JP5057320B2 - Pd-added TiNb-based shape memory alloy - Google Patents

Pd-added TiNb-based shape memory alloy Download PDF

Info

Publication number
JP5057320B2
JP5057320B2 JP2005278751A JP2005278751A JP5057320B2 JP 5057320 B2 JP5057320 B2 JP 5057320B2 JP 2005278751 A JP2005278751 A JP 2005278751A JP 2005278751 A JP2005278751 A JP 2005278751A JP 5057320 B2 JP5057320 B2 JP 5057320B2
Authority
JP
Japan
Prior art keywords
alloy
shape memory
added
phase
tinb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005278751A
Other languages
Japanese (ja)
Other versions
JP2006265719A (en
Inventor
徳海 平
容子 御手洗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005278751A priority Critical patent/JP5057320B2/en
Publication of JP2006265719A publication Critical patent/JP2006265719A/en
Application granted granted Critical
Publication of JP5057320B2 publication Critical patent/JP5057320B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)

Description

本願発明は、Pdが添加されたTiNb基形状記憶合金に関する。   The present invention relates to a TiNb-based shape memory alloy to which Pd is added.

形状記憶合金には主としてTiNiが用いられ、室温近傍で使用されている。しかし、化学プラントやエンジンなどに使われる高温センサーやアクチュエイターなどとして使用するためには、高温で動作する形状記憶合金が必要である。   TiNi is mainly used as the shape memory alloy, and is used near room temperature. However, shape memory alloys that operate at high temperatures are required for use as high-temperature sensors and actuators used in chemical plants and engines.

一方、TiNiは骨の代替用生体材料としても使用されているが、Niが人体に対して強いアレルギー性や発がん性をもつため、Niフリーの生体用形状記憶材料としてTiNbが開発され、形状記憶効果を向上させるために第三元素の添加が検討されている( たとえば、非特許文献1参照)。
稲邑外4名、TiNbGe合金の組織と形状記憶特性、日本金属学会春期大会講演概要(2004)
On the other hand, TiNi is also used as a biomaterial for bone replacement. However, since Ni has strong allergenicity and carcinogenicity to the human body, TiNb was developed as a Ni-free shape memory material for living bodies, and shape memory. In order to improve the effect, addition of a third element has been studied (for example, see Non-Patent Document 1).
Four members of Inabai, TiNbGe alloy structure and shape memory characteristics, Abstracts of Spring Meeting of the Japan Institute of Metals (2004)

本願発明は、化学プラントやエンジンなどに使われる高温センサーやアクチュエイターなどとして使用可能な高温で動作する形状記憶合金であり、しかも生体材料としても使用可能な新しいTiNb基合金を提供することを課題としている。   The present invention is to provide a new TiNb-based alloy that is a shape memory alloy that operates at a high temperature that can be used as a high-temperature sensor or an actuator used in a chemical plant or an engine, and that can also be used as a biomaterial. It is said.

上記の課題を解決するために鋭意検討したところ、TiNb基形状記憶合金にPdを添加することにより、高温で形状記憶効果が発現し、200℃ 以上の温度で使用可能であることが見出された。また、ヤング率が骨のヤング率である30GPaに近い60GPaを示し、生体材料として使用可能なことが見出された。本願発明は、以上の技術知見に基づいて完成されたものである。   As a result of intensive studies to solve the above problems, it has been found that by adding Pd to a TiNb-based shape memory alloy, the shape memory effect is exhibited at a high temperature and can be used at a temperature of 200 ° C. or higher. It was. It was also found that the Young's modulus was 60 GPa, which is close to 30 GPa, which is the Young's modulus of bone, and can be used as a biomaterial. The present invention has been completed based on the above technical knowledge.

すなわち、本願発明は、第1に、チタン(Ti)にニオブ(Nb)が20−50mass%添加され、さらにパラウム(Pd)が0.5mass%から14mass%未満添加され、60%以上の冷間圧延が施されたことを特徴としている。 That is, the present invention provides, in a first, niobium titanium (Ti) (Nb) is added 20-50 mass%, further para di um (Pd) is added less than 14 mass% from 0.5 mass%, 60 % Or more of cold rolling .

本願発明は、第に、変態点温度以上の温度で10分間以上の熱処理が施されたことを特徴としている。 Present invention, the second is characterized by the thermal treatment of more than 10 minutes at a transformation point temperature or more is applied.

