JPH0762506A - Production of superelastic spring - Google Patents

Production of superelastic spring

Info

Publication number
JPH0762506A
JPH0762506A JP22797293A JP22797293A JPH0762506A JP H0762506 A JPH0762506 A JP H0762506A JP 22797293 A JP22797293 A JP 22797293A JP 22797293 A JP22797293 A JP 22797293A JP H0762506 A JPH0762506 A JP H0762506A
Authority
JP
Japan
Prior art keywords
spring
superelastic
elastic region
final cold
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22797293A
Other languages
Japanese (ja)
Inventor
Hiroshi Horikawa
宏 堀川
Tatsuhiko Ueki
達彦 植木
Kazuo Matsubara
和男 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP22797293A priority Critical patent/JPH0762506A/en
Publication of JPH0762506A publication Critical patent/JPH0762506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)

Abstract

PURPOSE:To develop the excellent superelastic spring having a wide straight elastic region by forming an Ni-Ti superelastic alloy wire by final cold working at a specific reduction ratio to a spring and subjecting this spring to a heat treatment under specific temp. conditions. CONSTITUTION:The Ni-Ti alloy wire having 50.5 to 51.5 or 49.5 to 51.5 ratio of Ni:Ti by atomic % and contg <=1% in total of one or >=2 kinds among Fe, Co, Cr, V, Pd and Al is worked at 40 to 45% final cold reduction ratio and is then formed to the spring. This Ni-Ti alloy spring is heat treated at 200 to 450 deg.C in the atm. The excellent superelastic spring having the large threshold shearing strain of the straight elastic region and the wide straight elastic region is thus obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超弾性ばねに関し、特に
直線弾性域が広いばねが得られる製造方法に係るもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superelastic spring, and more particularly to a manufacturing method capable of obtaining a spring having a wide linear elastic region.

【0002】[0002]

【従来の技術】通常のステンレス鋼線を用いたコイルば
ねを設計する場合は、設計応力が約40 kgf/mm2
下、横弾性係数7000 kgf/mm2 であるから、せん断
ひずみ量は0.75%以下で使うことがよいとされてい
る。使用できるたわみ量は、コイル形状を工夫して設計
することにより、広くしていた。しかし、前述のよう
に、せん断ひずみ量は適正な使用をしようとすると、設
計に限界があった。
2. Description of the Related Art When designing a coil spring using a normal stainless steel wire, the design stress is about 40 kgf / mm 2 or less and the transverse elastic modulus is 7,000 kgf / mm 2 , so that the shear strain amount is 0. It is recommended to use it at 75% or less. The amount of deflection that can be used was widened by devising and designing the coil shape. However, as described above, the amount of shear strain is limited in design when it is used properly.

【0003】一方、原子%で1対1近傍のNi−Ti合
金は、高温相の母相状態で立方晶構造をとり、これを冷
却するとマルテンサイト変態温度で変態して単斜晶構造
のマルテンサイト相となる。形状記憶効果を期待する場
合は、まさにこの変態による結晶構造の変化による、形
状回復現象を利用する。これに対して、これらの合金
は、マルテンサイト変態温度が使用環境温度以下である
場合に限って超弾性材料として、使用できる。すなわ
ち、母相状態で、外力が加わると、応力によって誘起マ
ルテンサイト変態が起こり、外力を取り去ると、熱的に
安定している母相に戻るためである。例えば線材の引張
り試験によって6〜8%の変形を加えても元に戻る弾性
現象である。この超弾性現象を利用したものに眼鏡フレ
ーム、歯列矯正ワイヤー等が実用化されている。
On the other hand, a Ni-Ti alloy having an atomic percentage of about 1: 1 has a cubic structure in the parent phase of a high temperature phase, and when cooled, it transforms at the martensitic transformation temperature and has a monoclinic structure. Become the site phase. When a shape memory effect is expected, the shape recovery phenomenon due to the change of the crystal structure due to this transformation is utilized. On the other hand, these alloys can be used as a superelastic material only when the martensitic transformation temperature is equal to or lower than the use environment temperature. That is, when an external force is applied in the mother phase state, induced martensitic transformation occurs due to stress, and when the external force is removed, the thermally stable mother phase is restored. For example, it is an elastic phenomenon that returns to its original value even if a deformation of 6 to 8% is applied by a tensile test of a wire rod. Eyeglass frames, orthodontic wires, and the like have been put into practical use for those utilizing this superelasticity phenomenon.

