合金
を用いた場合には、一例として20%程度のひずみ
を与えることにより、15%程度の永久ひずみを残
留させたところ好結果が得られたが、要するに形
状記憶合金および超弾性合金ともに、永久ひずみ
を10%以上残留させることによつて、第8図に示
されるような良好な特性が得られた。要するに本
発明は熱弾性型マルテンサイト変態を示す合金で
あればAf点には無関係であり、すべり変形によ
る加工硬化領域までひずみを与えて塑性変形させ
ればよい。
Although a superelastic alloy was used in the above embodiment, the same effect can be obtained in the present invention even by using a shape memory alloy (having an Af point of room temperature or higher). In other words, when using a shape memory alloy, as shown in Figure 10, a strain exceeding the shape memory deformation range S 2 is applied during material manufacturing or spring forming to reach the work hardening region due to slippage, and the product as a spring is produced. It is sufficient to allow permanent strain to remain in the step. When using a shape memory alloy, good results were obtained by applying a strain of about 20% to leave a permanent strain of about 15%, but in short, both shape memory alloys and superelastic alloys By maintaining a permanent strain of 10% or more, good characteristics as shown in FIG. 8 were obtained. In short, the present invention has no relation to the Af point as long as the alloy exhibits thermoelastic martensitic transformation, and it is sufficient to apply strain to the work hardening region due to sliding deformation to cause plastic deformation.

なお前記実施例では低温熱処理工程3を実施す
ることによつて、予めひずみの一部tを回復さ
せ、ばね使用時の温度が加工・成形時の温度を上
回つてもひずみが回復しないようにしたが、加
工・成形時の温度以下でのみ使用される場合に
は、特に低温熱処理工程3を実施しなくとも実用
上差支えはない。
In addition, in the above example, by performing the low temperature heat treatment step 3, a part of the strain t is recovered in advance, so that the strain will not be recovered even if the temperature during use of the spring exceeds the temperature during processing/forming. However, if it is used only at a temperature below the temperature during processing and molding, there is no practical problem even if the low-temperature heat treatment step 3 is not performed.

また本発明はコイルばねは勿論のこと、板ばね
やトーシヨンバーその他のばね製品に適用可能で
ある。
Further, the present invention is applicable not only to coil springs but also to leaf springs, torsion bars, and other spring products.

本発明は前記したように、永久ひずみを残留さ
せた熱弾性型マルテンサイト変態を示す合金をば
ね材として用いたものであり、Af点に関係なく
広範囲な温度領域で優れた超弾性を示し、使用温
度による影響が少なくかつ線形に近いばね特性が
得られる。従つて広汎な用途に使用可能であり、
ばね設計も容易である。
As described above, the present invention uses an alloy exhibiting thermoelastic martensitic transformation with residual permanent strain as a spring material, and exhibits excellent superelasticity in a wide temperature range regardless of the Af point. Spring characteristics that are less affected by operating temperature and are close to linear can be obtained. Therefore, it can be used for a wide range of purposes,
Spring design is also easy.

しかも従来のようにばね成形後に高温熱処理す
る必要はなく、ばね成形後は熱処理することな
く、あるいは低温熱処理のみでよいから、無酸化
熱処理のように手間の掛る処理が不要であり、合
金組成の管理も容易であるので、安価でかつ量産
に適するなど、大きな効果がある。
Moreover, there is no need for high-temperature heat treatment after spring forming as in conventional methods, and there is no need for heat treatment or only low-temperature heat treatment after spring forming, which eliminates the need for time-consuming treatments such as non-oxidation heat treatment, and improves alloy composition. Since it is easy to manage, it is inexpensive and suitable for mass production, which has great effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超弾性合金の応力−ひずみ特性を示す
図、第2図は形状記憶合金の応力−ひずみ特性を
示す図、第3図は従来の超弾性ばねの製造工程の
一例を工程順に示すブロツク図、第4図はAない
しHは従来の超弾性ばねの応力−ひずみ特性を示
す図、第5図は従来の超弾性ばねの残留せん断ひ
ずみと最大荷重の特性を示す図。第6図ないし第
9図は本発明の一実施例を示し、第6図は超弾性
ばねの製造工程を工程順に示すブロツク図、第7
図は超弾性合金にすべり変形による加工硬化領域
までひずみを与えた場合の応力−ひずみ曲線図、
第8図AないしHは超弾性ばねの応力−ひずみ特
性を示す図、第9図は残留せん断ひずみと最大荷
重の特性を示す図。第10図は形状記憶合金にす
べり変形による加工硬化領域までひずみを与えた
場合の応力−ひずみ曲線図である。 2……ばね成形工程、3……低温熱処理工程。
Figure 1 shows the stress-strain characteristics of a superelastic alloy, Figure 2 shows the stress-strain characteristics of a shape memory alloy, and Figure 3 shows an example of the manufacturing process of a conventional superelastic spring in order of process. In the block diagram, FIGS. 4A to 4H are diagrams showing stress-strain characteristics of a conventional superelastic spring, and FIG. 5 is a diagram showing characteristics of residual shear strain and maximum load of a conventional superelastic spring. 6 to 9 show one embodiment of the present invention, FIG. 6 is a block diagram showing the manufacturing process of a superelastic spring in order of process, and FIG.
The figure shows the stress-strain curve when strain is applied to a superelastic alloy to the work-hardening region due to sliding deformation.
8A to 8H are diagrams showing the stress-strain characteristics of a superelastic spring, and FIG. 9 is a diagram showing the characteristics of residual shear strain and maximum load. FIG. 10 is a stress-strain curve diagram when strain is applied to a shape memory alloy to the extent of work hardening due to sliding deformation. 2... Spring forming process, 3... Low temperature heat treatment process.