本願発明は、第に、急冷処理により板状のω相が形成されたことを特徴としている。 Third , the present invention is characterized in that a plate-like ω phase is formed by a rapid cooling treatment.

本願発明によれば、高温で動作する形状記憶合金が提供され、化学プラントやエンジンなどの高温センサーやアクチュエイターなどへの応用が期待される。また、毒性の少ない生体用材料としての応用が期待される。   According to the present invention, a shape memory alloy that operates at a high temperature is provided, and is expected to be applied to a high temperature sensor such as a chemical plant or an engine or an actuator. In addition, application as a biomaterial with low toxicity is expected.

本願発明のPd添加TiNb基形状記憶合金は、チタン(Ti)にニオブ(Nb)が20 −50mass%添加され、さらにパラウム(Pd)が0.5mass% から14mass%未満添加されたものである。この組成範囲内でTiNb基合金は、高温でbcc構造を持つβ 相、低温で斜方晶構造を持つα"相となり、形状記憶効果に深い関係を持つマルテンサイト変態が起こる。Pdの添加はマルテンサイト変態温度を上げる。また、TiNb基合金は脆いが、Pdの添加により延性が改善され、冷間加工を容易とする。Pdの添加量は0.5mass%から14mass%未満である。Pdの添加量が14mass%以上になると、マルテンサイト変態が起こらなくなる。 Pd added TiNb based shape memory alloy of the present invention, titanium (Ti), niobium (Nb) in was added 20 -50 mass%, further para di um (Pd) is added less than 14 mass% from 0.5 mass% It is a thing. Within this composition range, the TiNb-based alloy becomes a β phase having a bcc structure at a high temperature and an α "phase having an orthorhombic structure at a low temperature, and a martensitic transformation having a deep relationship with a shape memory effect occurs. The martensitic transformation temperature is increased, and the TiNb-based alloy is brittle, but the addition of Pd improves the ductility and facilitates cold working, and the amount of Pd added is less than 0.5 mass % to less than 14 mass %. When the added amount of Pd is 14 mass % or more, martensitic transformation does not occur.

このようなPd添加TiNb基形状記憶合金は、60%以上の冷間圧延が施されたものが好ましい。60%以上の冷間圧延によりマルテンサイト変態が起こりやすくなる。さらに、冷間圧延後、変態点温度以上の温度で10分間以上の熱処理を施すことが好ましい。上記熱処理によりマルテンサイト変態の確実性が増す。   Such a Pd-added TiNb-based shape memory alloy is preferably subjected to 60% or more cold rolling. Cold rolling at 60% or more tends to cause martensitic transformation. Furthermore, after cold rolling, it is preferable to perform a heat treatment for 10 minutes or more at a temperature not lower than the transformation point temperature. The heat treatment increases the certainty of the martensitic transformation.

Ti−30Nb−3Pd(mass%)合金を90% まで冷間圧延した後、700℃で10分間の熱処理を施した。得られた試料の電気抵抗の温度依存性を調べ、相変態温度を調べた。図1に示されるように、温度を上昇させると、415℃(688K)でα"相からβ相への変態が始まり(As)、489℃(762K)で変態が終了(Af)してβ相となった。温度を下降させていくと、289℃(562K)でβ相からα"相への逆変態が始まり(Ms)、247℃(520K)で逆変態が終了( Mf)した。 A Ti-30Nb-3Pd ( mass %) alloy was cold-rolled to 90% and then heat-treated at 700 ° C. for 10 minutes. The temperature dependence of the electrical resistance of the obtained sample was examined, and the phase transformation temperature was examined. As shown in FIG. 1, when the temperature is increased, the transformation from the α ″ phase to the β phase starts at 415 ° C. (688 K) (As), and the transformation ends (Af) at 489 ° C. (762 K). As the temperature was lowered, reverse transformation from β phase to α ″ phase started at 289 ° C. (562 K) (Ms), and reverse transformation was completed at 247 ° C. (520 K) (Mf).