【0004】上記の超弾性Ni−Ti合金は、その特性
から当然ばね材として大きな期待が持たれている。超弾
性ばねは、本質的に非線形ばねであるため、非線形性を
活かした使用方法が考えられるが、通常のばねとは性質
が異なるため、加工方法、ばね形状の加工、熱処理方法
などが難しく、広いたわみ範囲を有し、直線弾性域の広
い超弾性ばねは得られなかった。
The above-mentioned superelastic Ni--Ti alloy is naturally expected to be a spring material because of its characteristics. Since the superelastic spring is essentially a non-linear spring, it can be considered to be used by taking advantage of the non-linearity.However, since it has different properties from ordinary springs, it is difficult to process it, process the spring shape, heat treat it, etc. A superelastic spring having a wide deflection range and a wide linear elastic range could not be obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の問題に
ついて検討の結果なされたもので、製造が容易で、かつ
広いたわみ範囲を有し、直線弾性が広い超弾性ばねが得
られる製造方法を開発したものである。
DISCLOSURE OF THE INVENTION The present invention has been made as a result of studying the above problems, and provides a manufacturing method which is easy to manufacture and has a wide deflection range and a superelastic spring having a wide linear elasticity. It was developed.

【0006】[0006]

【課題を解決するための手段】本発明はNi−Ti系超
弾性合金線材を、最終冷間加工率が10〜45%として
加工した後、ばねに成形し、次いで200〜450℃で
熱処理を行うことを特徴とする超弾性ばねの製造方法で
ある。
According to the present invention, a Ni-Ti-based superelastic alloy wire rod is processed into a spring after being processed at a final cold working rate of 10 to 45%, and then heat treated at 200 to 450 ° C. It is a method for manufacturing a superelastic spring, which is characterized in that

【0007】[0007]

【作用】超弾性ばねは、図1の荷重−たわみ曲線図のよ
うに、大きく変形しても完全に元に戻ると言う意味にお
いて確かに弾性範囲が広い。しかし、変形していくと応
力誘起マルテンサイト変態によって、図1のように、ヒ
ステリシスが現れ、ばねとしてたわみを増やしても、荷
重は上昇しないし、かつ、除荷時にはばねにかかる荷重
値が、大きく低下してしまう。したがって、ばねとして
使用する上では、直線の弾性域が広い方が好ましい。
The superelastic spring has a wide elastic range in the sense that it returns to its original shape even if it is greatly deformed, as shown in the load-deflection curve diagram of FIG. However, as it deforms, a stress-induced martensitic transformation causes hysteresis to appear, as shown in FIG. 1. Even if the deflection of the spring is increased, the load does not increase, and the load value applied to the spring during unloading is It will be greatly reduced. Therefore, for use as a spring, it is preferable that the elastic range of the straight line is wide.

