JP2004197161A - Working and heat treatment method for niobium carbide-containing iron-manganese-silicon base shape-memory alloy - Google Patents

Working and heat treatment method for niobium carbide-containing iron-manganese-silicon base shape-memory alloy Download PDF

Info

Publication number
JP2004197161A
JP2004197161A JP2002367062A JP2002367062A JP2004197161A JP 2004197161 A JP2004197161 A JP 2004197161A JP 2002367062 A JP2002367062 A JP 2002367062A JP 2002367062 A JP2002367062 A JP 2002367062A JP 2004197161 A JP2004197161 A JP 2004197161A
Authority
JP
Japan
Prior art keywords
weight
shape memory
nbc
memory alloy
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002367062A
Other languages
Japanese (ja)
Other versions
JP3950963B2 (en
Inventor
Takehiko Kikuchi
武丕児 菊池
Setsuo Kajiwara
節夫 梶原
Alberto Baruj
バルホ・アルベルト
Kazuyuki Ogawa
一行 小川
Norio Shintani
紀雄 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002367062A priority Critical patent/JP3950963B2/en
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to EP03780855A priority patent/EP1574587B1/en
Priority to KR1020057001247A priority patent/KR20050083601A/en
Priority to DE60322260T priority patent/DE60322260D1/en
Priority to US10/519,255 priority patent/US20050236077A1/en
Priority to PCT/JP2003/016189 priority patent/WO2004055222A1/en
Priority to CNB2003801005661A priority patent/CN100342039C/en
Publication of JP2004197161A publication Critical patent/JP2004197161A/en
Application granted granted Critical
Publication of JP3950963B2 publication Critical patent/JP3950963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/01Shape memory effect

