WO2004055222A1 - METHOD OF THERMO-MECHANICAL-TREATMENT FOR Fe-Mn-Si SHAPE-MEMORY ALLOY DOPED WITH NbC - Google Patents

METHOD OF THERMO-MECHANICAL-TREATMENT FOR Fe-Mn-Si SHAPE-MEMORY ALLOY DOPED WITH NbC Download PDF

Info

Publication number
WO2004055222A1
WO2004055222A1 PCT/JP2003/016189 JP0316189W WO2004055222A1 WO 2004055222 A1 WO2004055222 A1 WO 2004055222A1 JP 0316189 W JP0316189 W JP 0316189W WO 2004055222 A1 WO2004055222 A1 WO 2004055222A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
shape memory
nbc
treatment
memory alloy
Prior art date
Application number
PCT/JP2003/016189
Other languages
French (fr)
Japanese (ja)
Inventor
Takehiko Kikuchi
Setsuo Kajiwara
Alberto Baruj
Kazuyuki Ogawa
Norio Shinya
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to EP03780855A priority Critical patent/EP1574587B1/en
Priority to US10/519,255 priority patent/US20050236077A1/en
Priority to DE60322260T priority patent/DE60322260D1/en
Publication of WO2004055222A1 publication Critical patent/WO2004055222A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/01Shape memory effect

Definitions

  • the present invention relates to a method for thermomechanical processing of an NbC-added Fe_Mn_Si-based shape memory alloy. More specifically, the present invention provides a method of processing and heat-treating NbC-added Fe—Mn—Si-based shape memory alloy that can exhibit the shape memory characteristics of the above alloy and improve its performance without training. It is about. Background art
  • training refers to a series of shape memory processing operations in which a process of applying 2-3% deformation at room temperature and then heating near 600 ° C above the reverse transformation point is repeated several times.
  • the inventors of the present inventors have conducted intensive research to develop a simple operation, particularly a machining operation that does not require training.
  • Patent Document 2
  • Patent Document 3
  • the present invention basically seeks to solve this problem.
  • the present inventors have conducted intensive research to determine whether effective shape memory characteristics can be obtained and secured even under processing at a temperature as low as possible for a shape memory alloy having a specific composition, and this is possible. That is, shape memory characteristics even at room temperature Has been found to be sufficient to achieve the stated purpose.
  • the basic operation of processing an Fe-Mn-Si-based shape memory alloy to which Nb and C are added at room temperature and then subjecting it to heat aging treatment to precipitate NbC carbide is applied. It has been found that the alloy has an unexpected effect that it can exhibit the shape memory characteristic 1 "of the alloy. In other words, it has succeeded in achieving the above-mentioned object. This was done based on success, and the solutions are shown in (1) to (7) below.
  • Fe-Mn-Si-based shape memory alloy made by adding Nb and C is caulked at room temperature by 5 to 40% and then subjected to aging heat treatment to precipitate NbC carbide.
  • the method for thermomechanical treatment of NbC-added Fe-Mn_Si-based shape memory alloys is described in detail below.
  • Fe-Mn-Si-based shape memory alloys are composed of Mn: 15 to 40% by weight, Si: 3 to: L: 5% by weight, Nb: 0 .:! To 1. 5% by weight, C: 0.01 to 0.2% by weight, the balance consisting of Fe and unavoidable impurities, and the atomic ratio NbZC of Nb to C is 1 or more. 1) The method for thermomechanical treatment of NbC-added caro Fe-Mn-Si-based shape memory alloys described in item 1).
  • Nb C-added Fe—Mn—Si-based shape memory alloy has the following alloy components: Mn: 15 to 40% by weight, Si: 3 to 15% by weight, Cr::! -20% by weight, Nb: 0.1-1.5% by weight, C: 0.01-0.2% by weight, the balance consisting of 6 and inevitable impurities, atomic ratio of Nb to C NbZC Wherein the NbC-added Fe—Mn_Si-based shape memory alloy according to the above item (1) is characterized in that the ratio is 1 or more.
  • Nb Ci 3 ⁇ 4PF e -Mn-Si type shape memory alloy as alloy components, Mn: 15-40% by weight, Si: 3 to 15% by weight, Cr::!
  • Nb according to any one of (2) to (4), wherein the atomic ratio of Nb and C is preferably set in a range of 1.0 to 1.2.
  • C-added calo Fe-Mn-Si A method for thermomechanical processing of shape memory alloys. .
  • Nb C-added Fe-Fe-Mn_Si-based shape memory alloy contains, as impurities, Cu: 3% by weight or less, Mo: 2% by weight or less, A1: 10% by weight or less, and Co: 30% by weight.
  • thermomechanical treatment of Fe_Mn_Si-based shape memory alloys having a specific composition obtained by adding Nb and C conventional processing performed prior to aging is performed by training.
  • the processing performed prior to the aging treatment was performed in a temperature range of 500 to 800 ° C.
  • the processing performed prior to the aging treatment is specified. By setting the processing rate within this range, processing can be performed at room temperature regardless of high temperature, that is, the processing was successful.
  • the technical significance is that the difference between the subjects is clear when compared with the premise of the prior art and the prior art, and it is clear that there is an extremely large difference.
  • the present invention has succeeded in significantly improving shape memory properties for the first time by setting and combining a specific alloy composition, a workability at room temperature, and an aging condition within a certain range.
  • the operation shows a shape recovery rate equivalent to that of the training-processed sample due to the extremely common processing heat treatment of room temperature processing and aging, and the shape recovery power is significantly larger than that of the training-processed sample.
  • the present invention is expected to be further accelerated for practical use in various fields in the future.
  • FIG. 1 is a view showing the relationship between the shape recovery rate and the initial deformation amount of a NbC-added Fe_Mn—Si-based shape memory alloy according to the present invention due to thermomechanical treatment.
  • FIG. 2 is a diagram showing the relationship between shape recovery force and recovery strain of a NbC-added kneaded Fe-Mn-Si-based shape memory alloy according to the present invention due to thermomechanical treatment.
  • the reason why the processing rate at room temperature is specified as 5 to 40% is that if it is less than 5%, it does not contribute to the improvement of shape memory characteristics effectively, and if it exceeds 40%, the sample becomes too hard and aging treatment This is because subsequent deformation becomes extremely difficult.
  • the alloy component targeted by the method for thermomechanical treatment of the NbC-added kneaded Fe-Mn_Si-based shape memory alloy of the present invention is, as shown in the previous application, Mn: 15 to 40% by weight. . /. , S i: 3-15 weight. /.
  • Nb 0.1 to 1.5% by weight
  • C 0.01 to 0.2% by weight
  • the balance is Fe and unavoidable impurities
  • the atomic ratio Nb / C of Nb / C is 1 or more.
  • the alloy components of the Nb-C-added Fe-Mn-Si-based shape memory alloy are as follows: Mn: 15 to 40% by weight, Si: 3 to: 15% by weight, Cr: 1 to 20% by weight. , Nb: 0.:! ⁇ 1.5 wt%, C: 0. 0:!
  • the balance F e ⁇ Pi consists unavoidable impurities thereof, an alloy atomic ratio Nb / C of Nb to C is 1 or more, Further, Mn: 15 to 40% by weight, Si: 3 to 15% by weight, Cr ::! To 20% by weight, Ni: 0.1 to 20% by weight. / 0 , Nb: 0.1 to 1.5% by weight, C: 0.01 to 0.2% by weight, the balance consists of Fe and unavoidable impurities, and the atomic ratio of Nb / C Nb / C is 1