Claims (1)

【特許請求の範囲】 1 熱弾性型マルテンサイト変態を示す合金材料
をばね材として用い、このばね材にすべり変形に
よる加工硬化領域までひずみを与えて永久ひずみ
を残留させたことを特徴とする超弾性ばね。 2 上記永久ひずみを10%以上残留させたことを
特徴とする特許請求の範囲第1項記載の超弾性ば
ね。
[Claims of Claims] 1. An ultrasonic device characterized in that an alloy material exhibiting thermoelastic martensitic transformation is used as a spring material, and the spring material is strained to a work-hardened region due to sliding deformation so that permanent strain remains. elastic spring. 2. The superelastic spring according to claim 1, characterized in that the permanent strain remains at 10% or more.
JP10173482A 1982-06-14 1982-06-14 Superelastic spring Granted JPS58217834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10173482A JPS58217834A (en) 1982-06-14 1982-06-14 Superelastic spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10173482A JPS58217834A (en) 1982-06-14 1982-06-14 Superelastic spring

Publications (2)

Publication Number Publication Date
JPS58217834A JPS58217834A (en) 1983-12-17
JPH0128252B2 true JPH0128252B2 (en) 1989-06-01

Family

ID=14308484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10173482A Granted JPS58217834A (en) 1982-06-14 1982-06-14 Superelastic spring

Country Status (1)

Country Link
JP (1) JPS58217834A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112068U (en) * 1984-06-27 1986-01-24 三菱製鋼株式会社 spring contact probe
JP2547200B2 (en) * 1986-11-06 1996-10-23 古河電気工業株式会社 NiTi-based shape memory alloy coil spring manufacturing method
US6371463B1 (en) 2000-04-21 2002-04-16 Dpd, Inc. Constant-force pseudoelastic springs and applications thereof
US6664702B2 (en) 2000-12-11 2003-12-16 Dpd, Inc. Pseudoelastic springs with concentrated deformations and applications thereof
JP5790544B2 (en) * 2012-03-02 2015-10-07 新日鐵住金株式会社 Heat treatment method for coil spring material and jig for heat treatment

Also Published As

Publication number Publication date
JPS58217834A (en) 1983-12-17

Similar Documents

Publication Publication Date Title
JPH0411617B2 (en)
US4019925A (en) Metal articles having a property of repeatedly reversible shape memory effect and a process for preparing the same
US5641364A (en) Method of manufacturing high-temperature shape memory alloys
JPS6214619B2 (en)
US4502896A (en) Method of processing beta-phase nickel/titanium-base alloys and articles produced therefrom
US4067752A (en) Austenitic aging of metallic compositions
JPH076047B2 (en) Shape memory alloy manufacturing method
JPH0128252B2 (en)
JPH0251976B2 (en)
JPS5818427B2 (en) Method for producing metal articles with repeated shape memory
US20050236077A1 (en) Method of thermo-mechanical-treatment for fe-mn-si shape-memory alloy doped with nbc
JPH0665740B2 (en) Method for manufacturing NiTi-based shape memory material
US5043027A (en) Method of reestablishing the malleability of brittle amorphous alloys
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JPS61227141A (en) Niti shape memory alloy wire
JPS6140741B2 (en)
JPH0317238A (en) Cu-al-mn series shape memory alloy and its manufacture
JP4017892B2 (en) Method for producing alloys with high vibration damping performance
JPH0762506A (en) Production of superelastic spring
JP2706273B2 (en) Superelastic Ni-Ti-Cu alloy and method for producing the same
JPH0238547A (en) Manufacture of ti-ni shape memory alloy
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
US3084082A (en) Method of age hardening magnetostrictive cores
CA1038653A (en) Heat-treating method
JPS6157389B2 (en)