図2は、上記Ti−30Nb−3Pd(mass%)合金の相変態温度を示差熱分析により調べた結果を示している。温度を上昇させると、405℃(678K)でB19'相からB2相への変態が始まり(As)、499℃(772K)で変態が終了(Af)した。変態温度は電気抵抗により測定された温度とほぼ同じである。示差熱分析の結果で特筆すべきことは、電気抵抗の測定では明らかでなかったが、127℃(400K)でω 相が生成することが確認されたことである。ω相はTi合金にしばしば観察され、形状記憶効果を抑制する相である。本合金では、一度変態温度以上まで温度を上げると、2回目の温度上昇ではω相によるピークが観察されず、一度消失したω相はその後の温度変化によって再び現れない。このことから本合金は優れた形状記憶性能を有すると考えられる。 FIG. 2 shows the results of examining the phase transformation temperature of the Ti-30Nb-3Pd ( mass %) alloy by differential thermal analysis. When the temperature was raised, the transformation from the B19 ′ phase to the B2 phase started at 405 ° C. (678K) (As), and the transformation was finished (Af) at 499 ° C. (772K). The transformation temperature is approximately the same as the temperature measured by electrical resistance. What should be noted in the results of differential thermal analysis is that it was confirmed that the ω phase was formed at 127 ° C. (400 K), although it was not apparent from the measurement of electrical resistance. The ω phase is often observed in Ti alloys and is a phase that suppresses the shape memory effect. In this alloy, once the temperature is raised to the transformation temperature or higher, the peak due to the ω phase is not observed in the second temperature rise, and the once disappeared ω phase does not appear again due to the subsequent temperature change. From this, this alloy is considered to have excellent shape memory performance.

図3は、上記Ti−30Nb−3Pd(mass%)合金の室温における引張試験の結果を示している。マルテンサイト変態によるヴァリアントの再配列が起きるときに観察されるプラトーな曲線が現れており、図1および図2に示される相変態がマルテンサイト変態であることが確認される。 FIG. 3 shows the results of a tensile test at room temperature of the Ti-30Nb-3Pd ( mass %) alloy. A plateau curve observed when valiant rearrangement occurs due to martensitic transformation appears, confirming that the phase transformation shown in FIGS. 1 and 2 is martensitic transformation.

図4は、上記Ti−30Nb−3Pd(mass%)合金を引張試験により変形させた後、変形試料を変態点以上の温度に加熱したときの形状回復率を示している。3% 程度の引張歪みを与えた場合には90%もの形状回復が起こった。引張歪みが大きくなると回復率は小さくなるが、数%程度の歪みで動作する場合は十分形状記憶合金として機能し得ることが確認される。 FIG. 4 shows the shape recovery rate when the Ti-30Nb-3Pd ( mass %) alloy is deformed by a tensile test and the deformed sample is heated to a temperature equal to or higher than the transformation point. When a tensile strain of about 3% was applied, shape recovery of 90% occurred. When the tensile strain increases, the recovery rate decreases. However, it can be confirmed that it can sufficiently function as a shape memory alloy when operating at a strain of several percent.

図5は、同じように冷間圧延し、熱処理を施したTi−30Nb−14Pd(mass%)合金の示差熱分析の結果を示している。加熱時はわずかにピークが現れるが、冷却時にはピークが現れないことから、Pdを14mass%添加したTiNb基合金では相変態が起こらないことが分かり、Pdの添加量は14mass%未満にすべきであることが指摘される。 FIG. 5 shows the results of differential thermal analysis of a Ti-30Nb-14Pd ( mass %) alloy that has been similarly cold-rolled and heat-treated. Although appearing slightly peak upon heating is, since no peak appears at the time of cooling was found that does not occur phase transformation in TiNb based alloy obtained by adding Pd 14 mass%, the added amount of Pd be less than 14 mass% It should be pointed out.

図6、図7は、それぞれ、冷間圧延後熱処理を施さなかったTi−30Nb−3Pd合金の示差熱分析の結果を示している。図6が1回目の示差熱分析の結果を示しており、図7 が2回目の示差熱分析の結果を示している。1回目は相変態によるピークが観察される(図6)。しかしながら、2回目はピークが消え(図7)、相変態が起こらなくなることが確認される。冷間圧延後の熱処理の有効性が指摘される。   6 and 7 show the results of differential thermal analysis of the Ti-30Nb-3Pd alloy that was not heat-treated after cold rolling, respectively. FIG. 6 shows the result of the first differential thermal analysis, and FIG. 7 shows the result of the second differential thermal analysis. In the first time, a peak due to phase transformation is observed (FIG. 6). However, the peak disappears in the second time (FIG. 7), and it is confirmed that the phase transformation does not occur. The effectiveness of heat treatment after cold rolling is pointed out.