  • the above alloys are also alloys targeted by the present invention.
  • the atomic ratio NbZC of Nb to C in the alloy is preferably 1.0 to 1.2.
  • an impurity 3% by weight or less of Cu and 2% by weight or less are contained as impurities. It is permissible to contain at least one or more of Mo, Al up to 10% by weight, Co up to 30% by weight, or N up to 5000 ppm.
  • a Fe-28Mn_6Si—5Cr—0.53Nb-0.06C alloy (numerical value is% by weight) prepared by adding NbC of the present invention was prepared by melting. After rolling the obtained shape memory alloy at room temperature, it is subjected to aging treatment by heating for 1 minute to 2 hours in a temperature range of 400 to 1000 ° C to show how the shape memory property can be improved. It is shown below.
  • FIG. 1 is a graph showing the difference in shape recovery ratio between the case where only aging is performed (rolling ratio 0%) and the case where 10%, 20% and 30% rolling is performed at room temperature.
  • the aging process is All were performed at 800 ° C for 10 minutes.
  • the results of an as-annealed sample and a sample trained five times are also shown for Fe-28Mn-6Si-5Cr alloy without NbC added.
  • the horizontal axis is the amount of deformation (%) due to tensile deformation at room temperature
  • the vertical axis is the shape recovery rate (%) when the sample is heated to 600 ° C. When heated to 400 ° C, almost the same shape recovery rate can be obtained.
  • the test pieces used in this experiment were prepared with a thickness of 0.6 mm, a width of l to 4 mm, and a length (gauge length) of 15 mm.
  • the 10% rolled sample has about the same or slightly inferior shape memory recovery as the alloy trained five times without NbC. .
  • the amount of deformation necessary for practical use is about 4%, but even at this amount of deformation, a shape memory recovery rate of about 90% strongly suggests that it can be used as a practical alloy. I have. Considering that at least five trainings are required to obtain the same shape recovery rate with a normal Fe-Mn-Si based shape memory alloy without NbC addition, the effect is extremely excellent. I have.
  • the shape recovery rate is almost the same or slightly better than that in the case of no processing (only aging). Furthermore, when the rolling reduction is 30%, the shape recovery rate is worse at a place where the initial strain is larger than when only aging is performed.
  • the shape-restoring force one of the important shape-memory characteristics for practical use, is significantly higher for the samples that have been aged at 20% and 30% at room temperature after rolling at 30%. Has improved.
  • Fig. 2 shows the degree of improvement of the shape recovery force in comparison with the case of only aging (rolling ratio 0%) and the case of aging treatment after rolling 10% at room temperature.
  • the recovery force when the recovery strain on the horizontal axis is zero means the stress generated when both ends are fixed, heated to above the reverse transformation temperature after tensile deformation at room temperature, and then returned to room temperature again. Further, the recovery force when the recovery strain is 2%, for example, means the generated stress measured by fixing both ends after the recovery of the strain by 2%.
  • the phase strain was tested at 4-6%. The test specimens used were the same as those used to obtain the results shown in Fig. 1.
  • the recovery strain on the horizontal axis is, in a practical example, the diameter of the allowable clearance between the pipe and the fastener (shape memory alloy) when used for the fastener of the pipe. Corresponds to the value expressed as a percentage (%).
  • This shape recovery force is remarkably improved at a high rolling reduction.
  • the rolling reduction at room temperature is 20 to 30%, a recovery force of 310 MPa at a recovery strain of 0% and a recovery force of 20 OMPa can be obtained even at a recovery strain of 2%.
  • the shape recovery force is significantly increased at high rolling reductions (20%, 30%) compared to the rolling reductions of 0% and 10%.
  • FIG. 2 shows the shape recovery force of the solution-treated sample without NbC addition and the sample trained five times, but the recovery force is considerably higher than that according to the embodiment of the present invention.
  • the present invention relates to a processing performed prior to the aging treatment on a Fe-Mn-Si-based shape memory alloy having a specific composition obtained by adding Nb and C.
  • a processing performed prior to the aging treatment on a Fe-Mn-Si-based shape memory alloy having a specific composition obtained by adding Nb and C.
  • the conventional technology which is the premise of the technology, is different from the conventional technology in that it requires training with complicated operations and high-temperature processing at 500 to 800 ° C in the prior art. Is clear and obvious. That is, the present invention has succeeded in significantly improving shape memory properties for the first time by setting a specific alloy composition, a workability at room temperature, and an aging condition within a certain range and combining them.
  • the operation is performed at the same level of shape recovery rate as that of the sample that has been subjected to the training treatment by the extremely extensive processing heat treatment of room temperature processing and aging. And the shape resilience is significantly greater than that of the sample that has been subjected to the training process.
  • Dai can be used and used as a fastening member for all purposes up to the fastening of oil pipes, and its economic effect is immense.
  • the uses as the fastening members exemplified in the above are merely one end of the embodiment, and the present invention is not limited to such uses and fields, and the present invention will be applied to various fields in various fields in the future. It is expected to be put to practical use for various applications. Industrial applicability
  • the present invention as a means for subjecting a Fe_Mn_Si type shape memory alloy having a specific composition obtained by adding Nb and C to a thermomechanical treatment to a thermomechanical treatment, it has been conventionally aged.
  • the processing performed by training or, in the prior art, the processing performed prior to the aging process was performed in a temperature range of 500 to 800 ° C.
  • the present inventors succeeded in making it possible to perform processing performed prior to aging processing within a specific processing rate, regardless of high temperature, that is, at room temperature.
  • the technical significance of the present invention is clear when compared with the configurations of the prior art and the prior art on which it is based, and it is clear that there is an extremely large difference.
  • the present invention has succeeded in significantly improving shape memory properties for the first time by setting a specific alloy composition, a workability at room temperature, and an aging condition within a certain range and combining them.
  • the operation showed a shape recovery rate equivalent to that of the sample that had been subjected to the training treatment by the extremely common processing heat treatment of room temperature aging and aging, and the shape recovery force was significantly larger than that of the sample that had been subjected to the training treatment.
  • it is expected that the present invention will be further accelerated toward practical use in various fields in the future.