【0008】本発明は、この直線の弾性域が広いばねが
得られるようにしたもので、最終冷間加工率を10〜4
5%で加工し、その後ばね成形機によりスプリングバッ
クのないようにしてばねに成形し、その状態で200〜
450℃の温度で熱処理を行うことにより上記の特性の
ばねを得るものである。最終冷間加工率が10%未満で
は上記の特性が得られず、45%を越えると加工が困難
となる。また熱処理温度は200℃未満や450℃を越
えた場合は上記の特性が得られない。本発明の超弾性ば
ねは、その材料の断面形状が、丸線状でも、角でもよ
い。また、ばねの種類としては、コイルばね、ねじりば
ね、うずまきばね、さらばね、板ばねなど、ほとんどの
ばねに適用できる。また本発明におけるNi−Ti系合
金線材は原子%でNiを50.5〜51.5、またはN
iを49.5〜51.5とFe、Co、Cr、V、P
d、Alのうち1種または2種以上を合計1%以下含み
残部TiからなるNi−Ti合金が適用できる。
According to the present invention, a spring having a wide elastic range of the straight line can be obtained, and the final cold working rate is 10 to 4.
It is processed at 5%, and then it is formed into a spring with a spring forming machine so that there is no spring back.
By performing heat treatment at a temperature of 450 ° C., a spring having the above characteristics is obtained. If the final cold working rate is less than 10%, the above properties cannot be obtained, and if it exceeds 45%, working becomes difficult. If the heat treatment temperature is lower than 200 ° C. or higher than 450 ° C., the above characteristics cannot be obtained. The cross-sectional shape of the material of the superelastic spring of the present invention may be round wire or square. Further, as the type of spring, it can be applied to most springs such as a coil spring, a torsion spring, a spiral spring, a flat spring, and a leaf spring. Further, the Ni-Ti alloy wire according to the present invention contains Ni in an amount of 50.5 to 51.5 or N in atomic%.
i is 49.5-51.5 and Fe, Co, Cr, V, P
A Ni-Ti alloy containing 1% or more of d and Al in a total amount of 1% or less and the balance Ti is applicable.

【0009】[0009]

【実施例】以下に本発明の一実施例について説明する。
NiとTiを原子比で51:49の合金線を作製し、最
終の冷間加工率を5〜40%と変化させて合金線を作製
した。この合金線を用いて、線径1.0mm、コイル外径
10mm、巻数8巻の密着引っ張りコイルばね状に、ばね
成形機を使い、成形した。その状態で200〜500℃
で所定時間大気中で熱処理した。出来上がったコイルば
ねを、引張り試験機によって、荷重・たわみ曲線を測定
し、直線弾性域を決定した。ばねのたわみとせん断ひず
みの関係は、 γ=(δd)/(πND2) γ:せん断ひずみ(%) δ:ばねのたわみ(mm) d:材料の直径(mm) N:有効巻数 D:コイル平均径(mm) である。試験結果を表1に示した。
EXAMPLES An example of the present invention will be described below.
An alloy wire having an atomic ratio of Ni and Ti of 51:49 was prepared, and an alloy wire was prepared by changing the final cold working ratio to 5 to 40%. This alloy wire was used to form a contact tension coil spring having a wire diameter of 1.0 mm, a coil outer diameter of 10 mm, and a winding number of 8 using a spring forming machine. 200 ~ 500 ℃ in that state
Was heat-treated in the atmosphere for a predetermined time. Using a tensile tester, the load-deflection curve of the finished coil spring was measured to determine the linear elastic region. The relationship between spring deflection and shear strain is: γ = (δd) / (πND 2 ) γ: Shear strain (%) δ: Spring deflection (mm) d: Material diameter (mm) N: Effective number of turns D: Coil Average diameter (mm). The test results are shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】表から明らかなように本発明に係るNo. 2
〜No.4は、直線弾性域の限界せん断ひずみが1.7〜
1.9%と大きく、直線の弾性域が広いことが判る。こ
れに対しNo.1は線材の加工率が低いため、またNo.5
は熱処理温度が高いため直線弾性域の限界せん断しずみ
が低い。
As is apparent from the table, No. 2 according to the present invention
~ No. No. 4 has a critical shear strain in the linear elastic region of 1.7 to
It is as large as 1.9%, showing that the elastic range of the straight line is wide. On the other hand, No. No. 1 has a low processing rate of the wire rod, and therefore No. 1 5
Since the heat treatment temperature is high, the critical shear strain in the linear elastic region is low.

【0012】[0012]

【発明の効果】以上に説明したように本発明によれば、
直線弾性域が広い優れた超弾性ばねが得られるもので、
ばねの応用される範囲が広がるなど、工業上顕著な効果
を奏する。
As described above, according to the present invention,
This is an excellent super elastic spring with a wide linear elastic range.
It has significant industrial effects such as expanding the range of applications of springs.

【図面の簡単な説明】[Brief description of drawings]

【図1】超弾性ばねの荷重とたわみの関係を示す線図FIG. 1 is a diagram showing the relationship between load and deflection of a superelastic spring.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ni−Ti系超弾性合金線材を、最終冷
間加工率が10〜45%として加工した後、ばねに成形
し、次いで200〜450℃で熱処理を行うことを特徴
とする超弾性ばねの製造方法。
1. A Ni-Ti based superelastic alloy wire rod is formed into a spring after being processed at a final cold working rate of 10 to 45%, and then heat treated at 200 to 450 ° C. Method of manufacturing elastic spring.
JP22797293A 1993-08-20 1993-08-20 Production of superelastic spring Pending JPH0762506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22797293A JPH0762506A (en) 1993-08-20 1993-08-20 Production of superelastic spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22797293A JPH0762506A (en) 1993-08-20 1993-08-20 Production of superelastic spring

Publications (1)

Publication Number Publication Date
JPH0762506A true JPH0762506A (en) 1995-03-07

Family

ID=16869147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22797293A Pending JPH0762506A (en) 1993-08-20 1993-08-20 Production of superelastic spring

Country Status (1)

Country Link
JP (1) JPH0762506A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174688A (en) * 1996-12-18 1998-06-30 Asahi Optical Co Ltd Manufacture of treating implement for endoscope
US6371463B1 (en) 2000-04-21 2002-04-16 Dpd, Inc. Constant-force pseudoelastic springs and applications thereof
US6664702B2 (en) 2000-12-11 2003-12-16 Dpd, Inc. Pseudoelastic springs with concentrated deformations and applications thereof
CN109351801A (en) * 2018-10-31 2019-02-19 张冠华 A kind of preparation method with the Nitinol helical spring for playing fuel factor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174688A (en) * 1996-12-18 1998-06-30 Asahi Optical Co Ltd Manufacture of treating implement for endoscope
US6371463B1 (en) 2000-04-21 2002-04-16 Dpd, Inc. Constant-force pseudoelastic springs and applications thereof
US6664702B2 (en) 2000-12-11 2003-12-16 Dpd, Inc. Pseudoelastic springs with concentrated deformations and applications thereof
CN109351801A (en) * 2018-10-31 2019-02-19 张冠华 A kind of preparation method with the Nitinol helical spring for playing fuel factor

Similar Documents

Publication Publication Date Title
US5951793A (en) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
JP5215855B2 (en) Fe-based alloy and manufacturing method thereof
US9878366B2 (en) Fatigue-resistant Nitinol instrument
KR102488776B1 (en) Metastable β titanium alloys, watch springs based on these alloys and methods for their production
JP2005530929A (en) Beta titanium compounds and their production
JPWO2007066555A1 (en) Co-based alloy and manufacturing method thereof
US20040241037A1 (en) Beta titanium compositions and methods of manufacture thereof
JPH0762506A (en) Production of superelastic spring
JP3560907B2 (en) NiTi-based alloy wire, method for producing the same, and guide wire for catheter using the NiTi-based alloy wire
JP5278987B2 (en) Manufacturing method for eyeglass frames
JPS6184361A (en) Manufacture of pseudoelastic spring
US6419358B1 (en) Pseudoelastic β titanium eyeglass components
WO2004055222A1 (en) METHOD OF THERMO-MECHANICAL-TREATMENT FOR Fe-Mn-Si SHAPE-MEMORY ALLOY DOPED WITH NbC
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JPS58217834A (en) Superelastic spring
Otsuka et al. Superelastic behavior of Fe–Mn–Si–Cr shape memory alloy coil
JPH0762505A (en) Method for using ni-ti superelastic spring
JPH0762476A (en) Super elastic spring
JP3915543B2 (en) Partly superelastic parts and method of manufacturing the same
JPH059686A (en) Production of shape memory niti alloy
JP3239382B2 (en) Superelastic material and method of manufacturing the same
JPS6314834A (en) Tiniv shape memory alloy
JPH0238547A (en) Manufacture of ti-ni shape memory alloy
JP3141328B2 (en) Manufacturing method of super elastic spring alloy
JPH0288737A (en) Super elastic ni-ti-cu alloy and its manufacture