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a shape-memory characteristic only by using a basic treatment, such as a working treatment at a room temperature and an aging treatment, without performing a training treatment or a high temperature treatment instead of the above training treatment as the conventional method, in the working and heat treatment of Fe-Mn-Si base shape-memory alloy. <P>SOLUTION: In the heating treatment method, the Fe-Mn-Si base shape-memory alloy mixed with Nb and C, is worked by 5-40% at a room temperature and successively, the aging treatment for precipitating NbC is applied by heating a prescribed temperature. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、NbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法に関するものである。さらに詳しくは、この発明は、いわゆるトレーニングなしでも上記合金の形状記憶特性を発現し、その性能の向上を図ることが出来る、NbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法に関するものである。
【0002】
【従来の技術とその問題点】
Fe−Mn−Si系形状記憶合金が提案、発明されて以来久しいが、その利用状況は、未だ充分に活用されているとは言えず、実用化段階に至っているとはいえない状況にあった。その最大の原因は、この合金はトレーニングといわれる特殊な加工熱処理をしなければ、十分な形状記憶効果を示さないことにあるものであった。ここにトレーニングとは、室温で2−3%の変形を施した後、逆変態点以上の600℃近傍で加熱するという処理を数回以上繰り返す形状記憶加工操作を指すものである。上記実情に鑑み、近年、本発明者らのグループにおいて鋭意研究した結果、Fe−Mn−Si系形状記憶合金にNbとC元素を少量添加し適当な時効熱処理により、微細なNbC炭化物を析出させることによって頻雑なトレーニング加工操作なしでも十分良好な形状記憶効果を示すことを見出し、特許出願をした(特許文献1参照)。また、このNbC添加合金について、その加工熱処理手段を本発明者らグループがさらに鋭意研究を進めた結果、このNb、C添加のFe−Mn−Si系形状記憶合金は、これを500〜800℃の温度範囲で加工した後時効すると更に優れた形状記憶特性が得られることを発見し、これについても特許出願をした(特許文献2、特許文献3参照)。
【0003】
【特許文献1】
特開2001−226747号公報
【特許文献2】
特願2001−296901号
【特許文献3】
特願2002−79295号
【0004】
以上の提案によって、形状記憶合金技術は飛躍的に進歩し、今後の実用化に大きく寄与し、以て産業の発展に大いに寄与するものと確信するが、これらの提案自体についてもそこになお改善すべき余地が依然として残っているものであった。すなわち、後者二つの先行特許出願(特許文献2、特許文献3)についても、これらの提案による発明は、その前提とするいわゆるトレーニングによる従前の技術に比して、合金の形状記憶性能自体の向上と共にその加工操作が極めて簡易となり、その意義は極めて大きい。また、それにより形状記憶性能も飛躍的に高くなり、実用性への度合いが飛躍的に向上したことが認められ、その作用効果は極めて顕著である、と言うことができるものの、そのための加工操作は、500〜800℃という高温での加熱処理を要する点において依然として問題が残っており、そこに使い難さがあったことは否めないものであった。
本発明者らにおいては、これを極力低い温度での加工でも形状記憶特性を発現することができないものか、鋭意研究を重ねた結果、室温での加工でも形状記憶特性が顕著であり、充分に前示目的を達成することが出来るとことを見いだしたものである。
【0005】
【発明の解決手段】
すなわち、 Nb、Cを添加してなるFe−Mn−Si系形状記憶合金を室温で加工し、次いで加熱時効処理してNbC炭化物を析出させるという基本的な操作を適用するだけで、その合金の形状記憶特性を発現できるという思いもよらない作用効果が奏せられることを見いだし、前示目的を達成するに成功したものである。
本発明は、これらの知見、成功に基づいてなされたものであり、その解決手段は以下(1)〜(7)に示すとおりの構成を講じてなるものである。
(1) Nb、Cを添加してなるFe−Mn−Si系形状記憶合金を室温で5〜40%加工し、次いで時効加熱処理してNbC炭化物を析出させることを特徴とする、NbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法。
(2) Fe−Mn−Si系形状記憶合金が、合金成分として、Mn:15〜40重量%、Si:3〜15重量%、Nb:0.1〜1.5重量%、C:0.01〜0.2重量%を含み、残部Fe及び不可避的不純物より成り、NbとCの原子比Nb/Cが1以上であることを特徴とする、前記(1)項に記載のNbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法。
(3) NbC添加Fe−Mn−Si系形状記憶合金が、合金成分として、Mn:15〜40重量%、Si:3〜15重量%、Cr:1〜20重量%、Nb:0.1〜1.5重量%、C:0.01〜0.2重量%を含み、残部Fe及び不可避的不純物より成り、NbとCの原子比Nb/Cが1以上であることを特徴とする、前記(1)項に記載のNbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法。
(4) NbC添加Fe−Mn−Si系形状記憶合金が、合金成分として、Mn:15〜40重量%、Si:3〜15重量%、Cr:1〜20重量%、Ni:0.1〜20重量%、Nb:0.1〜1.5重量%、C:0.01〜0.2重量%を含み、残部Fe及び不可避的不純物より成り、NbとCの原子比Nb/Cが1以上であることを特徴とする、前記(1)項に記載のNb、C添加Fe−Mn−Si系形状記憶合金の加工熱処理方法。
(5) NbとCの原子比が、好ましくは1.0〜1.2の範囲に設定されてなることを特徴とする、前記(2)乃至(4)の何れか1項に記載のNbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法。
(6) NbC添加Fe−Mn−Si系形状記憶合金が、不純物として、Cu:3重量%以下、Mo:2重量%以下、Al:10重量%以下、Co:30重量%以下、N:5000ppm以下含んでいる(2)乃至(5)の何れか1項に記載のNbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法。
(7) 時効加熱処理条件が400〜1000℃の温度範囲で且つ1分〜2時間加熱するものであることを特徴とする前記(1)乃至(6)の何れか1項に記載のNbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法。
【0006】
ここに、室温での加工率を5〜40%と規定した理由は、5%未満では形状記憶特性の改善に有効に寄与せず、40%を越えると、試料が硬くなりすぎ、時効処理後の変形が著しく困難になるからである。
【0007】
また、本発明のNbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法が対象とする合金成分は、先の出願においても示したように、Mn:15〜40重量%、Si:3〜15重量%、Nb:0.1〜1.5重量%、C:0.01〜0.2重量、そして残部がFe及び不可避的不純物であり、NbとCの原子比Nb/Cが1以上である合金である。
【0008】
また、NbC添加Fe−Mn−Si系形状記憶合金の合金成分は、Mn:15〜40重量%、Si:3〜15重量%、Cr:1〜20重量%、Nb:0.1〜1.5重量%、C:0.01〜0.2重量%を含み、残部Fe及び不可避的不純物より成り、NbとCの原子比Nb/Cが1以上である合金、さらにまた、Mn:15〜40重量%、Si:3〜15重量%、Cr:1〜20重量%、Ni:0.1〜20重量%、Nb:0.1〜1.5重量%、C:0.01〜0.2重量%を含み、残部Fe及び不可避的不純物より成り、NbとCの原子比Nb/Cが1以上である合金も本発明で対象とする合金である。
【0009】
以上のNbC添加したいずれのFe−Mn−Si系形状記憶合金においても、合金中におけるNbとCの原子比Nb/Cは、1.0〜1.2であることが好ましい。
【0010】
さらに、本発明のNbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法において対象とする合金成分には、不純物として、3重量%以下のCu、2重量%以下のMo、10重量%以下のAl、30重量%以下のCo、又は5000ppm以下のNの少なくとも1種もしくはそれ以上を含むことが許容される。
【0011】
【発明の実施態様】
以下、本発明を図1、図2に基づいて以下、具体的に説明する。但し、これらに示した実例は、あくまでも本発明を容易に理解するための一助として開示するためのものであって、本発明をこれによって限定する趣旨ではない。
【0012】
実施例;
まず、本発明のNbCが添加されてなるFe−28Mn−6Si−5Cr−
0.53Nb−0.06C合金(数値は、重量%)を溶製準備し、その得られた形状記憶合金の形状記憶特性が、室温で圧延加工後、400〜1000℃の温度範囲で1分〜2時間の加熱による時効処理を行うことによって形状記憶性がいかに改善されるかを以下に示すものである。
すなわち、図1は、時効のみを施した場合(圧延率0%)と室温で10%、20%、30%圧延した場合の形状回復率違いを示したグラフである。時効処理は、いずれも800℃で10分間行った。比較のためにNbCを添加していないFe−28Mn−6Si−5Cr合金について、焼鈍したままの試料と5回トレーニングした試料の結果も示してある。横軸は室温における引っ張り変形による変形量(%)であり、縦軸の形状回復率(%)は試料を600℃に加熱した場合の伸びの回復率である。400℃まで加熱した場合もこれとほぼ同一の形状回復率が得られる。この実験において用いた試料片は、厚さ0.6mm、幅1〜4mm、長さ(ゲージ長)15mmに調製した試験片を用いて試験を行った。