Abstract

Means for thermo-mechanical-treatment of an Fe-Mn-Si shape-memory alloy of specified composition doped with NbC comprises performing a mechanical treatment prior to aging treatment at a mechanical treatment ratio falling within a specified range so that the mechanical treatment can be carried out at room temperature, in place of the old method of performing training as a mechanical treatment prior to aging treatment and in place of the prior method of performing a mechanical treatment at 500 to 800°C prior to aging treatment.

Description

明 細 書  Specification
N b C添加 F e— Mn _ S i系形状記憶合金の加工熱処理方法 技術分野 NbC-added Fe-Mn_Si-type shape memory alloy thermomechanical processing method
本発明は、 N b C添加 F e _Mn _ S i系形状記憶合金の加工熱処理方法に関 するものである。 さらに詳しくは、 この発明は、 いわゆるトレーニングなしでも 上記合金の形状記憶特性を発現し、 その性能の向上を図ることが出来る、 Nb C 添加 F e— Mn— S i系形状記憶合金の加工熱処理方法に関するものである。 背景技術  The present invention relates to a method for thermomechanical processing of an NbC-added Fe_Mn_Si-based shape memory alloy. More specifically, the present invention provides a method of processing and heat-treating NbC-added Fe—Mn—Si-based shape memory alloy that can exhibit the shape memory characteristics of the above alloy and improve its performance without training. It is about. Background art
F e-Mn-S i系形状記憶合金が提案、 発明されて以来久しいが、 その利用 状況は、 未だ充分に活用されているとは言えず、 実用化段階に至っているとはい えない状況にあった。 その最大の原因は、 この合金はトレーニングといわれる特 殊な加工熱処理をしなければ、 十分な形状記憶効果を示さないことにあるもので めった。 ここ トレーニングとは、 室温で 2— 3%の変形を施した後、 逆変態点以上の 600 °C近傍で加熱するという処理を数回以上繰り返す一連の形状記憶加工操作 を指すものである。 上記煩雑なトレーニング処理を要するほかなかった従来技術の実情に鑑み、 本 発明者らグループにおいては簡易な操作、 特にトレーニングを要さない加工操作 を開発すべく鋭意研究した結果、 特定の形状記憶合金、 すなわち F e_Mn— S i系形状記憶合金に N bと C元素を少量添加し適当な時効熱処理を施して、 合金 組記に微細な Nb C炭化物を析出させることによって頻雑なトレーニング加工操 作なしでも十分良好な形状記憶効果を示すことを見出し、先に特許出願をした(特 許文献 1参照) 。 またさらに、 この Nb C添加合金の加工熱処理手段についても 研究を進めた結果、 この Nb、 C添カ卩の F e— Mn_S i系形状記憶合金は、 5 00〜800°Cの温度範囲で加工した後時効すると更に優れた形状記憶特性が得 られることを発見し、 これについても特許出願をした (特許文献 2、 特許文献 3 参照) 。 特許文献 1 ; It has been a long time since the Fe-Mn-Si-based shape memory alloy was proposed and invented, but its use has not yet been fully utilized, and it has not yet reached the stage of practical application. there were. The main reason for this is that this alloy does not show a sufficient shape memory effect without a special thermomechanical heat treatment called training. Here, training refers to a series of shape memory processing operations in which a process of applying 2-3% deformation at room temperature and then heating near 600 ° C above the reverse transformation point is repeated several times. In view of the situation of the prior art, which required the complicated training process described above, the inventors of the present inventors have conducted intensive research to develop a simple operation, particularly a machining operation that does not require training. That is, frequent training processing operations are performed by adding a small amount of Nb and C elements to the Fe_Mn-Si-based shape memory alloy, performing appropriate aging heat treatment, and precipitating fine NbC carbides in the alloy composition. They found that they exhibited a sufficiently good shape memory effect even without them, and filed a patent application earlier (see Patent Document 1). Furthermore, as a result of research on the thermomechanical treatment of this Nb / C-added alloy, the Fe-Mn_Si-based shape memory alloy of It was discovered that even better aging after working in the temperature range of 00 to 800 ° C resulted in even better shape memory properties, and patent applications were also filed for this (see Patent Documents 2 and 3). Patent Document 1;
特開 20Ό 1— 226747号公報  Japanese Patent Laid-Open No. 20-1226226
特許文献 2 ;  Patent Document 2;
特願 2001— 296901号  Japanese Patent Application No. 2001-296901
特許文献 3 ;  Patent Document 3;
特願 2002— 79295号 以上の先行出願による提案によって、 形状記憶合金技術は飛躍的に進歩し、 今 後の実用化に大きく寄与し、 産業の発展に大いに寄与するものと確信するが、 こ れらの提案自体についてもそこになお改善すべき余地が依然として残っているも のであった。 すなわち、 後者二つの先行特許出願 (特許文献 2、 特許文献 3) に ついても、 これらの提案による発明は、 その前提とするいわゆるトレーニングに よる従前の技術に比して、 合金の形状記憶性能自体の向上と共にその加工操作が 極めて簡易となり、 その意義は極めて大きい。 また、 それにより形状記憶性能も 飛躍的に高くなり、 実用性への度合いが飛躍的に向上したことが認められ、 その 作用効果は極めて顕著である、 と言うことができるものの、 そのための加工操作 は、 500〜800°Cという高温での加熱処理を要する点において依然として問 題が残っており、 そこに使い難さがあり、 実用化を阻む要因があったことは否め ないものであった。 発明の開示  Japanese Patent Application No. 2002-79295 Based on the proposals of the preceding applications, we are convinced that the shape memory alloy technology will make dramatic progress, greatly contribute to practical application in the future, and greatly contribute to the development of industry. There was still room for improvement in the proposals themselves. In other words, even with respect to the latter two prior patent applications (Patent Documents 2 and 3), the invention based on these proposals has an advantage in that the shape memory performance of the alloy itself is lower than that of the conventional technology based on so-called training. The machining operation becomes extremely simple with the improvement of the quality, and its significance is extremely large. In addition, the shape memory performance has been dramatically improved, and the degree of practicality has been significantly improved. It can be said that the operation and effect are extremely remarkable. However, there was still a problem in that heat treatment at a high temperature of 500 to 800 ° C was required, and there was difficulty in using the heat treatment, and it was undeniable that there was a factor that hindered practical application. Disclosure of the invention
本発明は、 この点の問題を基本的に解決しようというものである。  The present invention basically seeks to solve this problem.
そこで、 本発明者らにおいては、 特定の組成の形状記憶合金に極力低い温度で の加工の下でも、 実効性のある形状記憶特性が発現、 確保できないか、 鋭意研究 を重ねた結果、 これが可能であること、 すなわち室温での加工でも形状記憶特性 が十分に確保でき、 前示目的を達成することが出来ることを見いだしたものであ る。 すなわち、 Nb、 Cを添加してなる F e— Mn— S i系形状記憶合金を室温で 加工し、 次いで加熱時効処理して Nb C炭化物を析出させるという基本的な操作 を適用するだけで、 その合金の形状記憶特 1"生を発現できるという思いもよらない 作用効果が奏せられることを見いだした。 すなわち、 前示目的を達成するに成功 したものである。 本発明は、 前記知見、 成功に基づいてなされたものであり、 その解決手段は以 下 (1) 〜 (7) に示すとおりである。 Accordingly, the present inventors have conducted intensive research to determine whether effective shape memory characteristics can be obtained and secured even under processing at a temperature as low as possible for a shape memory alloy having a specific composition, and this is possible. That is, shape memory characteristics even at room temperature Has been found to be sufficient to achieve the stated purpose. In other words, the basic operation of processing an Fe-Mn-Si-based shape memory alloy to which Nb and C are added at room temperature and then subjecting it to heat aging treatment to precipitate NbC carbide is applied. It has been found that the alloy has an unexpected effect that it can exhibit the shape memory characteristic 1 "of the alloy. In other words, it has succeeded in achieving the above-mentioned object. This was done based on success, and the solutions are shown in (1) to (7) below.