図8、図9は、それぞれ、Ti−40Nb合金の示差熱分析の結果を示している。図8が1回目の示差熱分析の結果を示しており、図9が2回目の示差熱分析の結果を示している。1回目、2回目とも相変態によるピークがはっきり現れており、相変態が起こっていることがはっきりと分かる。   8 and 9 show the results of differential thermal analysis of the Ti-40Nb alloy, respectively. FIG. 8 shows the result of the first differential thermal analysis, and FIG. 9 shows the result of the second differential thermal analysis. The peak due to the phase transformation appears clearly both in the first and second times, and it can be clearly seen that the phase transformation has occurred.

図10は、Ti−40Nb−16Pd合金の示差熱分析の結果を示している。加熱時には相変態によるピークが現れているが、冷却時には現れず、本合金では相変態が起こらないことが確認される。   FIG. 10 shows the results of differential thermal analysis of the Ti-40Nb-16Pd alloy. A peak due to phase transformation appears during heating, but does not appear during cooling, confirming that no phase transformation occurs in this alloy.

先述したTi合金に形成されるω相は粒状であり、この粒状のω相はTi合金の脆弱性の原因と考えられている。ところが、ω相には板状のものもあることが、Pdを添加したTiNb合金の急冷材から確認された。図11(a)(b)はTEM明暗視野像であり、板状の微細なω−Ti相が現れている。図11(c)はSAEDパターンであり、2つのω−Ti相とβ−Tiマトリックスからの反射が示されている。図11(d)はHREM顕微鏡図であり、マトリックス中の2つのω−Ti相(一方が板状のω1相、他方が粒状のω2相)を示している。観察に用いた急冷材は、組成がTi−30Nb−3Pb(mass%)であり、冷間圧延後900℃で1時間の熱処理を施した水冷材である。Pdの添加が、粒状のω相の粗大化を抑え、板状のω相の形成を引き起こしたと考えられる。板状のω相は、今回新たに見出された相である。 The ω phase formed in the Ti alloy described above is granular, and this granular ω phase is considered to be a cause of the brittleness of the Ti alloy. However, it was confirmed from the quenching material of the TiNb alloy to which Pd was added that some ω phases were plate-like. FIGS. 11A and 11B are TEM bright and dark field images, and a plate-like fine ω-Ti phase appears. FIG. 11C shows an SAED pattern, which shows reflection from two ω-Ti phases and a β-Ti matrix. FIG. 11D is a HREM micrograph showing two ω-Ti phases in the matrix (one is a plate-like ω1 phase and the other is a granular ω2 phase). The quenching material used for the observation is a water cooling material having a composition of Ti-30Nb-3Pb ( mass %) and subjected to heat treatment at 900 ° C. for 1 hour after cold rolling. It is considered that the addition of Pd suppressed the coarsening of the granular ω phase and caused the formation of a plate-like ω phase. The plate-like ω phase is a newly discovered phase.

図12(a)は、Ti−30−Nb−3Pd(mass%)合金およびTi−40Nb(mass%)合金の急冷材について室温で測定した引張応力− 歪み曲線である。主に板状のω相から形成されたTi−30Nb−3Pd合金急冷材は29% までの伸びを示し、a”−Tiマルテンサイト相から形成されたTi−40Nb合金急冷材の22%までの伸びより大きくなっている。また、引張応力−歪み曲線の拡大部分に示されるように、Ti−30Nb−3Pd合金急冷材は、Ti−40Nb合金急冷材に比べ長いプラトーな部分を有している。板状のω相を含んだ合金はより高い形状記憶挙動を示すことがこの結果より示唆される。 FIG. 12 (a) is a tensile stress-strain curve measured at room temperature for a quenched material of a Ti-30-Nb-3Pd ( mass %) alloy and a Ti-40Nb ( mass %) alloy. Ti-30Nb-3Pd alloy quench material formed primarily from plate-like ω phase exhibits an elongation of up to 29%, up to 22% of Ti-40Nb alloy quench material formed from a ″ -Ti martensite phase. Also, as shown in the enlarged portion of the tensile stress-strain curve, the Ti-30Nb-3Pd alloy quenching material has a longer plateau than the Ti-40Nb alloy quenching material. This result suggests that the alloy containing plate-like ω phase shows higher shape memory behavior.

2つの合金急冷材について形状記憶挙動を形状回復率により評価した。図12(b)に示されるように、Ti−30Nb−3Pd合金急冷材の形状回復率は、どの与歪み値においてもTi−40Nb合金急冷材の形状回復率よりも20%大きくなっている。   The shape memory behavior of the two alloy quenched materials was evaluated by the shape recovery rate. As shown in FIG. 12B, the shape recovery rate of the Ti-30Nb-3Pd alloy quenching material is 20% larger than the shape recovery rate of the Ti-40Nb alloy quenching material at any strain value.