【0013】
この図からわかるように、10%の圧延した試料はその形状記憶回復率は、5回トレーニングしたNbC無添加の合金と比べると、同程度かやや劣っている程度のものとなっている。実用的に必要な変形量は約4%であるが、この変形量においても約90%の形状記憶回復率を示していることは、実用合金として使用可能なことを強く示唆している。これと同じ形状回復率をNbC無添加の通常のFe−Mn−Si基形状記憶合金で得るために少なくとも5回のトレーニングが必要であることを考えるとその作用効果は優れていると言える。
圧延率が高くなり、20%となると無加工(時効のみ)の場合と形状回復率は殆ど同じか少し良くなる程度である。さらに圧延率が30%になると時効のみの場合よりも、初期歪みの大きいところでは逆に形状回復率が悪くなることを示している。
【0014】
これに対して、実用上重要な形状記憶特性の一つである形状回復力は、図2に示す通り室温で20%圧延、30%圧延後、時効処理をした試料の方がいちじるしく向上している。図2はその形状回復力向上の程度を時効のみの場合(圧延率0%)及び室温で10%圧延後時効処理をした場合と比較して示しているものである。横軸の回復歪がゼロのときの回復力は、室温で引っ張り変形した後そのまま両端を固定して逆変態温度以上に加熱し、その後再び室温に戻したときの発生応力を意味する。また、回復歪が例えば2%のときの回復力は、歪が2%回復した後に両端を固定して測定した発生応力を意味するものである。室温で与えた初期の歪は4〜6%で試験を行った。なお、その際用いた試験片は、第1図の結果を得るのに用いたものと同一の試料を用いた。なお、図2において、横軸の回復歪みは、実用例で言えば、パイプの締結部品に使用した場合には、パイプと締結部品(形状記憶合金)との許容されるクリーアランスの程度を直径に対する割合(%)で表したものと対応する。この形状回復力は圧延率が高いところで著しく向上している。室温での圧延率が20〜30%ではその回復歪みが0%のところで310MPa、2%の回復歪みでも200MPaの回復力が得られる。また、10%の圧延率の場合でも、トレーニングした場合と全く同じの形状回復力が得られることが分かった。すなわち、この図の結果から圧延率0%、圧延率10%に比し、高圧延率(20%、30%)の場合は形状回復力が著しい増大がみられることが理解される。なお、図2には比較のため、NbC無添加の溶体化試料及び5回トレーニングした試料の形状回復力を示したが、その回復力は本発明の態様によるものに比較してかなり小さいことが分かった。
【0015】
以上述べたように、本発明は、Nb、Cを添加してなる特定の組成を有するFe−Mn−Si系形状記憶合金に対して、時効処理に先立って行われる加工処理を、特定の加工率の範囲であれば、室温で加工処理することによって可能とすることに始めて成功したものである。その技術的意義は、その前提とする従来技術においては、煩雑な操作を伴うトレーニングや、先行技術における500〜800℃の高温加工処理を要する場合と比較すると両者の構成の差は歴然としており、明らかである。すなわち、本発明は、特定の合金組成、室温における加工度、時効条件を一定の範囲に設定し、組み合わせることによって、はじめて大幅に形状記憶特性を改善することに成功したものである。その操作は、室温加工と時効という極めてありふれた加工熱処理により、トレーニング処理を施した試料と同等の形状回復率を示し、かつ形状回復力についてはトレーニング処理を施した試料よりも著しく大きな回復力が得られるものであり、いずれにしてもその意義は極めて大であり、例えば、小は水道管の締結から、大はオイルパイプの締結のいたるまであらゆる用途の締結部材として使用、利用でき、その経済的効果は計り知れない。
勿論これらに例示した締結部材としての用途は、その単なる態様の一端を紹介したにすぎず、本発明は係る用途、分野に限定されるものではないし、本発明を機に今後各種分野において、多様な用途等に、実用に供されることが期待される。
【0016】
【発明の効果】
本発明は、Nb、Cを添加してなる特定の組成を有するFe−Mn−Si系形状記憶合金に対して、これを加工熱処理する手段としては、従前においては時効に先立って行われる加工処理がトレーニングによって、あるいはまた、先行技術においては、時効処理に先立って行われる加工処理が500〜800℃の温度範囲で行われていたところ、本発明においては、時効処理に先立って行われる加工処理を特定の加工率の範囲であれば、高温によらずとも、すなわち室温で加工処理することにより可能とすることに成功したしたものである。
その技術的意義は、その前提とする従来技術、先行技術の構成と比較すると被我の差は明らかであり、極めて大きな違いがあること歴然としている。すなわち、本発明は、特定の合金組成、室温における加工度、時効条件を一定の範囲に設定し、組み合わせることによって、はじめて大幅に形状記憶特性を改善することに成功したものである。その操作は、室温加工と時効という極めてありふれた加工熱処理により、トレーニング処理を施した試料と同等の形状回復率を示し、かつ形状回復力についてはトレーニング処理を施した試料よりも著しく大きな回復力が得られるものであり、いずれにしても本発明は、これを機に今後各種分野において、さらに一段と実用化に向けて加速されることが期待される。
【図面の簡単な説明】
【図1】は、本発明のNbC添加Fe−Mn−Si系形状記憶合金の加工熱処理による形状回復率と初期変形量との関係を示した図。
【図2】は、本発明のNbC添加Fe−Mn−Si系形状記憶合金の加工熱処理による形状回復力と回復歪みの関係を示した図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for thermomechanical processing of an NbC-added Fe—Mn—Si based shape memory alloy. More specifically, the present invention relates to a method for thermomechanical treatment of an NbC-added Fe—Mn—Si shape memory alloy that can exhibit the shape memory characteristics of the above alloy without any training and improve the performance thereof. is there.
[0002]
[Conventional technology and its problems]
Although it has been a long time since the Fe-Mn-Si based shape memory alloy was proposed and invented, its use has not yet been fully utilized, and it has not yet reached the stage of practical use. . The biggest cause was that this alloy did not show a sufficient shape memory effect without a special thermomechanical treatment called training. Here, training refers to a shape memory processing operation in which a process of performing 2-3% deformation at room temperature and then heating at around 600 ° C. above the reverse transformation point is repeated several times or more. In view of the above-mentioned circumstances, in recent years, as a result of intensive research conducted by the group of the present inventors, a small amount of Nb and C elements are added to an Fe-Mn-Si-based shape memory alloy, and fine NbC carbides are precipitated by an appropriate aging heat treatment. As a result, it has been found that a sufficiently good shape memory effect is exhibited without a frequent training processing operation, and a patent application was filed (see Patent Document 1). In addition, as a result of further intensive research on the thermomechanical treatment means for the NbC-added alloy by the present inventors, the Nb, C-added Fe-Mn-Si-based shape memory alloy has a temperature of 500 to 800C. It was discovered that further aging after working in the temperature range described above resulted in even better shape memory characteristics, and patent applications were also made for this (see Patent Documents 2 and 3).
[0003]
[Patent Document 1]
JP 2001-226747 A [Patent Document 2]
Japanese Patent Application No. 2001-296901 [Patent Document 3]
Japanese Patent Application No. 2002-79295 No.
With the above proposals, shape memory alloy technology has advanced dramatically, and we are convinced that it will greatly contribute to practical application in the future, and will greatly contribute to the development of industry, but these proposals themselves are still improved. There was still room to do. In other words, with respect to the latter two prior patent applications (Patent Documents 2 and 3), the inventions proposed by these proposals also improve the shape memory performance of the alloy itself as compared with the prior art based on so-called training. At the same time, the processing operation becomes extremely simple, and its significance is extremely large. In addition, the shape memory performance has been dramatically improved by this, and it has been recognized that the degree of practicality has been dramatically improved. It can be said that the effect is extremely remarkable, but the processing operation for that is However, there still remains a problem in that heat treatment at a high temperature of 500 to 800 ° C. is required, and it is undeniable that there was difficulty in using the heat treatment.
In the present inventors, it is not possible to express the shape memory characteristics even at the lowest possible temperature processing, as a result of intensive research, shape memory characteristics are remarkable even at room temperature processing, sufficient It has been found that the stated purpose can be achieved.
[0005]
[MEANS FOR SOLVING THE PROBLEMS]
That is, the basic operation of processing a Fe-Mn-Si-based shape memory alloy to which Nb and C are added at room temperature, and then heating and aging to precipitate NbC carbide is applied. The inventor has found that an unexpected effect of exhibiting shape memory characteristics can be obtained, and has succeeded in achieving the above-mentioned object.
The present invention has been made on the basis of these findings and success, and the means for solving the problems is to adopt the following configurations (1) to (7).
(1) NbC-added Fe, characterized in that a Fe-Mn-Si shape memory alloy to which Nb and C are added is worked at a room temperature by 5 to 40% and then subjected to aging heat treatment to precipitate NbC carbide. -A method for thermomechanical treatment of a Mn-Si based shape memory alloy.
(2) Fe-Mn-Si based shape memory alloys are composed of Mn: 15 to 40% by weight, Si: 3 to 15% by weight, Nb: 0.1 to 1.5% by weight, C: 0. The NbC-added Fe according to the above (1), wherein the NbC-added Fe contains 0.1 to 0.2% by weight, the balance being Fe and inevitable impurities, and the atomic ratio Nb / C of Nb to C is 1 or more. -A method for thermomechanical treatment of a Mn-Si based shape memory alloy.
(3) NbC-added Fe-Mn-Si-based shape memory alloy contains, as alloy components, Mn: 15 to 40% by weight, Si: 3 to 15% by weight, Cr: 1 to 20% by weight, Nb: 0.1 to 1.5% by weight, C: 0.01 to 0.2% by weight, the balance being Fe and unavoidable impurities, wherein the atomic ratio Nb / C of Nb to C is 1 or more. (1) The method for thermomechanical processing of an NbC-added Fe-Mn-Si-based shape memory alloy according to the item (1).
(4) The NbC-added Fe-Mn-Si-based shape memory alloy contains, as alloy components, Mn: 15 to 40 wt%, Si: 3 to 15 wt%, Cr: 1 to 20 wt%, Ni: 0.1 to 0.1 wt%. 20% by weight, Nb: 0.1 to 1.5% by weight, C: 0.01 to 0.2% by weight, the balance being Fe and unavoidable impurities, and the atomic ratio Nb / C of Nb to C is 1 The method for thermomechanical processing of an Nb- and C-added Fe-Mn-Si-based shape memory alloy according to the above item (1), characterized in that:
(5) The NbC according to any one of (2) to (4), wherein the atomic ratio of Nb to C is preferably set in a range of 1.0 to 1.2. A thermomechanical treatment method for an added Fe-Mn-Si-based shape memory alloy.
(6) The NbC-added Fe-Mn-Si based shape memory alloy contains, as impurities, Cu: 3 wt% or less, Mo: 2 wt% or less, Al: 10 wt% or less, Co: 30 wt% or less, N: 5000 ppm. The method for thermomechanical treatment of an NbC-added Fe-Mn-Si-based shape memory alloy according to any one of (2) to (5), including:
(7) The NbC addition according to any one of (1) to (6), wherein the aging heat treatment is performed in a temperature range of 400 to 1000 ° C. for 1 minute to 2 hours. A thermomechanical treatment method for an Fe-Mn-Si based shape memory alloy.
[0006]
Here, the reason why the working ratio at room temperature is specified as 5 to 40% is that if it is less than 5%, it does not effectively contribute to the improvement of the shape memory characteristics, and if it exceeds 40%, the sample becomes too hard and after aging treatment. This is because it becomes extremely difficult to deform the.
[0007]
Further, as shown in the previous application, the alloy components targeted by the method for thermomechanical processing of the NbC-added Fe—Mn—Si based shape memory alloy of the present invention include Mn: 15 to 40% by weight and Si: 3 to 15% by weight, Nb: 0.1 to 1.5% by weight, C: 0.01 to 0.2% by weight, and the balance is Fe and inevitable impurities, and the atomic ratio Nb / C of Nb to C is 1 or more. Is an alloy.
[0008]
The alloy components of the NbC-added Fe—Mn—Si shape memory alloy are as follows: Mn: 15 to 40% by weight, Si: 3 to 15% by weight, Cr: 1 to 20% by weight, Nb: 0.1 to 1. 5% by weight, C: an alloy containing 0.01 to 0.2% by weight, the balance being Fe and unavoidable impurities, and having an atomic ratio Nb / C of Nb / C of 1 or more. 40% by weight, Si: 3 to 15% by weight, Cr: 1 to 20% by weight, Ni: 0.1 to 20% by weight, Nb: 0.1 to 1.5% by weight, C: 0.01 to 0. An alloy containing 2% by weight, the balance being Fe and inevitable impurities, and having an atomic ratio Nb / C of Nb / C of 1 or more is also an alloy targeted in the present invention.
[0009]
In any of the above Fe-Mn-Si based shape memory alloys to which NbC is added, the atomic ratio Nb / C of Nb and C in the alloy is preferably 1.0 to 1.2.
[0010]
Further, in the alloy component to be processed in the method for thermomechanical treatment of the NbC-added Fe—Mn—Si based shape memory alloy of the present invention, as an impurity, 3% by weight or less of Cu, 2% by weight or less of Mo, and 10% by weight or less. Of Al, 30% by weight or less of Co, or 5000 ppm or less of N.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described with reference to FIGS. However, the examples shown in these are merely disclosed as an aid for easily understanding the present invention, and are not intended to limit the present invention.
[0012]
Example;
First, Fe-28Mn-6Si-5Cr- to which NbC of the present invention is added.
A 0.53Nb-0.06C alloy (the numerical value is% by weight) is prepared by melting, and the shape memory property of the obtained shape memory alloy is determined to be 1 minute in a temperature range of 400 to 1000 ° C. after rolling at room temperature. The following shows how the shape memory property is improved by performing the aging treatment by heating for up to 2 hours.
That is, FIG. 1 is a graph showing the difference in shape recovery ratio between the case where only aging is performed (rolling ratio 0%) and the case where 10%, 20% and 30% rolling is performed at room temperature. All the aging treatments were performed at 800 ° C. for 10 minutes. For comparison, the results of the as-annealed sample and the sample trained five times are also shown for the Fe-28Mn-6Si-5Cr alloy to which NbC was not added. The horizontal axis represents the deformation (%) due to tensile deformation at room temperature, and the vertical axis represents the shape recovery rate (%) when the sample is heated to 600 ° C. When heated to 400 ° C., almost the same shape recovery rate can be obtained. The test pieces used in this experiment were tested using test pieces prepared to have a thickness of 0.6 mm, a width of 1 to 4 mm, and a length (gauge length) of 15 mm.
[0013]
As can be seen from the figure, the 10% rolled sample has the same or slightly inferior shape memory recovery as the alloy trained five times without NbC. The amount of deformation required for practical use is about 4%. Even at this amount of deformation, showing a shape memory recovery rate of about 90% strongly suggests that the alloy can be used as a practical alloy. Considering that at least five trainings are required to obtain the same shape recovery rate with a normal Fe—Mn—Si based shape memory alloy without NbC addition, the effect can be said to be excellent.
When the rolling ratio increases and reaches 20%, the shape recovery rate is almost the same or slightly better than that in the case of no processing (only aging). Furthermore, when the rolling reduction is 30%, the shape recovery rate is worse at a place where the initial strain is larger than when only aging is performed.
[0014]
On the other hand, the shape-restoring force, which is one of the important shape-memory characteristics in practical use, is significantly improved in the sample that has been subjected to aging treatment after 20% rolling and 30% rolling at room temperature as shown in FIG. I have. FIG. 2 shows the degree of improvement of the shape recovery force in comparison with the case of only aging (rolling ratio 0%) and the case of aging treatment after rolling 10% at room temperature. The recovery force when the recovery strain on the horizontal axis is zero means the stress generated when the two ends are fixed as they are after being subjected to tensile deformation at room temperature, heated to the reverse transformation temperature or higher, and then returned to room temperature again. The restoring force when the recovery strain is, for example, 2% means the generated stress measured by fixing both ends after the recovery of the strain by 2%. Testing was performed with an initial strain of 4-6% at room temperature. The same test piece as that used for obtaining the results shown in FIG. 1 was used as the test piece at that time. In FIG. 2, the recovery strain on the abscissa indicates, in a practical example, the degree of allowable clearance between the pipe and the fastening part (shape memory alloy) when used for the fastening part of a pipe. Corresponds to the value expressed in percentage (%). This shape recovery force is remarkably improved at a high rolling reduction. When the rolling reduction at room temperature is 20 to 30%, a recovery force of 310 MPa at a recovery strain of 0% and a recovery force of 200 MPa at a recovery strain of 2% can be obtained. Also, it was found that even with a rolling reduction of 10%, exactly the same shape recovery force as in the case of training was obtained. That is, it is understood from the results of this figure that the shape recovery force is remarkably increased at the high rolling reduction (20%, 30%) as compared with the rolling reduction of 0% and the rolling reduction of 10%. FIG. 2 shows the shape recovery force of the solution-treated sample without NbC addition and the sample trained five times for comparison, and the recovery power is considerably smaller than that according to the embodiment of the present invention. Do you get it.
[0015]
As described above, according to the present invention, the processing performed prior to the aging treatment on the Fe—Mn—Si based shape memory alloy having the specific composition obtained by adding Nb and C is performed by the specific processing. Within the range of the rate, it was the first time that it was made possible by processing at room temperature. The technical significance is that, in the prior art as its premise, the difference between the two configurations is obvious when compared with the case where training involving complicated operations or high-temperature processing at 500 to 800 ° C. is required in the prior art, it is obvious. That is, the present invention has succeeded in significantly improving the shape memory properties for the first time by setting and combining a specific alloy composition, a workability at room temperature, and an aging condition within a certain range. The operation shows a shape recovery rate equivalent to that of the training-treated sample due to the extremely common processing heat treatment of room temperature processing and aging. In any case, the significance is extremely large.For example, the small one can be used and used as a fastening member for all applications from the connection of a water pipe to the large one of an oil pipe. The effect is immeasurable.
Of course, the applications as the fastening members exemplified here are merely one end of the embodiment, and the present invention is not limited to such uses and fields. It is expected to be put to practical use for various applications.
[0016]
【The invention's effect】
According to the present invention, as a means for subjecting a Fe-Mn-Si-based shape memory alloy having a specific composition obtained by adding Nb and C to a thermomechanical treatment, a processing treatment conventionally performed prior to aging is used. However, in the prior art, the processing performed prior to the aging process was performed in a temperature range of 500 to 800 ° C. In the present invention, the processing performed prior to the aging process was performed. Within the range of a specific processing rate, it has been successfully made possible by processing at room temperature regardless of the high temperature.
As for its technical significance, the difference between the injured persons is clear as compared with the configuration of the prior art and the prior art as the premise, and it is clear that there is an extremely large difference. That is, the present invention has succeeded in significantly improving the shape memory properties for the first time by setting and combining a specific alloy composition, a workability at room temperature, and an aging condition within a certain range. The operation shows a shape recovery rate equivalent to that of the training-treated sample due to the extremely common processing heat treatment of room temperature processing and aging. In any case, it is expected that the present invention will be further accelerated for practical use in various fields in the future.
[Brief description of the drawings]
FIG. 1 is a view showing the relationship between the shape recovery rate and the initial deformation amount of a NbC-added Fe—Mn—Si-based shape memory alloy according to the present invention by working heat treatment.
FIG. 2 is a diagram showing the relationship between shape recovery force and recovery strain of a NbC-added Fe—Mn—Si shape memory alloy according to the present invention by thermomechanical processing.

Claims (7)

Nb、Cを添加してなるFe−Mn−Si系形状記憶合金を室温で5〜40%加工し、次いで加熱時効処理してNbC炭化物を析出させることを特徴とする、NbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法。NbC-added Fe-Mn-Fe-Mn-Fe-Mn-Fe-Mn-Fe-Mn-Fe-Mn-Fe-Mn-Fe-Mn-Fe-Mn-Fe-Mn-Fe-Mn-Fe-Mn-Fe-Mn-Fe A thermomechanical treatment method for a Si-based shape memory alloy. Fe−Mn−Si系形状記憶合金が、合金成分として、Mn:15〜40重量%、Si:3〜15重量%、Nb:0.1〜1.5重量%、C:0.01〜0.2重量%を含み、残部Fe及び不可避的不純物より成り、NbとCの原子比Nb/Cが1以上であることを特徴とする、請求項1記載のNbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法。Fe-Mn-Si based shape memory alloys are composed of Mn: 15 to 40% by weight, Si: 3 to 15% by weight, Nb: 0.1 to 1.5% by weight, and C: 0.01 to 0%. 2. The NbC-added Fe-Mn-Si-based shape according to claim 1, wherein the NbC-added Fe-Mn-Si-based shape comprises 0.2 wt%, the balance being Fe and inevitable impurities, and the atomic ratio Nb / C of Nb to C is 1 or more. Thermomechanical processing method for memory alloy. NbC添加Fe−Mn−Si系形状記憶合金が、合金成分として、Mn:15〜40重量%、Si:3〜15重量%、Cr:1〜20重量%、Nb:0.1〜1.5重量%、C:0.01〜0.2重量%を含み、残部Fe及び不可避的不純物より成り、NbとCの原子比Nb/Cが1以上であることを特徴とする、請求項1記載のNbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法。The NbC-added Fe-Mn-Si-based shape memory alloy contains, as alloy components, Mn: 15 to 40% by weight, Si: 3 to 15% by weight, Cr: 1 to 20% by weight, and Nb: 0.1 to 1.5%. 2. The composition according to claim 1, wherein the composition contains 0.01% to 0.2% by weight of C, the balance being Fe and inevitable impurities, and the atomic ratio Nb / C of Nb to C is 1 or more. Of the NbC-added Fe-Mn-Si based shape memory alloy. NbC添加Fe−Mn−Si系形状記憶合金が、合金成分として、Mn:15〜40重量%、Si:3〜15重量%、Cr:1〜20重量%、Ni:0.1〜20重量%、Nb:0.1〜1.5重量%、C:0.01〜0.2重量%を含み、残部Fe及び不可避的不純物より成り、NbとCの原子比Nb/Cが1以上であることを特徴とする、請求項1記載のNb、C添加Fe−Mn−Si系形状記憶合金の加工熱処理方法。The NbC-added Fe-Mn-Si-based shape memory alloy contains, as alloy components, Mn: 15 to 40% by weight, Si: 3 to 15% by weight, Cr: 1 to 20% by weight, Ni: 0.1 to 20% by weight. , Nb: 0.1 to 1.5% by weight, C: 0.01 to 0.2% by weight, the balance being Fe and unavoidable impurities, and the atomic ratio Nb / C of Nb to C is 1 or more. The method of claim 1, wherein the Nb- and C-added Fe—Mn—Si-based shape memory alloy is heat-treated. NbとCの原子比が、好ましくは1.0〜1.2の範囲に設定されてなることを特徴とする、請求項2乃至4の何れか1項に記載のNbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法。The NbC-added Fe-Mn-Si according to any one of claims 2 to 4, wherein the atomic ratio of Nb and C is preferably set in a range of 1.0 to 1.2. Thermomechanical processing method for shape memory alloys. NbC添加Fe−Mn−Si系形状記憶合金が、不純物として、Cu:3重量%以下、Mo:2重量%以下、Al:10重量%以下、Co:30重量%以下、N:5000ppm以下含んでなる請求項2乃至5記載の何れか1項に記載のNbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法。The NbC-added Fe-Mn-Si-based shape memory alloy contains, as impurities, Cu: 3 wt% or less, Mo: 2 wt% or less, Al: 10 wt% or less, Co: 30 wt% or less, and N: 5000 ppm or less. The method for thermomechanical treatment of an NbC-added Fe-Mn-Si-based shape memory alloy according to any one of claims 2 to 5. 時効加熱処理条件が400〜1000℃の温度範囲で、1分〜2時間加熱するものであることを特徴とする請求項1乃至6記載の何れか1項に記載のNbC添加Fe−Mn−Si系形状記憶合金の加工熱処理方法。The NbC-added Fe-Mn-Si according to any one of claims 1 to 6, wherein the aging heat treatment is performed in a temperature range of 400 to 1000 ° C for 1 minute to 2 hours. Thermomechanical processing method for shape memory alloys.
JP2002367062A 2002-12-18 2002-12-18 Thermomechanical processing of NbC-added Fe-Mn-Si based shape memory alloy Expired - Lifetime JP3950963B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002367062A JP3950963B2 (en) 2002-12-18 2002-12-18 Thermomechanical processing of NbC-added Fe-Mn-Si based shape memory alloy
KR1020057001247A KR20050083601A (en) 2002-12-18 2003-12-17 Thermomechanical treatment method for fe-mn-si-based shape memory alloy with nb, c addition
DE60322260T DE60322260D1 (en) 2002-12-18 2003-12-17 METHOD FOR THE THERMOMECHANICAL TREATMENT FOR A NbC-doped Fe-Mn-Si FORM MEMORY ALLOY
US10/519,255 US20050236077A1 (en) 2002-12-18 2003-12-17 Method of thermo-mechanical-treatment for fe-mn-si shape-memory alloy doped with nbc
EP03780855A EP1574587B1 (en) 2002-12-18 2003-12-17 METHOD OF THERMO-MECHANICAL-TREATMENT FOR Fe-Mn-Si SHAPE-MEMORY ALLOY DOPED WITH NbC
PCT/JP2003/016189 WO2004055222A1 (en) 2002-12-18 2003-12-17 METHOD OF THERMO-MECHANICAL-TREATMENT FOR Fe-Mn-Si SHAPE-MEMORY ALLOY DOPED WITH NbC
CNB2003801005661A CN100342039C (en) 2002-12-18 2003-12-17 Method of thermo-mechanical-treatment for Fe-Mn-Si shape-memory alloy doped with Nb,C

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002367062A JP3950963B2 (en) 2002-12-18 2002-12-18 Thermomechanical processing of NbC-added Fe-Mn-Si based shape memory alloy

Publications (2)

Publication Number Publication Date
JP2004197161A true JP2004197161A (en) 2004-07-15
JP3950963B2 JP3950963B2 (en) 2007-08-01

Family

ID=32588334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002367062A Expired - Lifetime JP3950963B2 (en) 2002-12-18 2002-12-18 Thermomechanical processing of NbC-added Fe-Mn-Si based shape memory alloy

Country Status (7)

Country Link
US (1) US20050236077A1 (en)
EP (1) EP1574587B1 (en)
JP (1) JP3950963B2 (en)
KR (1) KR20050083601A (en)
CN (1) CN100342039C (en)
DE (1) DE60322260D1 (en)
WO (1) WO2004055222A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409372B1 (en) 2010-09-02 2013-04-02 The United States of America as Represented by the Administraton of National Aeronautics and Space Administration Thermomechanical methodology for stabilizing shape memory alloy (SMA) response
DE102013102353A1 (en) * 2013-03-08 2014-09-11 Thyssenkrupp Steel Europe Ag Temperature-controlled deflection
EP2976441B1 (en) 2013-03-22 2019-02-27 ThyssenKrupp Steel Europe AG Iron-based shape memory alloy
CN104328323A (en) * 2014-10-24 2015-02-04 王健英 Manganese-iron alloy material and preparation method thereof
CN109477175B (en) * 2016-09-06 2021-02-12 国立大学法人东北大学 Fe-based shape memory alloy material and method for producing same
CN107012411A (en) * 2017-03-08 2017-08-04 宁波高新区远创科技有限公司 A kind of preparation method of soil grounded screen alloy material
WO2018219463A1 (en) 2017-06-01 2018-12-06 Thyssenkrupp Steel Europe Ag Fe-mn-si shape-memory alloy
DE102018119296A1 (en) * 2018-08-08 2020-02-13 Thyssenkrupp Ag Inline stretching of shape memory alloys, especially flat steel
WO2020108754A1 (en) 2018-11-29 2020-06-04 Thyssenkrupp Steel Europe Ag Flat product consisting of an iron-based shape memory material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112720A (en) * 1985-11-09 1987-05-23 Nippon Steel Corp Improvement of characteristic fe-mn-si shape memory alloy
US5032195A (en) * 1989-03-02 1991-07-16 Korea Institute Of Science And Technology FE-base shape memory alloy
JPH0382741A (en) * 1989-08-25 1991-04-08 Nisshin Steel Co Ltd Shape memory staiinless steel excellent in stress corrosion cracking resistance and shape memory method therefor
FR2654748B1 (en) * 1989-11-22 1992-03-20 Ugine Aciers STAINLESS STEEL ALLOY WITH SHAPE MEMORY AND METHOD FOR PRODUCING SUCH AN ALLOY.
JP3542754B2 (en) * 2000-02-09 2004-07-14 独立行政法人物質・材料研究機構 Shape memory alloy
JP2003277827A (en) * 2002-03-20 2003-10-02 National Institute For Materials Science WORKING AND HEAT-TREATMENT METHOD FOR NbC-ADDED Fe-Mn-Si SHAPE MEMORY ALLOY

Also Published As

Publication number Publication date
US20050236077A1 (en) 2005-10-27
JP3950963B2 (en) 2007-08-01
EP1574587B1 (en) 2008-07-16
CN1692163A (en) 2005-11-02
EP1574587A1 (en) 2005-09-14
WO2004055222A1 (en) 2004-07-01
DE60322260D1 (en) 2008-08-28
EP1574587A4 (en) 2006-02-01
CN100342039C (en) 2007-10-10
KR20050083601A (en) 2005-08-26

Similar Documents

Publication Publication Date Title
US5951793A (en) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
JP5215855B2 (en) Fe-based alloy and manufacturing method thereof
KR20080064994A (en) Iron-based alloy having shape-memory property and superelasticity and method for manufacture thereof
JP4264926B2 (en) Method for producing precipitation-strengthened Co-Ni heat resistant alloy
JP2003253363A (en) Ni-BASE ALLOY FOR HEAT-RESISTANT SPRING, HEAT-RESISTANT SPRING USING THE ALLOY, AND ITS PRODUCTION METHOD
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP2004197161A (en) Working and heat treatment method for niobium carbide-containing iron-manganese-silicon base shape-memory alloy
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP3542754B2 (en) Shape memory alloy
JP5769204B2 (en) Fe-Ni base alloy having excellent high temperature characteristics and hydrogen embrittlement resistance and method for producing the same
JPWO2016013566A1 (en) Titanium alloy member having shape change characteristics in the same direction as the machining direction and method for producing the same
JP2003277827A (en) WORKING AND HEAT-TREATMENT METHOD FOR NbC-ADDED Fe-Mn-Si SHAPE MEMORY ALLOY
JP4923996B2 (en) Heat-resistant spring and method for manufacturing the same
JP4315582B2 (en) Co-Ni base heat-resistant alloy and method for producing the same
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JP3970645B2 (en) Method for producing iron-based shape memory alloy
JP5831283B2 (en) Titanium alloy member whose shape is deformed in the same direction as the processing direction by heat treatment and its manufacturing method
JP2003105438A (en) WORKING AND HEAT-TREATING METHOD FOR Fe-Mn-Si BASED SHAPE MEMORY ALLOY ADDED WITH NbC
JP3794999B2 (en) Nickel-base alloy, nickel-base alloy heat treatment method, and nuclear component using nickel-base alloy
JP5057320B2 (en) Pd-added TiNb-based shape memory alloy
JPS622027B2 (en)
Ma et al. Microstructures and Properties of Ti-25Nb-15Zr Alloy for Spectacle Frame
JPH07258729A (en) Production of martensitic precipitation hardening type stainless steel
CN113621890A (en) Polycrystalline FeNiCoAlNb alloy with superelasticity and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

R150 Certificate of patent or registration of utility model

Ref document number: 3950963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term