( 1 ) N b、 Cを添カ卩してなる F e— Mn— S i系形状記憶合金を室温で 5〜 40%カロェし、 次いで時効加熱処理して Nb C炭化物を析出させることを特徴と する、 N b C添加 F e— Mn _ S i系形状記憶合金の加工熱処理方法。 (1) Fe-Mn-Si-based shape memory alloy made by adding Nb and C is caulked at room temperature by 5 to 40% and then subjected to aging heat treatment to precipitate NbC carbide. The method for thermomechanical treatment of NbC-added Fe-Mn_Si-based shape memory alloys.
(2) F e -Mn-S i系形状記憶合金が、 合金成分として、 Mn : 1 5〜 40重量%、 S i : 3〜: L 5重量%、 N b : 0. :!〜 1. 5重量%、 C : 0. 0 1〜 0. 2重量%を含み、 残部 F e及び不可避的不純物より成り、 Nbと Cの原 子比 NbZCが 1以上であることを特徴とする、 前記 (1) 項に記載の Nb C添 カロ F e— Mn— S i系形状記憶合金の加工熱処理方法。 (2) Fe-Mn-Si-based shape memory alloys are composed of Mn: 15 to 40% by weight, Si: 3 to: L: 5% by weight, Nb: 0 .:! To 1. 5% by weight, C: 0.01 to 0.2% by weight, the balance consisting of Fe and unavoidable impurities, and the atomic ratio NbZC of Nb to C is 1 or more. 1) The method for thermomechanical treatment of NbC-added caro Fe-Mn-Si-based shape memory alloys described in item 1).
(3) Nb C添カ卩 F e— Mn— S i系形状記憶合金が、 合金成分として、 M n : 1 5〜 40重量%、 S i : 3〜 1 5重量%、 C r : :!〜 20重量%、 N b : 0. 1〜1. 5重量%、 C : 0. 01〜0. 2重量%を含み、 残部 6及ぴ不可 避的不純物より成り、 Nbと Cの原子比 NbZCが 1以上であることを特徴とす る、 前記 (1) 項に記載の Nb C添加 F e— Mn_S i系形状記憶合金の加工熱 処理方法。 (4) Nb Ci ¾PF e -Mn-S i系形状記憶合金が、 合金成分として、 M n : 1 5-40重量%、 S i : 3〜 1 5重量%、 C r : :!〜 20重量%、 N i : 0. 1〜 20重量%、 N b : 0. :!〜 1. 5重量%、 C: 0. 01〜 0. 2重量% を含み、 残部 F e及び不可避的不純物より成り、 Nbと Cの原子比 NbZCが 1 以上であることを特徴とする、 前記 (1) 項に記載の Nb、 C添加 F e _Mn— S i系形状記憶合金の加工熱処理方法。 (3) Nb C-added Fe—Mn—Si-based shape memory alloy has the following alloy components: Mn: 15 to 40% by weight, Si: 3 to 15% by weight, Cr::! -20% by weight, Nb: 0.1-1.5% by weight, C: 0.01-0.2% by weight, the balance consisting of 6 and inevitable impurities, atomic ratio of Nb to C NbZC Wherein the NbC-added Fe—Mn_Si-based shape memory alloy according to the above item (1) is characterized in that the ratio is 1 or more. (4) Nb Ci ¾PF e -Mn-Si type shape memory alloy, as alloy components, Mn: 15-40% by weight, Si: 3 to 15% by weight, Cr::! %, Ni: 0.1 to 20% by weight, Nb: 0 .:! To 1.5% by weight, C: 0.01 to 0.2% by weight, the balance consisting of Fe and inevitable impurities The method according to item (1), wherein the atomic ratio NbZC between Nb and C is 1 or more, wherein the Nb and C-added Fe_Mn-Si-based shape memory alloy is heat-treated.
(5) Nbと Cの原子比が、 好ましくは 1. 0〜1. 2の範囲に設定されて なることを特徴とする、 前記 (2) 乃至 (4) の何れか 1項に記載の Nb C添カロ F e-Mn-S i系形状記憶合金の加工熱処理方法。 . (5) The Nb according to any one of (2) to (4), wherein the atomic ratio of Nb and C is preferably set in a range of 1.0 to 1.2. C-added calo Fe-Mn-Si A method for thermomechanical processing of shape memory alloys. .
(6) Nb C添カ卩 F e— Mn_S i系形状記憶合金が、不純物として、 Cu : 3重量%以下、 Mo : 2重量%以下、 A 1 : 10重量%以下、 C o : 30重量% 以下、 N : 5000 p pm以下含んでいる (2) 乃至 (5) の何れか 1項に記載 の N b C添加 F e— Mn— S i系形状記憶合金の加工熱処理方法。 (6) Nb C-added Fe-Fe-Mn_Si-based shape memory alloy contains, as impurities, Cu: 3% by weight or less, Mo: 2% by weight or less, A1: 10% by weight or less, and Co: 30% by weight. The method for thermomechanical treatment of NbC-added Fe—Mn—Si-based shape memory alloy according to any one of (2) to (5), wherein N: 5000 ppm or less is contained.
( 7 ) 時効加熱処理条件が 400〜 1000 °Cの温度範囲で且つ 1分〜 2時 間加熱するものであることを特徴とする前記 (1) 乃至 (6) の何れか 1項に記 载の N b C添加 F e— Mn— S i系形状記憶合金の加工熱処理方法。 発明の効果 (7) The method according to any one of (1) to (6), wherein the aging heat treatment is performed in a temperature range of 400 to 1000 ° C. for 1 minute to 2 hours. Of NbC-added Fe-Mn-Si-based shape memory alloy. The invention's effect
Nb、 Cを添カ卩してなる特定の組成を有する F e _Mn_S i系形状記憶合金 に対して、 これを加工熱処理する手段としては、 従前においては時効に先立って 行われる加工処理がトレーニングによって、 あるいはまた、 先行技術においては、 時効処理に先立って行われる加工処理が 500〜800°Cの温度範囲で行われて いたところ、 本発明においては、 時効処理に先立って行われる加工処理を特定の 加工率の範囲に設定すれば、 高温によらずとも、 すなわち室温での加工処理が可 能であり、 これに成功したしたものである。 その技術的意義は、 その前提とする従来技術、 先行技術の構成と比較すると被 我の差は明らかであり、 極めて大きな違いがあること歴然としている。 すなわち、 本発明は、 特定の合金組成、 室温における加工度、 時効条件を一定の範囲に設定 し、 組み合わせることによって、 はじめて大幅に形状記憶特性を改善することに 成功したものである。 その操作は、 室温加工と時効という極めてありふれた加工 熱処理により、 トレーニング処理を施した試料と同等の形状回復率を示し、 かつ 形状回復力についてはトレーニング処理を施した試料よりも著しく大きな回復力 が得られるものであり、 いずれにしても本発明は、 これを機に今後各種分野にお いて、 さらに一段と実用化に向けて加速されることが期待される。 図面の簡単な説明 As a means of thermomechanical treatment of Fe_Mn_Si-based shape memory alloys having a specific composition obtained by adding Nb and C, conventional processing performed prior to aging is performed by training. Alternatively, in the prior art, the processing performed prior to the aging treatment was performed in a temperature range of 500 to 800 ° C. In the present invention, the processing performed prior to the aging treatment is specified. By setting the processing rate within this range, processing can be performed at room temperature regardless of high temperature, that is, the processing was successful. The technical significance is that the difference between the subjects is clear when compared with the premise of the prior art and the prior art, and it is clear that there is an extremely large difference. That is, the present invention has succeeded in significantly improving shape memory properties for the first time by setting and combining a specific alloy composition, a workability at room temperature, and an aging condition within a certain range. The operation shows a shape recovery rate equivalent to that of the training-processed sample due to the extremely common processing heat treatment of room temperature processing and aging, and the shape recovery power is significantly larger than that of the training-processed sample. In any case, the present invention is expected to be further accelerated for practical use in various fields in the future. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の N b C添加 F e _Mn— S i系形状記憶合金の加工熱処理 による形状回復率と初期変形量との関係を示す図。  FIG. 1 is a view showing the relationship between the shape recovery rate and the initial deformation amount of a NbC-added Fe_Mn—Si-based shape memory alloy according to the present invention due to thermomechanical treatment.
第 2図は、 本発明の N b C添カ卩 F e— Mn— S i系形状記憶合金の加工熱処理 による形状回復力と回復歪みの関係を示す図。 発明を実施するための最良の形態  FIG. 2 is a diagram showing the relationship between shape recovery force and recovery strain of a NbC-added kneaded Fe-Mn-Si-based shape memory alloy according to the present invention due to thermomechanical treatment. BEST MODE FOR CARRYING OUT THE INVENTION