以上から、Pdを添加し、急冷処理により形成される板状のω相は、TiNb合金が形状記憶性能を示す唯一の原因と考えられていたa”−Tiマルテンサイト相と同等の機能を有し、TiNb基合金の延性と形状記憶挙動の改善に寄与すると結論される。   From the above, the plate-like ω phase formed by adding Pd and quenching has the same function as the a ″ -Ti martensite phase, which was thought to be the only cause of the shape memory performance of the TiNb alloy. It is concluded that this contributes to the improvement of ductility and shape memory behavior of TiNb-based alloys.

Ti−30Nb−3Pd 合金の電気抵抗の温度依存性を示した図である。It is the figure which showed the temperature dependence of the electrical resistance of a Ti-30Nb-3Pd alloy. Ti−30Nb−3Pd合金の示差熱分析の結果を示した図である。It is the figure which showed the result of the differential thermal analysis of a Ti-30Nb-3Pd alloy. Ti−30Nb−3Pd合金の室温における引張応力− 歪み曲線である。It is a tensile stress-strain curve at room temperature of a Ti-30Nb-3Pd alloy. Ti−30Nb−3Pd 合金の引張試験後の形状回復率を示した図である。It is the figure which showed the shape recovery rate after the tension test of Ti-30Nb-3Pd alloy. Ti−30Nd−14Pd合金の示差熱分析の結果を示した図である。It is the figure which showed the result of the differential thermal analysis of Ti-30Nd-14Pd alloy. 冷間圧延後熱処理を施さないTi−30Nb−3Pd合金の1回目の示差熱分析の結果を示した図である。It is the figure which showed the result of the differential thermal analysis of the 1st time of Ti-30Nb-3Pd alloy which does not heat-process after cold rolling. 冷間圧延後熱処理を施さないTi−30Nb−3Pd合金の2回目の示差熱分析の結果を示した図である。It is the figure which showed the result of the differential thermal analysis of the 2nd time of the Ti-30Nb-3Pd alloy which does not give heat processing after cold rolling. Ti−40Nb合金の1回目の示差熱分析の結果を示した図である。It is the figure which showed the result of the differential thermal analysis of the 1st time of Ti-40Nb alloy. Ti−40Nb合金の2回目の示差熱分析の結果を示した図である。It is the figure which showed the result of the differential thermal analysis of the 2nd time of Ti-40Nb alloy. Ti−40Nb−16Pd合金の示差熱分析の結果を示した図である。It is the figure which showed the result of the differential thermal analysis of Ti-40Nb-16Pd alloy. (a)(b)はPdを添加したTiNb合金の急冷材のTEM明暗視野像であり、(c)はSAEDパターンであり、(d)はHREM顕微鏡図である。(A) and (b) are TEM bright and dark field images of a TiNb alloy quenched material to which Pd is added, (c) is a SAED pattern, and (d) is a HREM micrograph. (a)は、Ti−30Nb−3Pd合金およびTi−40Nb合金の急冷材について室温で測定した引張応力−歪み曲線である。(b)は、各々の合金急冷材の与歪みに対する形状回復率を示した図である。(A) is the tensile stress-strain curve measured at room temperature about the quenching material of Ti-30Nb-3Pd alloy and Ti-40Nb alloy. (B) is the figure which showed the shape recovery rate with respect to the distortion of each alloy quenching material.

Claims (3)

チタン(Ti)にニオブ(Nb)が20−50mass%添加され、さらにパラジウム(Pd)が0.5mass%から14mass%未満添加されPd添加TiNb基形状記憶合金であって、60%以上の冷間圧延が施されたことを特徴とするPd添加TiNb基形状記憶合金。
Niobium (Nb) is 20-50Mass% added warm to titanium (Ti), a further palladium (Pd) is Pd added TiNb based shape memory alloy which is added less than 0.5 mass% or al 14mass%, 60% or more A Pd-added TiNb-based shape memory alloy characterized by being subjected to cold rolling.
変態点温度以上の温度で10分間以上の熱処理が施されたことを特徴とする請求項記載のPd添加TiNb基形状記憶合金。 Pd added TiNb based shape memory alloy according to claim 1, wherein the heat treatment of more than 10 minutes at a transformation point temperature or more is applied. 急冷処理により板状のω相が形成されたことを特徴とする請求項1又は2に記載のPd添加TiNb基形状記憶合金。
Pd added TiNb based shape memory alloy according to claim 1 or 2 by fast cooling, characterized in that the plate-shaped ω phase has formed.
JP2005278751A 2005-02-25 2005-09-26 Pd-added TiNb-based shape memory alloy Expired - Fee Related JP5057320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005278751A JP5057320B2 (en) 2005-02-25 2005-09-26 Pd-added TiNb-based shape memory alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005052125 2005-02-25
JP2005052125 2005-02-25
JP2005278751A JP5057320B2 (en) 2005-02-25 2005-09-26 Pd-added TiNb-based shape memory alloy

