JPH0762505A - Method for using ni-ti superelastic spring - Google Patents

Method for using ni-ti superelastic spring

Info

Publication number
JPH0762505A
JPH0762505A JP22797193A JP22797193A JPH0762505A JP H0762505 A JPH0762505 A JP H0762505A JP 22797193 A JP22797193 A JP 22797193A JP 22797193 A JP22797193 A JP 22797193A JP H0762505 A JPH0762505 A JP H0762505A
Authority
JP
Japan
Prior art keywords
spring
superelastic
temperature
temp
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22797193A
Other languages
Japanese (ja)
Inventor
Hiroshi Horikawa
宏 堀川
Tatsuhiko Ueki
達彦 植木
Kazuo Matsubara
和男 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP22797193A priority Critical patent/JPH0762505A/en
Publication of JPH0762505A publication Critical patent/JPH0762505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Abstract

PURPOSE:To enable the Ni-Ti superelastic spring as a spring having a wide range of the shearing strains to be used and an excellent fatigue characteristic by specifying a service environmental temp. and the transformation temp. of the spring at the time of using the Ni-Ti superelastic spring. CONSTITUTION:An ingot of the Ni-Ti alloy having a compsn. contg., by atomic %, 50.5 to 51.5% Ni or 49.5 to 51.5% Ni and <=1% in total of one or >=2 kinds among Fe, Co, Cr, V, Pd and Al as others, and consisting of the balance Ti is worked to a wire form by hot working and cold working and thereafter, this wire is heat treated for one hour at 450 to 550 deg.C in the atm. This wire has excellent workability as a spring material and its transformation temp. Af point is lower by 5 to 30 deg.C than -40 to 120 deg.C service environmental temp. of this spring material and, therefore, the spring material made of this Ni-Ti alloy is usable in a wide temp. range of -40 deg.C to +120 deg.C and the fatigue strength is excellent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は広いせん断ひずみ範囲を
使用することができる、Ni−Ti系超弾性ばねの使用
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of using a Ni--Ti superelastic spring capable of using a wide shear strain range.

【0002】[0002]

【従来の技術】通常のステンレス鋼線を用いたコイルば
ねを設計する場合は、設計応力が約40kgf/mm2
下、横弾性係数7000kgf/mm2 であるから、せん断
ひずみ量は0.75%以下で使うことがよいとされてい
る。使用できるたわみ量は、コイル形状を工夫して設計
することにより、広くしていた。しかし、前述のよう
に、せん断ひずみ量は適正な使用をしようとすると、設
計に限界があった。
2. Description of the Related Art When designing a coil spring using ordinary stainless steel wire, the design stress is about 40 kgf / mm 2 or less and the transverse elastic modulus is 7,000 kgf / mm 2 , so the shear strain amount is 0.75%. It is recommended to use it below. The amount of deflection that can be used was widened by devising and designing the coil shape. However, as described above, the amount of shear strain is limited in design when it is used properly.

【0003】一方、原子%で1対1近傍のNi−Ti合
金は、高温相の母相状態で立方晶構造をとり、これを冷
却するとマルテンサイト変態温度で変態して単斜晶構造
のマルテンサイト相となる。形状記憶効果を期待する場
合は、まさにこの変態による結晶構造の変化による、形
状回復現象を利用する。これに対して、これらの合金
は、マルテンサイト変態温度が使用環境温度以下である
場合に限って超弾性材料として、使用できる。すなわ
ち、母相状態で、外力が加わると、応力によって誘起マ
ルテンサイト変態が起こり、外力を取り去ると、熱的に
安定している母相に戻るためである。例えば線材の引張
り試験によって6〜8%の変形を加えても元に戻る弾性
現象である。この超弾性現象を利用したものに眼鏡フレ
ーム、歯列矯正ワイヤー等が実用化されている。
On the other hand, a Ni-Ti alloy having an atomic percentage of about 1: 1 has a cubic structure in the parent phase of a high temperature phase, and when cooled, it transforms at the martensitic transformation temperature and has a monoclinic structure. Become the site phase. When a shape memory effect is expected, the shape recovery phenomenon due to the change of the crystal structure due to this transformation is utilized. On the other hand, these alloys can be used as a superelastic material only when the martensitic transformation temperature is equal to or lower than the use environment temperature. That is, when an external force is applied in the mother phase state, induced martensitic transformation occurs due to stress, and when the external force is removed, the thermally stable mother phase is restored. For example, it is an elastic phenomenon that returns to its original value even if a deformation of 6 to 8% is applied by a tensile test of a wire rod. Eyeglass frames, orthodontic wires, and the like have been put into practical use for those utilizing this superelasticity phenomenon.

【0004】上記の超弾性Ni−Ti合金は、その特性
から当然ばね材として大きな期待が持たれている。超弾
性ばねは、本質的に非線形ばねであるため、非線形性を
活かしたコイルばね等の本格的なばねとしての使用方法
が考えられるが、通常のばねとは性質が異なるため、コ
イルばね等への加工方法、使用条件とばね性等の関係な
どに難点があり、本格的に使用されていないのが現状で
ある。
The above-mentioned superelastic Ni--Ti alloy is naturally expected to be a spring material because of its characteristics. Since superelastic springs are essentially non-linear springs, it is possible to use them as full-scale springs such as coil springs that take advantage of non-linearity. However, it has not been used in earnest since there are some problems in the processing method, the conditions of use, and the relationship between spring properties and the like.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の問題に
ついて検討の結果なされたもので、広いせん断ひずみ範
囲を使用することができ、かつ疲労特性に優れたばねの
使用方法を開発したものである。
SUMMARY OF THE INVENTION The present invention has been made as a result of studying the above-mentioned problems, and has developed a method of using a spring which can use a wide shear strain range and is excellent in fatigue characteristics. .

【0006】[0006]

【課題を解決するための手段】本発明はNi−Ti系超
弾性ばねを使用するに際し、使用環境温度を−40℃〜
+120℃とし、該Ni−Ti系超弾性ばねの変態温度
Af点を、該使用環境温度より5〜30℃低く設定して
使用することを特徴とするNi−Ti系超弾性ばねの使
用方法である。
According to the present invention, when a Ni--Ti type superelastic spring is used, the operating environment temperature is -40.degree.
In the method of using a Ni-Ti superelastic spring, the temperature is set to + 120 ° C and the transformation temperature Af point of the Ni-Ti superelastic spring is set to be 5 to 30 ° C lower than the operating environment temperature. is there.

【0007】[0007]

【作用】本発明は、上記したように使用環境温度より
も、Ni−Ti系超弾性ぱねの変態温度Af点を5〜3
0℃低く設定することにより、−40℃から+120℃
までの使用環境温度において、著しく広いせん断ひずみ
範囲を使用することができるものである。上記の変態温
度Af点を使用環境温度より5〜30℃低く設定するの
は、5℃未満の設定では、ばねの変形の初回においても
完全に回復せず弾性が得られない。また30℃を越えて
設定すると、繰り返し変形する初期には所定のせん断ひ
ずみ量に対してばねにかかる荷重がそれほど変わらない
が、繰り返し数が増すと大きく劣化してしまうからであ
る。この変態温度Af点の調整は、合金の組成を変える
こと、製造方法の変化により制御することができる。
According to the present invention, as described above, the transformation temperature Af point of the Ni--Ti system superelastic spring is set to 5 to 3 rather than the use environment temperature.
By setting 0 ℃ lower, -40 ℃ to + 120 ℃
It is possible to use a remarkably wide range of shear strains at operating environment temperatures up to. The transformation temperature Af point is set to be 5 to 30 ° C. lower than the operating environment temperature. If the setting temperature is less than 5 ° C., elasticity is not obtained because the spring is not completely recovered even in the first deformation of the spring. Further, if the temperature is set to be higher than 30 ° C., the load applied to the spring will not change so much with respect to a predetermined shear strain amount in the initial stage of repeated deformation, but if the number of repetitions increases, it will deteriorate significantly. The adjustment of the transformation temperature Af point can be controlled by changing the composition of the alloy and the manufacturing method.

【0008】また上記の使用環境温度を−40℃〜+1
20℃としたのは、変態温度Af点との関係で−40℃
より低いと、製造上加工性が悪くなるからであり、また
+120℃を越えると、変態温度Af点が高く超弾性を
示さないからである。また本発明におけるNi−Ti系
超弾性ばねは、その材料の断面形状が、丸線状でも、角
でもよい。また、ばねの種類としては、コイルばね、ね
じりばね、うずまきばね、さらばね、板ばねなど、ほと
んどのばねに適用できる。さらにNi−Ti系超弾性ば
ねの合金組成としては、原子%でNiを50.5〜5
1.5、またはNiを49.5〜51.5とFe、C
o、Cr、V、Pd、Alのうち1種または2種以上を
合計1%以下含み残部TiからなるNi−Ti系合金が
適用できる。
Further, the above-mentioned operating environment temperature is -40 ° C. to +1.
The temperature of 20 ° C. is -40 ° C. in relation to the transformation temperature Af point.
This is because if it is lower, the workability becomes worse in manufacturing, and if it exceeds + 120 ° C., the transformation temperature Af point is high and superelasticity is not exhibited. Further, the cross-sectional shape of the material of the Ni-Ti superelastic spring in the present invention may be round wire or square. Further, as the type of spring, it can be applied to most springs such as a coil spring, a torsion spring, a spiral spring, a flat spring, and a leaf spring. Further, as the alloy composition of the Ni-Ti based superelastic spring, Ni is 50.5 to 5 in atomic%.
1.5 or Ni 49.5-51.5 and Fe, C
A Ni—Ti alloy containing 1% or more of o, Cr, V, Pd, and Al in a total amount of 1% or less and the balance Ti is applicable.

【0009】[0009]

【実施例】以下に本発明の一実施例について説明する。 実施例1 表1に示すNi−Ti系合金を溶解鋳造後、熱間加工、
冷間加工を行い線径1mmのワイヤー状に加工した。作製
したワイヤーを450〜550℃1時間大気中で熱処理
を施した後、示差走査熱量計によって変態温度Af点を
測定した。これらの結果を表1に示す。
EXAMPLES An example of the present invention will be described below. Example 1 After Ni-Ti alloys shown in Table 1 were melt-cast, hot working,
Cold working was performed into a wire with a wire diameter of 1 mm. The produced wire was heat-treated in the air at 450 to 550 ° C. for 1 hour, and then the transformation temperature Af point was measured by a differential scanning calorimeter. The results are shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】表1から明らかなように本発明に係る試料
No.2〜 NO.9はいずれも加工性が良く、また変態温度
Af点が−53℃〜+110℃で、使用環境温度が−4
0〜+120℃の温度で使用可能なことを示している。
これに対し試料 No.1はNiが少ないため変態温度Af
点が高く、加工性が悪い。また試料 No.10と11は変
態温度Af点が低く、加工性が劣る。
As is clear from Table 1, the samples according to the present invention
All of No. 2 to NO. 9 have good workability, the transformation temperature Af point is -53 ° C to + 110 ° C, and the operating environment temperature is -4.
It shows that it can be used at a temperature of 0 to + 120 ° C.
On the other hand, sample No. 1 contains a small amount of Ni, so the transformation temperature Af
High points and poor workability. Samples Nos. 10 and 11 have a low transformation temperature Af point and are inferior in workability.

【0012】実施例2 原子比で49.7Ni−Ti、51Ni−Ti、50.
9Ni−1.0Feの合金線材を作製した。これを線径
1.0mm、コイル外径10mm、自由長50mm、巻数8巻
の圧縮コイルばね状に固定し、450〜550℃1時間
大気中で熱処理を施した。このばねについて、変態温度
Af点と使用環境温度を変えた場合の疲労試験による発
生力の変化を測定した。疲労試験は、所定の試験温度
で、せん断ひずみ量0と1.5%を繰り返した。発生力
の変化は、せん断ひずみが1.5%の時の発生力につい
て、初回を100とし、各サイクル疲労試験後の発生力
の値で規格化して示した。ばねのたわみとせん断ひずみ
の関係は、 γ=(δd)/(πND2) γ:せん断ひずみ(%) δ:ばねのたわみ(mm) d:材料の直径(mm) N:有効巻数 D:コイル平均径(mm) である。これらの試験結果を表2に示した。
Example 2 Atomic ratio of 49.7Ni-Ti, 51Ni-Ti, 50.
An alloy wire of 9Ni-1.0Fe was produced. This was fixed in the form of a compression coil spring having a wire diameter of 1.0 mm, a coil outer diameter of 10 mm, a free length of 50 mm, and a winding number of 8 and heat-treated in the atmosphere at 450 to 550 ° C. for 1 hour. With respect to this spring, the change in the force generated by the fatigue test when the transformation temperature Af point and the use environment temperature were changed was measured. In the fatigue test, shear strain amounts of 0 and 1.5% were repeated at a predetermined test temperature. The change in the generated force is shown by normalizing the generated force when the shear strain is 1.5%, with the value of the generated force after each cycle fatigue test as 100, the first time. The relationship between spring deflection and shear strain is: γ = (δd) / (πND 2 ) γ: Shear strain (%) δ: Spring deflection (mm) d: Material diameter (mm) N: Effective number of turns D: Coil Average diameter (mm). The results of these tests are shown in Table 2.

【0013】[0013]

【表2】 [Table 2]

【0014】表2より明らかなように、本発明に係る試
料 No.2、3、4、6、7は、使用環境温度が−38℃
〜+118℃の温度で、Af点はその温度より5〜38
℃低く設定されたもので、いずれも初回の残留せん断ひ
ずみは0であり、図1に示すばねの荷重−たわみ曲線の
ような変形をしても完全に元に戻り、良好な超弾性ばね
が得られる。また発生力の変化については、100万回
の繰り返し荷重によっても90〜99の回復力を示し
た。
As is clear from Table 2, Sample Nos. 2, 3, 4, 6, and 7 according to the present invention have an operating environment temperature of -38 ° C.
At a temperature of ~ + 118 ° C, the Af point is 5 ~ 38 from that temperature.
The residual shear strain at the first time was 0 in each case, and even if the spring was deformed like the load-deflection curve shown in FIG. can get. Regarding the change in the generated force, a recovery force of 90 to 99 was shown even with a repeated load of 1 million times.

【0015】一方、試料 No.1は、変態温度Af点の設
定温度が使用環境温度より3℃しか低くないため、初回
の変形の後の残留ひずみが大きく、図2のような荷重−
たわみ曲線を示し、残留たわみが出現し好ましくない。
また試料 No.5および No.8は使用環境温度が変態温度
Afより高過ぎるため、繰り返し発生力が著しく低下す
る。
On the other hand, in the sample No. 1, since the set temperature of the transformation temperature Af point is lower than the operating environment temperature by only 3 ° C., the residual strain after the first deformation is large, and the load-like load as shown in FIG.
A flexure curve is shown, and residual flexure appears, which is not preferable.
In addition, since the working environment temperature of Samples No. 5 and No. 8 is higher than the transformation temperature Af, the repetitive force is remarkably reduced.

【0016】[0016]

【発明の効果】以上に説明したように使用できるせん断
ひずみ範囲が広く、かつ疲労特性にも優れたばねとして
使用できるもので、工業上顕著な効果を奏する。
Industrial Applicability As described above, it can be used as a spring having a wide range of shear strain that can be used and excellent fatigue characteristics, and has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るNi−Ti系超弾性ば
ねの荷重−たわみ曲線図
FIG. 1 is a load-deflection curve diagram of a Ni—Ti based superelastic spring according to an embodiment of the present invention.

【図2】本発明の一実施例に係るNi−Ti系超弾性ば
ねの他の例の荷重−たわみ曲線図
FIG. 2 is a load-deflection curve diagram of another example of a Ni—Ti based superelastic spring according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ni−Ti系超弾性ばねを使用するに際
し、使用環境温度を−40℃〜+120℃とし、該Ni
−Ti系超弾性ばねの変態温度Af点を、該使用環境温
度より5〜30℃低く設定して使用することを特徴とす
るNi−Ti系超弾性ばねの使用方法。
1. When using a Ni—Ti based superelastic spring, the operating environment temperature is set to −40 ° C. to + 120 ° C.
A method of using a Ni-Ti superelastic spring, characterized in that the transformation temperature Af point of the Ti superelastic spring is set to be 5 to 30 ° C. lower than the use environment temperature.
JP22797193A 1993-08-20 1993-08-20 Method for using ni-ti superelastic spring Pending JPH0762505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22797193A JPH0762505A (en) 1993-08-20 1993-08-20 Method for using ni-ti superelastic spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22797193A JPH0762505A (en) 1993-08-20 1993-08-20 Method for using ni-ti superelastic spring

Publications (1)

Publication Number Publication Date
JPH0762505A true JPH0762505A (en) 1995-03-07

Family

ID=16869131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22797193A Pending JPH0762505A (en) 1993-08-20 1993-08-20 Method for using ni-ti superelastic spring

Country Status (1)

Country Link
JP (1) JPH0762505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6371463B1 (en) 2000-04-21 2002-04-16 Dpd, Inc. Constant-force pseudoelastic springs and applications thereof
US6664702B2 (en) 2000-12-11 2003-12-16 Dpd, Inc. Pseudoelastic springs with concentrated deformations and applications thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6371463B1 (en) 2000-04-21 2002-04-16 Dpd, Inc. Constant-force pseudoelastic springs and applications thereof
US6664702B2 (en) 2000-12-11 2003-12-16 Dpd, Inc. Pseudoelastic springs with concentrated deformations and applications thereof

Similar Documents

Publication Publication Date Title
US5951793A (en) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
JP5215855B2 (en) Fe-based alloy and manufacturing method thereof
JPWO2007066555A1 (en) Co-based alloy and manufacturing method thereof
CN106498312A (en) A kind of method of raising β type non-crystaline amorphous metal situ composite material work hardening capacities
JP6269836B2 (en) Titanium alloy member having shape change characteristic in the same direction as the machining direction
JP2007211350A (en) Ferromagnetic shape-memory alloy used for magnetic field-sensitive actuator or sensor utilizing magnetism
JPH0762505A (en) Method for using ni-ti superelastic spring
US6371463B1 (en) Constant-force pseudoelastic springs and applications thereof
WO2004055222A1 (en) METHOD OF THERMO-MECHANICAL-TREATMENT FOR Fe-Mn-Si SHAPE-MEMORY ALLOY DOPED WITH NbC
JP3306878B2 (en) α + β type Ti alloy
US6664702B2 (en) Pseudoelastic springs with concentrated deformations and applications thereof
JPH0762506A (en) Production of superelastic spring
JP3964360B2 (en) Ferromagnetic shape memory alloys for magnetic field responsive actuators or magnetic sensors
JPH0762476A (en) Super elastic spring
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JP3412888B2 (en) Super-elastic disc spring and its manufacturing method
Rodriguez et al. The mechanical properties of SME alloys
JPH059686A (en) Production of shape memory niti alloy
US4076560A (en) Wrought copper-silicon based alloys with enhanced elasticity and method of producing same
JP2941312B2 (en) High strength low thermal expansion alloy
JPS59179765A (en) Elinvar constant-modulus alloy
JP2002266046A (en) Cr-BASE HEAT-RESISTING ALLOY
JPH108168A (en) Nickel-titanium-zirconium(hafnium) shape memory alloy improved in workability
JP4017892B2 (en) Method for producing alloys with high vibration damping performance
JP7176692B2 (en) High temperature shape memory alloy, manufacturing method thereof, actuator and engine using same