ここに、 室温での加工率を 5〜 40 %と規定した理由は、 5 %未満では形状記 憶特性の改善に有効に寄与せず、 40%を越えると、 試料が硬くなりすぎ、 時効 処理後の変形が著しく困難になるからである。 また、 本発明の N b C添カ卩 F e— Mn _ S i系形状記憶合金の加工熱処理方法 が対象とする合金成分は、 先の出願においても示したように、 Mn : 15〜40 重量。/。、 S i : 3〜 15重量。 /。、 Nb : 0. 1〜 1. 5重量%、 C : 0. 01〜 0. 2重量、 そして残部が F e及び不可避的不純物であり、 Nbと Cの原子比 N b/Cが 1以上である合金である。 また、 Nb C添カ卩 F e— Mn— S i系形状記憶合金の合金成分は、 Mn : 1 5 〜40重量%、 S i : 3〜: 15重量%、 C r : 1〜20重量%、 Nb : 0. :!〜 1. 5重量%、 C : 0. 0:!〜 0. 2重量%を含み、 残部F e及ぴ不可避的不純 物より成り、 Nbと Cの原子比 Nb/Cが 1以上である合金、 さらにまた、 Mn : 1 5〜 40重量%、 S i : 3〜 15重量%、 C r : :!〜 20重量%、 N i : 0. 1〜20重量。 /0、 Nb : 0. 1〜1. 5重量%、 C : 0. 01〜0. 2重量%を 含み、 残部 F e及び不可避的不純物より成り、 Nbと Cの原子比 Nb/Cが 1以 上である合金も本発明で対象とする合金である。 以上の Nb C添カ卩したいずれの F e -Mn-S i系形状記憶合金においても、 合金中における Nbと Cの原子比 NbZCは、 1. 0〜1. 2であることが好ま しい。 さらに、 本発明の Nb C添カ卩 F e _Mn— S i系形状記憶合金の加工熱処理方 法において対象とする合金成分には、 不純物として、 3重量%以下の Cu、 2重 量%以下の Mo、 10重量%以下の A l、 30重量%以下の C o、 又は 5000 p pm以下の Nの少なくとも 1種もしくはそれ以上を含むことが許容される。 発明の実施態様 Here, the reason why the processing rate at room temperature is specified as 5 to 40% is that if it is less than 5%, it does not contribute to the improvement of shape memory characteristics effectively, and if it exceeds 40%, the sample becomes too hard and aging treatment This is because subsequent deformation becomes extremely difficult. Further, as shown in the previous application, the alloy component targeted by the method for thermomechanical treatment of the NbC-added kneaded Fe-Mn_Si-based shape memory alloy of the present invention is, as shown in the previous application, Mn: 15 to 40% by weight. . /. , S i: 3-15 weight. /. , Nb: 0.1 to 1.5% by weight, C: 0.01 to 0.2% by weight, and the balance is Fe and unavoidable impurities, and the atomic ratio Nb / C of Nb / C is 1 or more. An alloy. The alloy components of the Nb-C-added Fe-Mn-Si-based shape memory alloy are as follows: Mn: 15 to 40% by weight, Si: 3 to: 15% by weight, Cr: 1 to 20% by weight. , Nb: 0.:! ~ 1.5 wt%, C: 0. 0:! Include ~ 0.2 wt%, the balance F e及Pi consists unavoidable impurities thereof, an alloy atomic ratio Nb / C of Nb to C is 1 or more, Further, Mn: 15 to 40% by weight, Si: 3 to 15% by weight, Cr ::! To 20% by weight, Ni: 0.1 to 20% by weight. / 0 , Nb: 0.1 to 1.5% by weight, C: 0.01 to 0.2% by weight, the balance consists of Fe and unavoidable impurities, and the atomic ratio of Nb / C Nb / C is 1 The above alloys are also alloys targeted by the present invention. In any of the Fe-Mn-Si-based shape memory alloys added with NbC, the atomic ratio NbZC of Nb to C in the alloy is preferably 1.0 to 1.2. Further, in the alloy component of interest in the method of thermomechanical treatment of the NbC-added kneaded Fe-Mn-Si-based shape memory alloy of the present invention, as an impurity, 3% by weight or less of Cu and 2% by weight or less are contained as impurities. It is permissible to contain at least one or more of Mo, Al up to 10% by weight, Co up to 30% by weight, or N up to 5000 ppm. Embodiment of the Invention
以下、 本発明を図 1、 図 2に基づいて以下、 具体的に説明する。 但し、 これら に示した実例は、 あくまでも本発明を容易に理解するための一助として開示する ためのものであって、 本発明をこれによつて限定する趣旨ではない。 実施例;  Hereinafter, the present invention will be specifically described with reference to FIGS. However, the examples shown here are merely for the purpose of assisting the understanding of the present invention easily, and are not intended to limit the present invention. Example;
まず、 本発明の Nb Cが添カ卩されてなる F e - 28Mn_6 S i— 5C r— 0. 53Nb-0. 06 C合金 (数値は、 重量%) を溶製準備した。 得られた形 状記憶合金を、 室温で圧延加工後、 400〜 1000°Cの温度範囲で 1分〜 2時 間の加熱による時効処理を行うことによつて形状記憶性がいかに改善されるを以 下に示す。  First, a Fe-28Mn_6Si—5Cr—0.53Nb-0.06C alloy (numerical value is% by weight) prepared by adding NbC of the present invention was prepared by melting. After rolling the obtained shape memory alloy at room temperature, it is subjected to aging treatment by heating for 1 minute to 2 hours in a temperature range of 400 to 1000 ° C to show how the shape memory property can be improved. It is shown below.
すなわち、 図 1は、 時効のみを施した場合 (圧延率 0%) と室温で 10%、 2 0%、 30%圧延した場合の形状回復率違いを示したグラフである。 時効処理は、 いずれも 800°Cで 1 0分間行った。 比較のために Nb Cを添加していない F e 一 28Mn— 6 S i— 5 C r合金について、 焼鈍したままの試料と 5回トレー二 ングした試料の結果も示してある。 横軸は室温における引っ張り変形による変形 量 (%) であり、 縦軸の形状回復率 (%) は試料を 600°Cに加熱した場合の伸 びの回復率である。 400°Cまで加熱した場合もこれとほぼ同一の形状回復率が 得られる。 この実験において用いた試料片は、 厚さ 0. 6mm、 幅 l〜4mm、 長さ (ゲージ長) 1 5 mmに調製した試験片を用いて試験を行った。 この図からわかるように、 10%の圧延した試料はその形状記憶回復率は、 5 回トレーニングした Nb C無添加の合金と比べると、 同程度かやや劣っている程 度のものとなっている。 実用的に必要な変形量は約 4%であるが、 この変形量に おいても約 90%の形状記憶回復率を示していることは、 実用合金として使用可 能なことを強く示唆している。 これと同じ形状回復率を Nb C無添加の通常の F e-Mn-S i基形状記憶合金で得るために少なくとも 5回のトレーニングが必 要であることを考えるとその作用効果は極めて優れている。 圧延率が高くなり、 20%となると無加工 (時効のみ) の場合と形状回復率は 殆ど同じか少し良くなる程度である。 さらに圧延率が 30%になると時効のみの 場合よりも、 初期歪みの大きいところでは逆に形状回復率が悪くなることを示し ている。 これに対して、 実用上重要な形状記憶特性の一つである形状回復力は、 図 2に 示す通り室温で 20 %圧延、 30 %圧延後、 時効処理をした試料の方がいちじる しく向上している。 図 2はその形状回復力向上の程度を時効のみの場合 (圧延率 0%) 及び室温で 10%圧延後時効処理をした場合と比較して示しているもので ある。 横軸の回復歪がゼロのときの回復力は、 室温で引っ張り変形した後そのま ま両端を固定して逆変態温度以上に加熱し、 その後再び室温に戻したときの発生 応力を意味する。 また、 回復歪が例えば 2%のときの回復力は、 歪が 2%回復し た後に両端を固定して測定した発生応力を意味するものである。 室温で与えた初 期の歪は 4〜 6 %で試験を行つた。 その際用いた試験片は、 第 1図の結果を得るのに用いたものと同一の試料を用 いた。 なお、 図 2において、 横軸の回復歪みは、 実用例で言えば、 パイプの締結 部品に使用した場合には、 パイプと締結部品 (形状記憶合金) との許容されるク リーアランスの程度を直径に対する割合 (%) で表したものと対応する。 この形 状回復力は圧延率が高いところで著しく向上している。 室温での圧延率が 2 0〜 3 0 %ではその回復歪みが 0 %のところで 3 1 0 M P a、 2 %の回復歪みでも 2 0 O M P aの回復力が得られる。 また、 1 0 %の圧延率の場合でも、 トレーニン グした場合と全く同じ形状回復力が得られることが分かつた。 すなわち、 この図の結果から圧延率 0 %、 圧延率 1 0 %に比し、 高圧延率 (2 0 %、 3 0 %) の場合は形状回復力が著しい増大がみられることが理解される。 なお、 図 2には比較のため、 N b C無添加の溶体化試料及び 5回トレーニングし た試料の形状回復力を示したが、 その回復力は本発明の態様によるものに比較し てかなり小さいことが分かつた。 以上述べたように、 本発明は、 N b、 Cを添加してなる特定の組成を有する F e -M n - S i系形状記憶合金に対して、 時効処理に先立って行われる加工処理 を、 特定の加工率の範囲であれば、 室温で加工処理することによって可能とする ことに始めて成功したものである。 その技術的意義は、 その前提とする従来技術 においては、 煩雑な操作を伴う トレーニングや、 先行技術における 5 0 0〜8 0 0 °Cの高温加工処理を要する場合と比較すると両者の構成の差は歴然としてお り、 明らかである。 すなわち、 本発明は、 特定の合金組成、 室温における加工度、 時効条件を一定 の範囲に設定し、 組み合わせることによって、 はじめて大幅に形状記憶特性を改 善することに成功したものである。 その操作は、 室温加工と時効という極めてあ りふれた加工熱処理により、 トレーニング処理を施した試料と同等の形状回復率 を示し、 かつ形状回復力についてはトレーニング処理を施した試料よりも著しく 大きな回復力が得られるものであり、 いずれにしてもその意義は極めて大であり、 例えば、 小は水道管の締結から、 大はオイルパイプの締結のいたるまであらゆる 用途の締結部材として使用、 利用でき、 その経済的効果は計り知れない。 勿論これらに例示した締結部材としての用途は、 その単なる態様の一端を紹介 したにすぎず、 本発明は係る用途、 分野に限定されるものではないし、 本発明を 機に今後各種分野において、 多様な用途等に、 実用に供されることが期待される。 産業上の利用可能性 That is, FIG. 1 is a graph showing the difference in shape recovery ratio between the case where only aging is performed (rolling ratio 0%) and the case where 10%, 20% and 30% rolling is performed at room temperature. The aging process is All were performed at 800 ° C for 10 minutes. For comparison, the results of an as-annealed sample and a sample trained five times are also shown for Fe-28Mn-6Si-5Cr alloy without NbC added. The horizontal axis is the amount of deformation (%) due to tensile deformation at room temperature, and the vertical axis is the shape recovery rate (%) when the sample is heated to 600 ° C. When heated to 400 ° C, almost the same shape recovery rate can be obtained. The test pieces used in this experiment were prepared with a thickness of 0.6 mm, a width of l to 4 mm, and a length (gauge length) of 15 mm. As can be seen from the figure, the 10% rolled sample has about the same or slightly inferior shape memory recovery as the alloy trained five times without NbC. . The amount of deformation necessary for practical use is about 4%, but even at this amount of deformation, a shape memory recovery rate of about 90% strongly suggests that it can be used as a practical alloy. I have. Considering that at least five trainings are required to obtain the same shape recovery rate with a normal Fe-Mn-Si based shape memory alloy without NbC addition, the effect is extremely excellent. I have. When the rolling reduction increases and reaches 20%, the shape recovery rate is almost the same or slightly better than that in the case of no processing (only aging). Furthermore, when the rolling reduction is 30%, the shape recovery rate is worse at a place where the initial strain is larger than when only aging is performed. On the other hand, as shown in Fig. 2, the shape-restoring force, one of the important shape-memory characteristics for practical use, is significantly higher for the samples that have been aged at 20% and 30% at room temperature after rolling at 30%. Has improved. Fig. 2 shows the degree of improvement of the shape recovery force in comparison with the case of only aging (rolling ratio 0%) and the case of aging treatment after rolling 10% at room temperature. The recovery force when the recovery strain on the horizontal axis is zero means the stress generated when both ends are fixed, heated to above the reverse transformation temperature after tensile deformation at room temperature, and then returned to room temperature again. Further, the recovery force when the recovery strain is 2%, for example, means the generated stress measured by fixing both ends after the recovery of the strain by 2%. First given at room temperature The phase strain was tested at 4-6%. The test specimens used were the same as those used to obtain the results shown in Fig. 1. In FIG. 2, the recovery strain on the horizontal axis is, in a practical example, the diameter of the allowable clearance between the pipe and the fastener (shape memory alloy) when used for the fastener of the pipe. Corresponds to the value expressed as a percentage (%). This shape recovery force is remarkably improved at a high rolling reduction. When the rolling reduction at room temperature is 20 to 30%, a recovery force of 310 MPa at a recovery strain of 0% and a recovery force of 20 OMPa can be obtained even at a recovery strain of 2%. Also, it was found that even at a rolling reduction of 10%, exactly the same shape recovery force as in the case of training was obtained. In other words, it is understood from the results in this figure that the shape recovery force is significantly increased at high rolling reductions (20%, 30%) compared to the rolling reductions of 0% and 10%. . For comparison, FIG. 2 shows the shape recovery force of the solution-treated sample without NbC addition and the sample trained five times, but the recovery force is considerably higher than that according to the embodiment of the present invention. I knew it was small. As described above, the present invention relates to a processing performed prior to the aging treatment on a Fe-Mn-Si-based shape memory alloy having a specific composition obtained by adding Nb and C. However, it was the first time that processing was possible at room temperature within a specific processing rate range. The technical significance is that the conventional technology, which is the premise of the technology, is different from the conventional technology in that it requires training with complicated operations and high-temperature processing at 500 to 800 ° C in the prior art. Is clear and obvious. That is, the present invention has succeeded in significantly improving shape memory properties for the first time by setting a specific alloy composition, a workability at room temperature, and an aging condition within a certain range and combining them. The operation is performed at the same level of shape recovery rate as that of the sample that has been subjected to the training treatment by the extremely extensive processing heat treatment of room temperature processing and aging. And the shape resilience is significantly greater than that of the sample that has been subjected to the training process. Dai can be used and used as a fastening member for all purposes up to the fastening of oil pipes, and its economic effect is immense. Of course, the uses as the fastening members exemplified in the above are merely one end of the embodiment, and the present invention is not limited to such uses and fields, and the present invention will be applied to various fields in various fields in the future. It is expected to be put to practical use for various applications. Industrial applicability
本発明は、 N b、 Cを添カ卩してなる特定の組成を有する F e _M n _ S i系形 状記憶合金に対して、 これを加工熱処理する手段としては、 従前においては時効 に先立って行われる加工処理がトレーニングによって、 あるいはまた、 先行技術 においては、 時効処理に先立って行われる加工処理が 5 0 0〜8 0 0 °Cの温度範 囲で行われていたところ、 本発明においては、 時効処理に先立って行われる加工 処理を特定の加工率の範囲であれば、 高温によらずとも、 すなわち室温で加工処 理することにより可能とすることに成功したしたものである。 本発明の技術的意義は、 その前提とする従来技術、 先行技術の構成と比較する と両者の差は明らかであり、 極めて大きな違いがあること歴然としている。 すな わち、 本発明は、 特定の合金組成、 室温における加工度、 時効条件を一定の範囲 に設定し、 組み合わせることによって、 はじめて大幅に形状記憶特性を改善する ことに成功したものである。 その操作は、 室温力卩ェと時効という極めてありふれ た加工熱処理により、 トレーニング処理を施した試料と同等の形状回復率を示し、 かつ形状回復力についてはトレーニング処理を施した試料よりも著しく大きな回 復力が得られるものであり、 いずれにしても本発明は、 これを機に今後各種分野 において、 さらに一段と実用化に向けて加速されることが期待される。  According to the present invention, as a means for subjecting a Fe_Mn_Si type shape memory alloy having a specific composition obtained by adding Nb and C to a thermomechanical treatment to a thermomechanical treatment, it has been conventionally aged. In the prior art, the processing performed by training or, in the prior art, the processing performed prior to the aging process was performed in a temperature range of 500 to 800 ° C. In the above, the present inventors succeeded in making it possible to perform processing performed prior to aging processing within a specific processing rate, regardless of high temperature, that is, at room temperature. The technical significance of the present invention is clear when compared with the configurations of the prior art and the prior art on which it is based, and it is clear that there is an extremely large difference. In other words, the present invention has succeeded in significantly improving shape memory properties for the first time by setting a specific alloy composition, a workability at room temperature, and an aging condition within a certain range and combining them. The operation showed a shape recovery rate equivalent to that of the sample that had been subjected to the training treatment by the extremely common processing heat treatment of room temperature aging and aging, and the shape recovery force was significantly larger than that of the sample that had been subjected to the training treatment. In any case, it is expected that the present invention will be further accelerated toward practical use in various fields in the future.

Claims

請 求 の 範 囲 The scope of the claims
1. N b、 Cを添カ卩してなる F e一 Mn— S i系形状記憶合金を室温で 5〜40 %加工し、次いで加熱時効処理して Nb C炭化物を析出させることを特徴とする、 N b C添加 F e— Mn— S i系形状記憶合金の加工熱処理方法。 1. Fe-Mn-Si-based shape memory alloy made by adding Nb and C is processed at 5-40% at room temperature, and then heat-aged to precipitate NbC carbide. The method of thermomechanical treatment of NbC-added Fe-Mn-Si-based shape memory alloy.
2. F e -Mn-S i系形状記憶合金が、 合金成分として、 Mn : 15〜40 重量%、 S i : 3〜: 1 5重量%、 Nb : 0. 1〜: 1. 5重量%、 C : 0. 01〜 0. 2重量%を含み、 残部 F e及び不可避的不純物より成り、 Nbと Cの原子比 NbZCが 1以上であることを特徴とする、 請求項 1記載の Nb C添加 F e一 M n— S i系形状記憶合金の加工熱処理方法。 2. Fe-Mn-Si-based shape memory alloys have the following alloy components: Mn: 15 to 40% by weight, Si: 3 to: 15% by weight, Nb: 0.1 to: 1.5% by weight. , C: 0.01 to 0.2% by weight, the balance consisting of Fe and unavoidable impurities, and the atomic ratio NbZC of Nb to C is 1 or more, NbC according to claim 1, Addition Fe E Mn—Si Thermomechanical processing method for shape memory alloys.
3. Nb C»F e -Mn-S i系形状記憶合金が、 合金成分として、 Mn : 1 5〜 40重量%、 S i : 3〜: 15重量%、 C r : 1〜 20重量%、 N b : 0.3. Nb C »F e -Mn-Si type shape memory alloy is composed of Mn: 15 to 40% by weight, Si: 3 to: 15% by weight, Cr: 1 to 20% by weight, Nb: 0.
1〜 1. 5重量%、 C : 0. 01〜 0. 2重量%を含み、 残部 F e及ぴ不可避的 不純物より成り、 Nbと Cの原子比 NbZCが 1以上であることを特徴とする、 請求項 1記載の N b C添加 F e— Mn— S i系形状記憶合金の加工熱処理方法。 1 to 1.5% by weight, C: 0.01 to 0.2% by weight, balance Fe and inevitable impurities, and atomic ratio of Nb to C NbZC is 1 or more The method for thermomechanical treatment of NbC-added Fe—Mn—Si-based shape memory alloy according to claim 1.
4. Nb C¾S¾PF e -Mn-S i系形状記憶合金が、 合金成分として、 Mn : 15〜 40重量%、 S i : 3-15重量%、 C r : :!〜 20重量%、 N i : 0.4. Nb C¾S¾PF e-Mn-S i based shape memory alloy is composed of Mn: 15 to 40% by weight, Si: 3 to 15% by weight, Cr ::! To 20% by weight, Ni: 0.
1〜20重量%、 Nb : 0. :!〜 1. 5重量%、 C : 0. 01〜0. 2重量%を 含み、 残部 F e及び不可避的不純物より成り、 Nbと Cの原子比 NbZCが 1以 上であることを特徴とする、 請求項 1記載の Nb、 C添カ卩 F e _Mn_S i系形 状記憶合金の加工熱処理方法。 1 to 20% by weight, Nb: 0 .:! To 1.5% by weight, C: 0.01 to 0.2% by weight, the balance consisting of Fe and unavoidable impurities, atomic ratio of Nb to C NbZC The method for thermomechanical treatment of Nb- and C-added FeFe_Mn_Si-based shape memory alloys according to claim 1, characterized in that the value is 1 or more.
5. Nbと Cの原子比が、 好ましくは 1. 0〜1. 2の範囲に設定されてなる ことを特徴とする、 請求項 2乃至 4の何れか 1項に記載の Nb C添加 F e—Mn5. The NbC-added Fe according to any one of claims 2 to 4, wherein the atomic ratio of Nb and C is preferably set in a range of 1.0 to 1.2. —Mn
'一 S i系形状記憶合金の加工熱処理方法。 'I A method for thermomechanical treatment of Si-based shape memory alloys.
6. Nb C添カ卩 F e— Mn— S i系形状記憶合金が、 不純物として、 Cu : 3 重量%以下、 Mo : 2重量%以下、 A 1 : 10重量。/。以下、 C o : 30重量%以 下、 N: 500◦ p pm以下含んでなる請求項 2乃至 5記載の何れか 1項に記載 の N b C添加 F e -Mn-S i系形状記憶合金の加工熱処理方法。 6. The Nb-C-added Fe-Mn-Si-based shape memory alloy contains 3% by weight or less of Cu, 2% by weight or less of Mo, and 10% by weight of A1 as impurities. /. The NbC-added Fe-Mn-Si-based shape memory alloy according to any one of claims 2 to 5, wherein Co: 30% by weight or less and N: 500 ° ppm or less. Processing heat treatment method.
7. 時効加熱処理条件が 400〜 1000 °Cの温度範囲で、 1分〜 2時間加熱 するものであることを特徴とする請求項 1乃至 6記載の何れか 1項に記載の N b C添加 F e— Mn— S i系形状記憶合金の加工熱処理方法。 7. The addition of NbC according to any one of claims 1 to 6, wherein the aging heat treatment is performed in a temperature range of 400 to 1000 ° C for 1 minute to 2 hours. F e—Mn—Si A method for thermomechanical treatment of shape memory alloys.
PCT/JP2003/016189 2002-12-18 2003-12-17 METHOD OF THERMO-MECHANICAL-TREATMENT FOR Fe-Mn-Si SHAPE-MEMORY ALLOY DOPED WITH NbC WO2004055222A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03780855A EP1574587B1 (en) 2002-12-18 2003-12-17 METHOD OF THERMO-MECHANICAL-TREATMENT FOR Fe-Mn-Si SHAPE-MEMORY ALLOY DOPED WITH NbC
US10/519,255 US20050236077A1 (en) 2002-12-18 2003-12-17 Method of thermo-mechanical-treatment for fe-mn-si shape-memory alloy doped with nbc
DE60322260T DE60322260D1 (en) 2002-12-18 2003-12-17 METHOD FOR THE THERMOMECHANICAL TREATMENT FOR A NbC-doped Fe-Mn-Si FORM MEMORY ALLOY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-367062 2002-12-18
JP2002367062A JP3950963B2 (en) 2002-12-18 2002-12-18 Thermomechanical processing of NbC-added Fe-Mn-Si based shape memory alloy

Publications (1)

Publication Number Publication Date
WO2004055222A1 true WO2004055222A1 (en) 2004-07-01

Family

ID=32588334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016189 WO2004055222A1 (en) 2002-12-18 2003-12-17 METHOD OF THERMO-MECHANICAL-TREATMENT FOR Fe-Mn-Si SHAPE-MEMORY ALLOY DOPED WITH NbC

Country Status (7)

Country Link
US (1) US20050236077A1 (en)
EP (1) EP1574587B1 (en)
JP (1) JP3950963B2 (en)
KR (1) KR20050083601A (en)
CN (1) CN100342039C (en)
DE (1) DE60322260D1 (en)
WO (1) WO2004055222A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409372B1 (en) 2010-09-02 2013-04-02 The United States of America as Represented by the Administraton of National Aeronautics and Space Administration Thermomechanical methodology for stabilizing shape memory alloy (SMA) response
DE102013102353A1 (en) * 2013-03-08 2014-09-11 Thyssenkrupp Steel Europe Ag Temperature-controlled deflection
EP2976441B1 (en) 2013-03-22 2019-02-27 ThyssenKrupp Steel Europe AG Iron-based shape memory alloy
CN104328323A (en) * 2014-10-24 2015-02-04 王健英 Manganese-iron alloy material and preparation method thereof
WO2018047787A1 (en) * 2016-09-06 2018-03-15 国立大学法人東北大学 Fe-BASED SHAPE MEMORY ALLOY MATERIAL AND METHOD FOR PRODUCING SAME
CN107012411A (en) * 2017-03-08 2017-08-04 宁波高新区远创科技有限公司 A kind of preparation method of soil grounded screen alloy material
WO2018219463A1 (en) 2017-06-01 2018-12-06 Thyssenkrupp Steel Europe Ag Fe-mn-si shape-memory alloy
DE102018119296A1 (en) 2018-08-08 2020-02-13 Thyssenkrupp Ag Inline stretching of shape memory alloys, especially flat steel
WO2020108754A1 (en) 2018-11-29 2020-06-04 Thyssenkrupp Steel Europe Ag Flat product consisting of an iron-based shape memory material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112720A (en) * 1985-11-09 1987-05-23 Nippon Steel Corp Improvement of characteristic fe-mn-si shape memory alloy
US5032195A (en) * 1989-03-02 1991-07-16 Korea Institute Of Science And Technology FE-base shape memory alloy
US20010023723A1 (en) * 2000-02-09 2001-09-27 Takehiko Kikuchi Shape memory alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382741A (en) * 1989-08-25 1991-04-08 Nisshin Steel Co Ltd Shape memory staiinless steel excellent in stress corrosion cracking resistance and shape memory method therefor
FR2654748B1 (en) * 1989-11-22 1992-03-20 Ugine Aciers STAINLESS STEEL ALLOY WITH SHAPE MEMORY AND METHOD FOR PRODUCING SUCH AN ALLOY.
JP2003277827A (en) * 2002-03-20 2003-10-02 National Institute For Materials Science WORKING AND HEAT-TREATMENT METHOD FOR NbC-ADDED Fe-Mn-Si SHAPE MEMORY ALLOY

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112720A (en) * 1985-11-09 1987-05-23 Nippon Steel Corp Improvement of characteristic fe-mn-si shape memory alloy
US5032195A (en) * 1989-03-02 1991-07-16 Korea Institute Of Science And Technology FE-base shape memory alloy
US20010023723A1 (en) * 2000-02-09 2001-09-27 Takehiko Kikuchi Shape memory alloy

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BARUJ A. ET AL.: "Shape memory behaviour and recovery strength in training-less FE-MN-SI-based SMA containing NBC", THE JAPAN INSTITUTE OF METALS KOEN GAIYO, vol. 128, pages 347, XP002981522 *
SAWAGUCHI ET AL.: "Shitsuon de incho henkeigo jiko netsushori shita Fe-28Mn-6Si-5Cr-0.5NbC gokin no keijo kioku tokusei", THE JAPAN INSTITUTE OF METALS KOEN GAIYO, vol. 133, 11 October 2003 (2003-10-11), pages 75, XP002981521 *
See also references of EP1574587A4 *

Also Published As

Publication number Publication date
EP1574587A4 (en) 2006-02-01
US20050236077A1 (en) 2005-10-27
JP2004197161A (en) 2004-07-15
CN100342039C (en) 2007-10-10
DE60322260D1 (en) 2008-08-28
JP3950963B2 (en) 2007-08-01
EP1574587B1 (en) 2008-07-16
KR20050083601A (en) 2005-08-26
CN1692163A (en) 2005-11-02
EP1574587A1 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
EP2226406B1 (en) Stainless austenitic low Ni alloy
US5951793A (en) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
JP4262414B2 (en) High Cr ferritic heat resistant steel
WO2000044950A1 (en) Heat-resistant alloy wire
WO2007055155A1 (en) Iron-based alloy having shape-memory property and superelasticity and method for manufacture thereof
CN112639144B (en) Copper alloy material, method for producing same, and member or component made of copper alloy material
JP3308090B2 (en) Fe-based super heat-resistant alloy
WO2004055222A1 (en) METHOD OF THERMO-MECHANICAL-TREATMENT FOR Fe-Mn-Si SHAPE-MEMORY ALLOY DOPED WITH NbC
JP6269836B2 (en) Titanium alloy member having shape change characteristic in the same direction as the machining direction
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
EP2940174B1 (en) Fe-ni-based alloy having excellent high-temperature characteristics and hydrogen embrittlement resistance characteristics, and method for producing same
JP3542754B2 (en) Shape memory alloy
KR100555645B1 (en) METHOD OF PROCESSING AND HEAT-TREATING NbC-ADDED Fe-Mn-Si-BASED SHAPE MEMORY ALLOY
JP2000017395A (en) Fe SERIES SHAPE MEMORY ALLOY AND ITS PRODUCTION
JP4923996B2 (en) Heat-resistant spring and method for manufacturing the same
JP4315582B2 (en) Co-Ni base heat-resistant alloy and method for producing the same
JP2009215650A (en) Shape memory alloy
JP3970645B2 (en) Method for producing iron-based shape memory alloy
JP4786063B2 (en) Method for producing martensitic precipitation hardened stainless steel
JP2003105438A (en) WORKING AND HEAT-TREATING METHOD FOR Fe-Mn-Si BASED SHAPE MEMORY ALLOY ADDED WITH NbC
JP3515770B2 (en) Heat-resistant steel wire and spring
JP4667961B2 (en) Manufacturing method of non-tempered high strength bolt
JP2001158943A (en) Heat resistant bolt
JP2003138330A (en) Copper-base alloy and its manufacturing method
JPS59113167A (en) Heat treatment of titanium/nickel shape memory alloy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003780855

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10519255

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A05661

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057001247

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057001247

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003780855

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003780855

Country of ref document: EP