Publications (2)

Publication Number Publication Date
JP2006265719A JP2006265719A (en) 2006-10-05
JP5057320B2 true JP5057320B2 (en) 2012-10-24

Family

ID=37201977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005278751A Expired - Fee Related JP5057320B2 (en) 2005-02-25 2005-09-26 Pd-added TiNb-based shape memory alloy

Country Status (1)

Country Link
JP (1) JP5057320B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150083281A1 (en) * 2007-12-26 2015-03-26 General Electric Company High temperature shape memory alloy actuators
CN102703757B (en) * 2012-05-18 2013-10-16 宁夏东方钽业股份有限公司 Corrosion resistant niobium-titanium alloy, and method for manufacturing plates and pipes with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4015080B2 (en) * 2003-07-18 2007-11-28 株式会社古河テクノマテリアル Superelastic titanium alloy for living body
JP4128975B2 (en) * 2004-04-02 2008-07-30 株式会社古河テクノマテリアル Superelastic titanium alloy for living body

Also Published As

Publication number Publication date
JP2006265719A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
Zhou et al. Pseudo-elastic deformation behavior in a Ti/Mo-based alloy
Li et al. Superelasticity and tensile strength of Ti-Zr-Nb-Sn alloys with high Zr content for biomedical applications
Hao et al. Effect of Zr and Sn on Young's modulus and superelasticity of Ti–Nb-based alloys
Kim et al. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys
JP3884316B2 (en) Superelastic titanium alloy for living body
JP5215855B2 (en) Fe-based alloy and manufacturing method thereof
Karaca et al. Microstructure and transformation related behaviors of a Ni45. 3Ti29. 7Hf20Cu5 high temperature shape memory alloy
Li et al. Improvements in the Superelasticity and Change in Deformation Mode of β-Type TiNb 24 Zr 2 Alloys Caused by Aging Treatments
Ma et al. Effect of thermo-mechanical treatment on superelastic behavior of Ti–19Nb–14Zr (at.%) shape memory alloy
Ma et al. Effect of heat treatment time on microstructure and mechanical properties of Ti–19Nb–9Zr (at%) shape memory alloy
JP2010156041A (en) Two-way shape-recovery alloy
Hsieh et al. Martensitic transformation of quaternary Ti50. 5− XNi49. 5ZrX/2HfX/2 (X= 0–20 at.%) shape memory alloys
Song et al. Strain induced martensite stabilization in β Ti-Zr-Nb shape memory alloy
Andrade et al. Influence of strain rate on mechanical properties of a CuAlMnTiB shape memory alloy
Peltier et al. Martensite transformation and superelasticity at high temperature of (TiHfZr) 74 (NbTa) 26 high-entropy shape memory alloy
JP5057320B2 (en) Pd-added TiNb-based shape memory alloy
JP3907177B2 (en) Fe-based shape memory alloy and manufacturing method thereof
JP5318763B2 (en) Method for producing low temperature toughness steel
Imahashi et al. The effect of Pd content on microstructure and shape-memory properties of Ti–Ni–Pd–Cu alloys
Aghamiri et al. Study of thermomechanical treatment on mechanical-induced phase transformation of NiTi and TiNiCu wires
WO2004055222A1 (en) METHOD OF THERMO-MECHANICAL-TREATMENT FOR Fe-Mn-Si SHAPE-MEMORY ALLOY DOPED WITH NbC
Kalaie et al. Duality in dislocation density-superelasticity correlation in a TNTZ bio alloy processed by cold rolling and subsequent annealing
US10196714B2 (en) Shape memory alloy comprising Ti, Ni and Si
JP2541802B2 (en) Shape memory TiNiV alloy and manufacturing method thereof
WO2006082682A1 (en) Ti-Nb-Zr BASED ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees