JP4264926B2 - Method for producing precipitation-strengthened Co-Ni heat resistant alloy - Google Patents

Method for producing precipitation-strengthened Co-Ni heat resistant alloy Download PDF

Info

Publication number
JP4264926B2
JP4264926B2 JP2002197142A JP2002197142A JP4264926B2 JP 4264926 B2 JP4264926 B2 JP 4264926B2 JP 2002197142 A JP2002197142 A JP 2002197142A JP 2002197142 A JP2002197142 A JP 2002197142A JP 4264926 B2 JP4264926 B2 JP 4264926B2
Authority
JP
Japan
Prior art keywords
heat treatment
less
alloy
resistant alloy
strengthened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002197142A
Other languages
Japanese (ja)
Other versions
JP2004035974A (en
Inventor
晶彦 千葉
士郎 武田
倫彦 綾田
繁美 佐藤
茂紀 植田
俊治 野田
Original Assignee
日本発條株式会社
大同特殊鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社, 大同特殊鋼株式会社 filed Critical 日本発條株式会社
Priority to JP2002197142A priority Critical patent/JP4264926B2/en
Publication of JP2004035974A publication Critical patent/JP2004035974A/en
Application granted granted Critical
Publication of JP4264926B2 publication Critical patent/JP4264926B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Description

【0001】
【発明の属する技術分野】
本発明は、析出強化型Co−Ni基耐熱合金の製造方法、詳細にはエンジン排気系、ガスタービン周辺などの高温に曝される部位で使用されるばね、ボルトなどに適している微細双晶組織と母相の界面にCo3 MoまたはCo7 Mo6 が析出した析出強化型Co−Ni基耐熱合金の製造方法に関する。
【0002】
【従来の技術】
従来、エンジン排気系、ガスタービン周辺などの高温にさらされる部位で使用される耐熱部品は、インコネルX−750(Ni:73.0%、Cr:15.0%、Al:0.8%、Ti:2.5%、Fe:6.8%、Mn:0.70%、Si:0.25%、C:0.04、Nb+Ta:0.9%)、インコネル718(Ni:53.0%、Cr:18.6%、Mo:3.1%、Al:0.4%、Ti:0.9%、Fe:18.5%、Mn:0.20%、Si:0.18%、C:0.04、Nb+Ta:5.0%)などのNi基超耐熱合金を用いて製造されていた。
【0003】
これらのNi基超耐熱合金は、γ′( Ni3(Al,Ti,Nb) およびγ′′(Ni3Nb) を析出させることによって強化するものである。しかし、600℃以上の高温で長時間使用すると、過時効によりγ′およびγ′′が粗大化して強度が低下するという欠点があった。また、ばね、ボルトなどの常に応力がかかっている部品では応力緩和が大きく、本来の部品に要求される性能が保持できなくなってしまうという問題があった。
【0004】
そこで、本出願人達は、C:0.05%以下、Si:0.5%以下、Mn:1.0%以下、Ni:25〜45%、Cr:13〜18未満%、MoとWの1種または2種でMo+1/2 W:7〜20%、Ti:0.1〜3.0%、Nb:0.1〜5.0%およびFe:0.1〜5.0%を含有し、必要に応じてREM:0.007〜0.10%、B:0.001〜0.010%、Mg:0.0007〜0.010%およびZr:0.001〜0.20%のうちの1種または2種以上を含有し、残部がCoおよび不可避的不純物からなるCo−Ni基耐熱合金ならびにこの合金を1000〜1200℃で固溶化熱処理を施した後または上記温度での熱間加工を施した後、加工率40%以上の冷間または温間加工を施し、その後500〜800℃で0.1〜50時間の時効熱処理を施すCo−Ni基耐熱合金の製造方法を開発し、特開2002−97537号として特許出願した。
【0005】
このCo−Ni基耐熱合金は、σ相を析出させるCr含有量を必要最低限にし、拡張転位の積層欠陥に偏析して転位運動を妨げ、高い加工硬化能を有するMo,Fe,Nbなどの溶質元素を多くしたもので、従来から用いられていたNi基超耐熱合金より室温における強度が高いとともに、高温で長時間使用しても強度の低下が小さいものである。
【0006】
【発明が解決しようとする課題】
本発明は、上記Ni基超耐熱合金より室温における強度が高いとともに、高温で長時間使用しても強度の低下が小さい耐熱合金の製造方法を提供することを課題とするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明者らは、Ni基超耐熱合金より高強度であるとともに、高温で長時間使用しても強度の低下が小さい耐熱合金である上記Co−Ni基耐熱合金について成分組成、時効熱処理条件などを更に調査、研究をしていたところ、このCo−Ni基耐熱合金を応力負荷状態で時効熱処理をすることにより数ミクロンサイズの平均粒径を有する微細双晶組織が生成され、またこの微細双晶組織と母相の界面に数ミクロンから数十ナノメーターサイズのCo3 MoまたはCo7 Mo6 を析出すること(本発明の実施例 No. の組織写真である図1および図2参照)、このような組織にすると高強度であるとともに、高温で長時間使用しても強度の低下が小さい耐熱合金になること、また固溶化熱処理後に加工率40%以上の冷間または温間加工をし、その後時効熱処理を施すと、冷間または温間加工によってマトリックス中に高密度の転位が導入され、その後施す時効熱処理により析出する析出物によって転位が固着されて高温強度が改善され、また転位の積層欠陥面にMoなどの溶質元素が偏析して転位が固着される効果により室温および高温強度の改善効果が発揮されることの知見を得た。
【0008】
また、数ミクロンサイズの平均粒径を有する微細双晶組織を生成させ、この微細双晶組織と母相の界面に数ミクロンから数十ナノメーターサイズの微細析出物、すなわちCo3 MoまたはCo7 Mo6 を析出させるには、固溶化熱処理後に加工率40%以上の冷間または温間加工を施し、続いて応力負荷状態で600〜800℃に適当時間加熱する時効熱処理を施せばよいことなどの知見を得た。
本発明は、これらの知見に基づいて発明をされたものである。
【0009】
すなわち、本発明の微細双晶組織を形成させ、同時にこの微細双晶組織と母相の界面にCo3 MoまたはCo7 Mo6 が析出した析出強化型Co−Ni基耐熱合金の製造方法においては、C:0.05%以下、Si:0.5%以下、Mn:1.0%以下、Ni:25〜45%、Cr:13〜22%、MoまたはMoとWでMo+1/2 W:10〜18%、Nb:0.1〜5.0%およびFe:0.1〜5.0%を含有し、更にREM:0.007〜0.10%、B:0.001〜0.010%、Mg:0.0007〜0.010%およびZr:0.001〜0.20%のうちの1種または2種以上を含有し、必要に応じてTi:0.1〜3.0%を含有し、残部がCoおよび不可避的不純物からなる合金を1000〜1200℃などで加熱する固溶化熱処理をし、その後に加工率40%以上の冷間または温間加工を施し、続いて応力負荷状態で600〜800℃に0.5〜16時間加熱する時効熱処理を施すことである。
【0010】
【作用】
本発明の析出強化型Co−Ni基耐熱合金の製造方法において、1000〜1200℃等で加熱する固溶化熱処理後に加工率40%以上の冷間または温間加工を施し、続いて応力負荷状態で600〜800℃に0.5〜16時間加熱する時効熱処理を施しているので、微細双晶組織を形成させ、同時にこの微細双晶組織と母相の界面にCo3 Moおよび/またはCo7 Mo6 を析出させることができる。
【0011】
【発明の実施の形態】
次に、本発明の析出強化型Co−Ni基耐熱合金の製造方法において成分組成を上記のように限定した理由を説明する。
C:0.05%以下
Cは、NbやTiと結合して炭化物を形成し、固溶化熱処理時の結晶粒の粗大化を防止するとともに、粒界の強化に寄与するので、それらのために含有する元素である。それらの効果を得るためには、好ましくは0.005%以上含有させる必要があるが、0.05%、好ましくは0.03%より多く含有させると靱性および耐食性を低下させるともに、転位を固着させる元素、例えばMoと炭化物を形成して転位の固着効果を阻害することになるので、その含有量を0.05%以下とする。好ましい範囲は0.005〜0.03%である。
【0012】
Si:0.5%以下
Siは、脱酸剤として有効であるので、そのために含有させる元素であるが、0.5%、好ましくは0.3%を超えて含有させると靱性を低下させるので、その含有量を0.5%以下とする。好ましい含有量は0.3%以下である。
【0013】
Mn:1.0%以下
Mnは、脱酸剤として有効であり、また積層欠陥エネルギーを低下させて加工硬化能を向上させるので、それらのために含有させる元素であるが、1.0%、好ましくは0.7%を超えて含有させると、耐食性を低下させるので、その含有量を1.0%以下とする。好ましい含有量は0.7%以下である。
【0014】
Ni:25〜45%
Niは、マトリックスであるオーステナイトを安定化させる元素であり、合金の耐熱性および耐食性を向上させるので、それらのために含有させる元素である。それらの効果を得るには25%、好ましくは27%以上含有させる必要があるが、45%を超えると加工硬化能を低下させるので、その含有範囲を25〜45%とする。好ましい含有範囲は27〜45%である。
【0015】
Cr:13〜22%
Crは、耐熱性および耐食性を改善させるので、それらのために含有させる元素である。それらの効果を得るには13%、好ましくは16%以上含有させる必要があるが、22%以上、好ましくは21%を超えるとσ相を析出しやすくするので、その含有範囲を13〜22%とする。好ましい含有範囲は16〜21%である。
【0016】
Mo+1/2W:10〜18%
MoおよびWは、マトリックスに固溶してこれを強化し、加工硬化能を向上させるので、そのために含有させる元素である。その効果を得るためには10%、好ましくは11%以上で、MoとWの両方を含有する場合には好ましくはMoを8.0%以上含有させる必要があるが、18%を超えるとσ相が析出するので、その含有範囲を10〜18%とする。好ましい含有範囲は11〜18%である。
【0017】
Nb:0.1〜5.0%
Nbは、Cと結合して炭化物を形成して固溶化熱処理時の結晶粒の粗大化を防止するとともに、粒界の強化に寄与し、またマトリックスに固溶してこれを強化させ、加工硬化能を向上させるので、それらのために含有させる元素である。それらの効果を得るには0.1%、好ましくは0.8%以上含有させる必要があるが、5.0%、好ましくは3.0%を超えるとδ相(Ni3 Nb)が析出して加工性および靱性を低下させるので、その含有範囲を0.1〜5.0%とする。好ましい含有範囲は0.8〜3.0%である。
【0018】
Fe:0.1〜5.0%
Feは、マトリックスに固溶してこれを強化するので、そのために含有させる元素である。その効果を得るためには0.1%、好ましくは0.5%以上含有させる必要があるが、5.0%、好ましくは4.8%を超えると耐酸化性を低下させるので、その含有範囲を0.1〜5.0%とする。好ましい範囲は0.5〜4.8%である。
なお、MoとNbとFeを複合して用いれば、MoとNb、MoとFeの複合で用いるよりマトリックスの固溶強化と加工硬化を著しく増大させ、室温および高温において得られる引張最大強度を著しく高め、また高温における引張強度の極大が現れる温度を高温に移行させる効果も大きい。
【0019】
Ti:0.1〜3.0%
Tiは、強度を向上させるので、そのために含有させる元素である。その効果を得るためには0.1%、好ましくは0.5%以上含有させる必要があるが、3.0%、好ましくは2.5%を超えるとη相(Ni3 Ti)が析出して加工性および靱性を低下させるので、その含有範囲を0.1〜3.0%とする。好ましい含有範囲は0.5〜2.5%である。
【0020】
REM:0.007〜0.10%
Y,Ce、ミッシュメタルなどの希土類元素の1種または2種以上であるREMは、熱間加工性および耐酸化性を向上させるので、それらのために含有させる元素である。それらの効果を得るには、0.007%、好ましくは0.01%以上含有させる必要があるが、0.10%、好ましくは0.04%を超えると逆に熱間加工性および耐酸化性を低下させるので、その含有範囲を0.007〜0.10%とする。好ましい含有範囲は0.01〜0.04%である。
【0021】
B:0.001〜0.010%、Mg:0.0007〜0.010%、Zr:0.001〜0.20%
B,MgおよびZrは、熱間加工性を向上させるとともに、粒界を強化するので、それらのために含有させる元素である。それらの効果を得るには、Bを0.001%、好ましくは0.002%以上、Mgを0.0007%、好ましくは0.001%以上、Zrを0.001%、好ましくは0.01%以上を含有させる必要があるが、Bを0.010%、好ましくは0.006%、Mgを0.010%、好ましくは0.004%、Zrを0.20%、好ましくは0.05%を超えて含有させると逆に熱間加工性および耐酸化性を低下させるので、その含有範囲を上記のとおりとする。好ましい範囲はBが0.002〜0.006%、Mgが0.001〜0.004%、Zrが0.01〜0.05%である。
【0022】
Co:残部
Coは、最密六方格子であるが、Niを含有させることにより面心立方格子、すなわちオーステナイトとなり、高い加工硬化能を示す。
【0023】
次に、本発明の析出強化型Co−Ni基耐熱合金の製造方法について説明する。
本発明の析出強化型Co−Ni基耐熱合金の製造方法は、上記成分組成の析出強化型Co−Ni基耐熱合金に数ミクロンサイズの平均粒径を有する微細双晶組織を生成させ、またこの微細双晶組織と母相の界面に数ミクロンから数十ナノメーターサイズのCo3 MoまたはCo7 Mo6 を析出させることにより高強度であるとともに、高温で長時間使用しても強度の低下が小さくなるようにするためのものである。
【0024】
そのため、本発明のCo−Ni基耐熱合金材の製造方法は、上記Co−Ni基耐熱合金を1000〜1200℃などで加熱する固溶化熱処理を施し、その後に加工率40%以上の冷間または温間加工を施し、続いて応力負荷状態で600〜800℃に0.5〜16時間加熱する時効熱処理を施すことである。
【0025】
本発明の析出強化型Co−Ni基耐熱合金の製造方法において行う固溶化熱処理は、組織を均質にするとともに、硬度を低くして加工を容易にするためのもので、1000〜1200℃に加熱することによって行うのが好ましい。1000℃より低いと十分均質にならないばかりでなく、硬度も低くならず、加工が難しいからであり、さらに転位の固着効果に寄与するMoなどの化合物の析出、それに起因する時効硬化性を低減させるおそれがあるからである。また1200℃を超えると結晶粒が粗大化して靱性および強度が低下するからである。
【0026】
本発明の析出強化型Co−Ni基耐熱合金の製造方法において、析出強化型Co−Ni基耐熱合金を応力負荷状態で600〜800℃に0.5〜16時間加熱する時効熱処理をするのは、数ミクロンサイズの平均粒径を有する微細双晶組織が生成させるとともに、この微細双晶組織と母相の界面に数ミクロンから数十ナノメーターサイズのCo3 MoまたはCo7 Mo6 を析出させるためである。この時効熱処理における負荷応力は、100〜400MPa程度が適当である。100MPaより低いと微細双晶組織および微細双晶組織と母相の界面に微細なCo3 MoまたはCo7 Mo6 が十分析出しないからであり、また400MPaより大きくても効果が飽和し、また時効熱処理する合金が変形するからである。
【0027】
また、600〜800℃で0.5〜16時間加熱する時効熱処理をするのは、600℃より低く、また0.5時間より短いと微細双晶組織および微細双晶組織と母相の界面に微細なCo3 MoまたはCo7 Mo6 が十分析出しないからであり、また800℃を超え、また16時間を超えると効果が飽和し、むしろ、析出物が粗大化し、強度が低下してしまうからであり、更に加工率40%以上の冷間または温間加工を施した後にこの時効熱処理を行う場合には、転位が回復して硬度および強度が低下し、クリープ伸びが大きくなるからである。
【0028】
本発明の析出強化型Co−Ni基耐熱合金の他の製造方法において、析出強化型Co−Ni基耐熱合金を応力負荷状態で時効熱処理をする前に加工率40%以上の冷間または温間加工を施すのは、高密度の転位を導入するためであり、40%より低いと高密度の転位を導入することができないからである。高密度の転位を導入した後時効熱処理をすると、Mo、Feなどの溶質原子を拡張した転位の半転位間に形成された積層欠陥に偏析させて転位運動を妨げることで応力緩和、すなわち転位の回復を抑制することになる。その結果、微細双晶組織および微細双晶組織と母相の界面に微細なCo3 MoまたはCo7 Mo6 が析出することによる効果と相まって高強度であるとともに、高温で長時間使用しても強度の低下が小さい析出強化型Co−Ni基耐熱合金となる。
【0029】
本発明の析出強化型Co−Ni基耐熱合金の製造方法の一例は、真空高周波誘導炉などを用いて通常の方法で溶製し、通常の鋳造方法で鋳造してインゴットを製造する。その後熱間加工をし、1000〜1200℃で固溶化熱処理を施した後、加工率40%以上の冷 間または温間加工を施し、続いて100〜400MPaの応力負荷状態で600〜800℃に0.5〜16時間加熱する時効熱処理を施すことである。
【0030】
また、本発明の析出強化型Co−Ni基耐熱合金の用途は、エンジンの排気マニホールドなどの排気系部品、ガスタービン周辺機器、炉部材、耐熱ばね、耐熱ボルトなどのインコネルX750またはインコネルX718を用いていた用途およびこれら以上の高温度で用いる用途である。特に、高温において常に応力がかかっているばね、ボルトなどの部品に好適である。
【0031】
【実施例】
以下、本発明を実施例によって説明する。
実施例
下記表1に示す本発明例合金と比較例合金を真空高周波誘導炉を用いて通常の方法で溶製し、通常の鋳造方法で鋳造して50kgのインゴットを得た。これらのインゴットを熱間鍛造によりφ20mmの丸棒にした。これらの丸棒のうちの本発明例合金 No. 5の丸棒(供材5)および本発明例合金 No. 6の丸棒(供材6)を1100℃で固溶化熱処理をし、本発明例として加工率45%、60%、75%の冷間加工を施した後、表に示す負荷応力、加熱温度および加熱時間で時効熱処理を行った。比較例として加工率45%の冷間加工を施した後、無負荷で770℃×4時間加熱する時効熱処理または加工率60%の冷間加工を施した後、無負荷で720℃×8時間加熱する時効熱処理を行った。
これらの素材から平行部φ6mmで評点間距離30mmのクリープ試験片を切り出し、700℃で330MPaの応力を負荷して1000時間後の伸びを測定するクリープ試験をした。その結果を下記表に示す。
【0032】
【表1】
【0033】
【表2】
【0034】
本発明例 No. 1〜9(表2)は、試験片の組織をSEM観察すると微細双晶組織が形成されており、さらにその微細双晶組織と母相の界面に微細なCo3 MoまたはCo7 Mo6 が析出している。図1および図2は、本発明例 No. の組織写真である。この組織写真から正三角形状に見える微細双晶組織と母相の界面に塊状に見えるCo3 MoまたはCo7 Mo6 が析出した組織であることが分かる。本発明例 No. 1〜9のクリープ試験のクリープ伸びが0.9〜1.9%であった。これらは、クリープ試験のクリープ伸びが時効熱処理をする前に40%以上の冷間または温間加工をしない下記参考例 No. 1〜 No. 7より小さくなっていた。
これらに対して、時効熱処理時に負荷を与えなかった比較例 No.および No.は、Co3 MoまたはCo7 Mo6 が析出しておらず、クリープ試験のクリープ伸びが4.8%と4.6%であり、クリープ強度の向上がみられなかった。
【0035】
参考例
上記実施例で製造した本発明例合金 No.1〜 No.7のφ20mmの丸棒(供試材1〜7)および比較例合金 No.1〜 No.4のφ20mmの丸棒(供試材8〜11)を1100℃で固溶化熱処理をし、引張応力200MPa下で720℃×8時間の時効処理を行った。これらの素材から平行部φ8mmの引張試験片を切り出し、室温で引張試験をして引張強度を測定した。また上記実施例と同様に平行部φ6mmで評点間距離30mmのクリープ試験片を切り出し、700℃で330MPaの応力を負荷して1000時間後の伸びを測定するクリープ試験をした。その結果を下記表に示す。
【0036】
【表3】
【0037】
これらの結果によると、参考例1〜7(表3)は、試験片の組織をSEM(走査型電子顕微鏡)観察すると微細双晶組織が形成されており、さらにその微細双晶組織と母相の界面に微細なCo7 Mo6 またはCo3 Moが析出しており、室温引張強さが1121〜1303MPaであり、クリープ伸びが2.0〜2.7%であった。これらに対して、Mo+1/2 Wが本発明より少ない参考例 No. 8〜 10およびMo+1/2 Wが本発明より少なく、またNbとFeを含有しない参考例 No.11は、Co7 Mo6 またはCo3 Moが析出しておらず、室温引張強さが881〜976MPaで、参考例1〜7の87%以下であり、クリープ試験ではいずれの試験片も破断した。
【0038】
【発明の効果】
本発明の製造方法は、上記Ni基超耐熱合金より室温における強度が高いとともに、 温で長時間使用しても強度の低下が小さい析出強化型Co−Ni基耐熱合金材を製造す ことができるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施例 No.9の組織を5000倍に拡大した図面代用走査型電子顕微鏡写真 ある。
【図2】図1のものの組織を20000倍に拡大した図面代用走査型電子顕微鏡写真である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing a precipitation-strengthened Co-Ni base heat-resistant alloy, the engine exhaust system in particular, fine twin the spring, are suitable, such as a bolt to be used at a site to be exposed to high temperatures, such as around the gas turbine the method of manufacturing a crystal structure and the parent phase interface Co 3 Mo or Co 7 precipitation strengthened Co-Ni base heat-resistant alloy that Mo 6 was precipitated in.
[0002]
[Prior art]
Conventionally, heat-resistant parts used in parts exposed to high temperatures such as engine exhaust system and gas turbine periphery are Inconel X-750 (Ni: 73.0%, Cr: 15.0%, Al: 0.8%, Ti: 2.5%, Fe: 6.8%, Mn: 0.70%, Si: 0.25%, C: 0.04, Nb + Ta: 0.9%), Inconel 718 (Ni: 53.0) %, Cr: 18.6%, Mo: 3.1%, Al: 0.4%, Ti: 0.9%, Fe: 18.5%, Mn: 0.20%, Si: 0.18% , C: 0.04, Nb + Ta: 5.0%) and the like.
[0003]
These Ni-base superalloys are strengthened by precipitating γ ′ (Ni 3 (Al, Ti, Nb) and γ ″ (Ni 3 Nb). However, they are long at temperatures above 600 ° C. When used for a long time, γ ′ and γ ″ are coarsened due to overaging and the strength is reduced. In addition, parts that are constantly stressed, such as springs and bolts, have large stress relaxation, and the original parts. There is a problem that the performance required for the system cannot be maintained.
[0004]
Therefore, the present applicants: C: 0.05% or less, Si: 0.5% or less, Mn: 1.0% or less, Ni: 25-45%, Cr: 13-18%, Mo and W 1 or 2 types of Mo + 1/2 W: 7-20%, Ti: 0.1-3.0%, Nb: 0.1-5.0% and Fe: 0.1-5.0% If necessary, REM: 0.007 to 0.10%, B: 0.001 to 0.010%, Mg: 0.0007 to 0.010%, and Zr: 0.001 to 0.20% Co-Ni-based heat-resistant alloy containing one or more of them, the balance being Co and inevitable impurities, and this alloy after being subjected to a solution heat treatment at 1000 to 1200 ° C or hot at the above temperature After the processing, it is subjected to cold processing or warm processing with a processing rate of 40% or more, and then 0.5 to 500 ° C to 800 ° C. A method for producing a Co—Ni-based heat-resistant alloy that is subjected to an aging heat treatment for 1 to 50 hours was developed, and a patent application was filed as JP-A-2002-97537.
[0005]
This Co—Ni-based heat-resistant alloy minimizes the Cr content for precipitating the σ phase, segregates into the stacking faults of extended dislocations to prevent dislocation movement, and has high work hardening ability such as Mo, Fe, Nb, etc. The solute elements are increased, and the strength at room temperature is higher than that of conventionally used Ni-base superalloys, and the decrease in strength is small even when used for a long time at high temperatures.
[0006]
[Problems to be solved by the invention]
The present invention, the strength at room temperature than the Ni-base superalloy is high, it is an object to provide a long manufacturing method of heat resistant alloy decrease is less in strength even when used at high temperatures.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have described the Co-Ni-based heat-resistant alloy, which is a heat-resistant alloy that has a strength higher than that of a Ni-based super heat-resistant alloy and has a small decrease in strength even when used at high temperatures for a long time. component composition, further research and aging heat treatment conditions, was not doing research, micro twins having an average particle diameter of several micron size by the to Turkey the aging heat treatment in the Co-Ni base heat-resistant alloy stress load state A structure is formed, and Co 3 Mo or Co 7 Mo 6 having a size of several microns to several tens of nanometers is deposited at the interface between the fine twin structure and the parent phase (structure photograph of Example No. 9 of the present invention) . 1 and FIG. 2), when such a structure is used, the strength is high, and even when used at a high temperature for a long time, the strength decreases little, and the processing rate is 40% after solution heat treatment. More than When the aging heat treatment is performed after warm or warm processing, high-temperature dislocations are introduced into the matrix by cold or warm processing, and the dislocations are fixed by precipitates precipitated by the subsequent aging heat treatment, resulting in high temperature strength. Further, it was found that the effect of improving room temperature and high-temperature strength is exhibited by the effect of segregation of solute elements such as Mo on the stacking fault surface of dislocations to fix the dislocations.
[0008]
Further, a fine twin structure having an average particle size of several microns is generated, and fine precipitates of several microns to several tens of nanometers, that is, Co 3 Mo or Co 7 are formed at the interface between the fine twin structure and the parent phase. the precipitating Mo 6, the solid-rolling ratio of 40% or more of the cold or warm working performed after solubilization heat treatment, followed by stress load conditions, etc. it Bayoi Hodokose the aging heat treatment for heating appropriate time 600 to 800 ° C. I got the knowledge.
The present invention has been made based on these findings.
[0009]
That is, in the method for producing a precipitation strengthened Co—Ni base heat-resistant alloy in which the fine twin structure of the present invention is formed and at the same time Co 3 Mo or Co 7 Mo 6 is precipitated at the interface between the fine twin structure and the parent phase. C: 0.05% or less, Si: 0.5% or less, Mn: 1.0% or less, Ni: 25-45%, Cr: 13-22%, Mo or Mo and W and Mo + 1/2 W: 10-18%, Nb: 0.1-5.0% and Fe: 0.1-5.0%, REM: 0.007-0.10%, B: 0.001-0. Contains one or more of 010%, Mg: 0.0007 to 0.010% and Zr: 0.001 to 0.20%, and Ti: 0.1 to 3.0 as necessary %, And the balance consisting of Co and inevitable impurities is heated at 1000 to 1200 ° C. Heat treatment was is to subsequently subjected rolling ratio of 40% or more of the cold or warm working followed by aging heat treatment by heating 0.5 to 16 hours to 600 to 800 ° C. in a stress load conditions applied.
[0010]
[Action]
The method of manufacturing a precipitation strengthened Co-Ni base heat-resistant alloy of the present invention, giving the process the pressurizing Engineering 40% or more of cold or warm after solution heat treatment by heating at 1000 to 1200 ° C. or the like, followed by stress load In this state, an aging heat treatment is performed at 600 to 800 ° C. for 0.5 to 16 hours, so that a fine twin structure is formed, and at the same time, Co 3 Mo and / or Co at the interface between the fine twin structure and the parent phase. 7 Mo 6 can be deposited.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, the component composition in the precipitation strengthened Co-Ni-based method of manufacturing a heat-resistant alloy of the present invention will be described the reason for limiting as described above.
C: 0.05% or less C combines with Nb and Ti to form carbides, prevents coarsening of crystal grains during solution heat treatment, and contributes to strengthening of grain boundaries. It is an element to contain. In order to obtain these effects, it is necessary to contain 0.005% or more preferably, but if it contains more than 0.05%, preferably more than 0.03%, toughness and corrosion resistance are lowered and dislocation is fixed. An element to be formed, for example, Mo and carbides are formed to inhibit the fixing effect of dislocation, so the content is made 0.05% or less. A preferred range is 0.005 to 0.03%.
[0012]
Si: 0.5% or less Since Si is effective as a deoxidizing agent, it is an element to be contained for that purpose, but if contained over 0.5%, preferably more than 0.3%, the toughness is reduced. The content is 0.5% or less. A preferable content is 0.3% or less.
[0013]
Mn: 1.0% or less Mn is effective as a deoxidizing agent, and reduces the stacking fault energy and improves work hardening ability. Preferably, if the content exceeds 0.7%, the corrosion resistance is lowered, so the content is made 1.0% or less. A preferable content is 0.7% or less.
[0014]
Ni: 25-45%
Ni is an element that stabilizes austenite, which is a matrix, and improves the heat resistance and corrosion resistance of the alloy. In order to obtain these effects, it is necessary to contain 25%, preferably 27% or more. However, if it exceeds 45%, work hardening ability is lowered, so the content range is 25 to 45%. A preferable content range is 27 to 45%.
[0015]
Cr: 13-22%
Since Cr improves heat resistance and corrosion resistance, it is an element to be contained for them. In order to obtain these effects, it is necessary to contain 13%, preferably 16% or more. However, if it exceeds 22%, preferably more than 21%, the σ phase is liable to precipitate, so the content range is 13-22%. And A preferable content range is 16 to 21%.
[0016]
Mo + 1 / 2W: 10-18%
Mo and W are elements to be contained for the purpose of solid solution in the matrix to strengthen it and improve work hardening ability. In order to obtain the effect, it is 10%, preferably 11% or more, and when both Mo and W are contained, preferably 8.0% or more of Mo needs to be contained. Since a phase precipitates, the content range is made 10 to 18%. A preferable content range is 11 to 18%.
[0017]
Nb: 0.1-5.0%
Nb combines with C to form carbides to prevent coarsening of crystal grains during solution heat treatment, contribute to strengthening of grain boundaries, and solid solution in matrix to strengthen this, work hardening It is an element to be included for improving performance. In order to obtain these effects, it is necessary to contain 0.1%, preferably 0.8% or more, but when it exceeds 5.0%, preferably 3.0%, the δ phase (Ni 3 Nb) is precipitated. Therefore, the workability and toughness are lowered, so the content range is made 0.1 to 5.0%. A preferable content range is 0.8 to 3.0%.
[0018]
Fe: 0.1 to 5.0%
Fe is an element to be contained for solid solution in the matrix and strengthens it. In order to obtain the effect, it is necessary to contain 0.1%, preferably 0.5% or more, but if it exceeds 5.0%, preferably 4.8%, the oxidation resistance is lowered. The range is 0.1 to 5.0%. A preferable range is 0.5 to 4.8%.
If Mo, Nb, and Fe are used in combination, the solid solution strengthening and work hardening of the matrix are remarkably increased, and the maximum tensile strength obtained at room temperature and high temperature is remarkably higher than when Mo, Nb, and Mo and Fe are used in combination. In addition, the effect of shifting the temperature at which the maximum tensile strength appears at a high temperature to a high temperature is great.
[0019]
Ti: 0.1 to 3.0%
Ti is an element to be contained for improving the strength. In order to obtain the effect, it is necessary to contain 0.1%, preferably 0.5% or more, but when it exceeds 3.0%, preferably 2.5%, the η phase (Ni 3 Ti) is precipitated. Therefore, the workability and toughness are lowered, so the content range is made 0.1 to 3.0%. A preferable content range is 0.5 to 2.5%.
[0020]
REM: 0.007 to 0.10%
REM, which is one or more of rare earth elements such as Y, Ce, and misch metal, is an element to be included for improving hot workability and oxidation resistance. In order to obtain these effects, it is necessary to contain 0.007%, preferably 0.01% or more. On the other hand, if it exceeds 0.10%, preferably 0.04%, hot workability and oxidation resistance are reversed. Therefore, the content range is set to 0.007 to 0.10%. A preferable content range is 0.01 to 0.04%.
[0021]
B: 0.001 to 0.010%, Mg: 0.0007 to 0.010%, Zr: 0.001 to 0.20%
B, Mg and Zr are elements contained for improving the hot workability and strengthening the grain boundaries. To obtain these effects, B is 0.001%, preferably 0.002% or more, Mg is 0.0007%, preferably 0.001% or more, and Zr is 0.001%, preferably 0.01. %, But B is 0.010%, preferably 0.006%, Mg is 0.010%, preferably 0.004%, Zr is 0.20%, preferably 0.05. On the other hand, if it is contained in excess of%, hot workability and oxidation resistance are reduced, so the content range is as described above. Preferred ranges are 0.002 to 0.006% for B, 0.001 to 0.004% for Mg, and 0.01 to 0.05% for Zr.
[0022]
Co: Remainder Co is a close-packed hexagonal lattice, but when Ni is contained, it becomes a face-centered cubic lattice, that is, austenite, and exhibits high work hardening ability.
[0023]
Next, a method for producing the precipitation-strengthened Co—Ni heat resistant alloy of the present invention will be described.
The method for producing a precipitation-strengthened Co—Ni-based heat-resistant alloy according to the present invention produces a fine twin structure having an average particle size of several microns in the precipitation-strengthened Co—Ni-based heat-resistant alloy having the above component composition. High strength is achieved by precipitating Co 3 Mo or Co 7 Mo 6 of several micron to several tens of nanometer size at the interface between the fine twin structure and the parent phase. This is to make it smaller.
[0024]
Therefore, the manufacturing method of Co-Ni base heat-resistant alloy material of the present invention, subjected to a solution heat treatment of heating the Co-Ni base heat-resistant alloy such as 1000 to 1200 ° C., between then pressurized Engineering 40% or more of cold or subjected to warm working is O and score Subsequently facilities the aging heat treatment of heating 0.5 to 16 hours to 600 to 800 ° C. in a stress load.
[0025]
The solution heat treatment performed in the method for producing a precipitation-strengthening-type Co—Ni-base heat-resistant alloy of the present invention is to homogenize the structure and reduce the hardness to facilitate processing, and is heated to 1000 to 1200 ° C. It is preferable to do so. When the temperature is lower than 1000 ° C., not only is it not sufficiently homogeneous, but also the hardness is not lowered and processing is difficult. Further, precipitation of compounds such as Mo that contribute to the fixing effect of dislocation, and age hardening due to it are reduced. Because there is a fear. Moreover, it is because a crystal grain will coarsen and toughness and intensity | strength will fall when it exceeds 1200 degreeC.
[0026]
In the method for producing a precipitation strengthened Co—Ni based heat resistant alloy of the present invention, the precipitation strengthened Co—Ni based heat resistant alloy is subjected to aging heat treatment by heating to 600 to 800 ° C. for 0.5 to 16 hours in a stress load state. A fine twin structure having an average particle size of several microns is formed, and Co 3 Mo or Co 7 Mo 6 having a size of several microns to several tens of nanometers is deposited at the interface between the fine twin structure and the parent phase. Because. The load stress in this aging heat treatment is suitably about 100 to 400 MPa. If the pressure is lower than 100 MPa, fine Co 3 Mo or Co 7 Mo 6 does not sufficiently precipitate at the interface between the fine twin structure and the fine twin structure and the parent phase. This is because the alloy subjected to the aging heat treatment is deformed.
[0027]
In addition, aging heat treatment at 600 to 800 ° C. for 0.5 to 16 hours is performed at a temperature lower than 600 ° C. and shorter than 0.5 hours at the fine twin structure and the interface between the fine twin structure and the parent phase. This is because fine Co 3 Mo or Co 7 Mo 6 does not sufficiently precipitate, and when the temperature exceeds 800 ° C. and exceeds 16 hours, the effect is saturated. Rather, the precipitate becomes coarse and the strength decreases. This is because, when this aging heat treatment is performed after cold working or warm working at a working rate of 40% or more, dislocation is recovered, hardness and strength are lowered, and creep elongation is increased. .
[0028]
In another method for producing a precipitation-strengthened Co—Ni-base heat-resistant alloy according to the present invention, the precipitation-strengthened Co—Ni-base heat-resistant alloy is cold or warm with a working rate of 40% or more before aging heat treatment in a stress load state. The reason for processing is to introduce high-density dislocations, and if it is lower than 40%, high-density dislocations cannot be introduced. When aging heat treatment is performed after high-density dislocations are introduced, stress relaxation, that is, dislocation is prevented by segregating to the stacking faults formed between the half dislocations of dislocations with expanded solute atoms such as Mo and Fe. It will suppress recovery. As a result, it has high strength combined with the effect of precipitation of fine Co 3 Mo or Co 7 Mo 6 at the interface between the fine twin structure and the fine twin structure and the parent phase, and even when used at high temperatures for a long time. A precipitation-strengthened Co—Ni-based heat-resistant alloy with a small decrease in strength is obtained.
[0029]
An example of a method for producing a precipitation-strengthened Co—Ni-based heat-resistant alloy of the present invention is an ingot produced by melting by a normal method using a vacuum high-frequency induction furnace or the like and casting by a normal casting method. Thereafter, hot working is performed, and a solution heat treatment is performed at 1000 to 1200 ° C. , followed by cold or warm working at a processing rate of 40% or more , and subsequently at 600 to 800 ° C. in a stress load state of 100 to 400 MPa. An aging heat treatment is performed by heating for 0.5 to 16 hours .
[0030]
Further, the application of the precipitation-strengthened Co—Ni heat resistant alloy of the present invention uses Inconel X750 or Inconel X718 such as exhaust system parts such as an engine exhaust manifold, gas turbine peripheral equipment, furnace members, heat resistant springs, heat resistant bolts, etc. And uses at higher temperatures than these. In particular, it is suitable for components such as springs and bolts that are constantly stressed at high temperatures.
[0031]
【Example】
Hereinafter, the present invention will be described by way of examples.
Comparative Example Alloy invention sample alloys shown in Example Table 1 below were melted in a conventional manner using a vacuum high frequency induction furnace to obtain an ingot of 50kg was cast in a conventional casting method. These ingots were formed into round bars with a diameter of 20 mm by hot forging. Invention Example Alloy No. round bar (of the trial material 5) 5 and the inventive examples round bar of alloy No. 6 of these round rods (of the trial material 6) the solution heat treatment at 1100 ° C., As an example of the present invention, cold working was performed at 45%, 60%, and 75% processing rate, and then aging heat treatment was performed at the load stress, heating temperature, and heating time shown in Table 2 . As a comparative example, after cold working at a processing rate of 45%, aging heat treatment for heating at 770 ° C. for 4 hours without load or cold working at a processing rate of 60% and then at 720 ° C. for 8 hours at no load An aging heat treatment was performed.
A creep test piece having a parallel part φ of 6 mm and a distance between scores of 30 mm was cut out from these materials , and subjected to a creep test in which a stress of 330 MPa was applied at 700 ° C. and the elongation after 1000 hours was measured. The results are shown in Table 2 below.
[0032]
[Table 1]
[0033]
[Table 2]
[0034]
In Invention Examples Nos. 1 to 9 (Table 2) , when the microstructure of the test piece is observed by SEM, a fine twin structure is formed. Further, fine Co 3 Mo or Co 7 Mo 6 is precipitated. 1 and 2 are structural photographs of Example No. 9 of the present invention. From this structural photograph, it can be seen that this is a microstructure in which Co 3 Mo or Co 7 Mo 6 that appears as a lump at the interface between the fine twin structure that appears as an equilateral triangle and the matrix phase is precipitated. The creep elongation of the creep test of Invention Examples Nos. 1 to 9 was 0.9 to 1.9%. We creep elongation creep test was smaller Ri good following Reference Example No.. 1 to No. 7 not more than 40% cold or warm working before the aging heat treatment.
On the other hand, in Comparative Examples No. 1 and No. 2 in which no load was applied during the aging heat treatment, Co 3 Mo or Co 7 Mo 6 was not precipitated, and the creep elongation of the creep test was 4.8%. It was 4.6%, and no improvement in creep strength was observed.
[0035]
Reference example
Round bar (test material φ20mm the round bar (test material 1-7) of φ20mm invention sample alloy Nanba1~ No.7 produced in Examples and Comparative Examples alloy Nanba1~ No.4 8-11) were subjected to solution heat treatment at 1100 ° C., and subjected to aging treatment at 720 ° C. for 8 hours under a tensile stress of 200 MPa. A tensile test piece having a parallel part φ8 mm was cut out from these materials, and a tensile test was performed at room temperature to measure the tensile strength. Similarly to the above example, a creep test piece having a parallel part φ of 6 mm and a distance between scores of 30 mm was cut out and subjected to a creep test in which a stress of 330 MPa was applied at 700 ° C. and the elongation after 1000 hours was measured. The results are shown in Table 3 below.
[0036]
[Table 3]
[0037]
According to these results, in Reference Examples 1 to 7 (Table 3) , when the structure of the test piece was observed by SEM (scanning electron microscope), a fine twin structure was formed. Fine Co 7 Mo 6 or Co 3 Mo was precipitated at the interface of the film, the room temperature tensile strength was 1121-1303 MPa, and the creep elongation was 2.0-2.7%. On the other hand, Reference Example Nos. 8 to 10 in which Mo + 1/2 W is smaller than that of the present invention and Mo + 1/2 W are smaller than those of the present invention, and Reference Example No. 11 containing no Nb and Fe is Co 7 Mo 6 Alternatively, Co 3 Mo was not precipitated, the room temperature tensile strength was 881 to 976 MPa, which was 87% or less of Reference Examples 1 to 7, and in the creep test, any test piece was broken.
[0038]
【The invention's effect】
The production method of the present invention can produce a precipitation-strengthened Co—Ni-base heat-resistant alloy material that has higher strength at room temperature than the Ni-base superheat-resistant alloy and has a small decrease in strength even when used at a high temperature for a long time. There is an excellent effect.
[Brief description of the drawings]
1 is a drawing-substituting scanning electron micrograph of the structure of Example No. 9 of the present invention enlarged by 5000 times. FIG.
2 is a drawing-substituting scanning electron micrograph obtained by magnifying the structure of FIG. 1 at 20000 times. FIG.

Claims (2)

  1. 質量%で(以下同じ)、C:0.05%以下、Si:0.5%以下、Mn:1.0%以下、Ni:25〜45%、Cr:13〜22%、MoまたはMoとWでMo+1/2 W:10〜18%、Nb:0.1〜5.0%およびFe:0.1〜5.0%を含有し、更にREM:0.007〜0.10%、B:0.001〜0.010%、Mg:0.0007〜0.010%およびZr:0.001〜0.20%のうちの1種または2種以上を含有し、残部がCoおよび不可避的不純物からなる合金を固溶化熱処理後に加工率40%以上の冷間または温間加工を施し、続いて応力負荷状態で600〜800℃に0.5〜16時間加熱する時効熱処理を施すことを特徴とする微細双晶組織を形成させ、同時にこの微細双晶組織と母相の界面にCo3 MoまたはCo7 Mo6 が析出した析出強化型Co−Ni基耐熱合金の製造方法。 In mass % (hereinafter the same), C: 0.05% or less, Si: 0.5% or less, Mn: 1.0% or less, Ni: 25-45%, Cr: 13-22%, Mo or Mo W + Mo + 1/2 W: 10-18%, Nb: 0.1-5.0% and Fe: 0.1-5.0%, REM: 0.007-0.10%, B : 0.001 to 0.010%, Mg: 0.0007 to 0.010%, and Zr: 0.001 to 0.20% of one type or two or more types, with the balance being Co and inevitable The alloy consisting of impurities is subjected to a solution heat treatment followed by cold or warm working with a working rate of 40% or more, followed by aging heat treatment at 600 to 800 ° C. for 0.5 to 16 hours under stress loading. At the same time, a Co 3 Mo alloy is formed at the interface between the fine twin structure and the parent phase. Others Co 7 Mo 6 is a manufacturing method of the deposited precipitation strengthened Co-Ni base heat-resistant alloy.
  2. C:0.05%以下、Si:0.5%以下、Mn:1.0%以下、Ni:25〜45%、Cr:13〜22%、MoまたはMoとWでMo+1/2 W:10〜18%、Nb:0.1〜5.0%、Fe:0.1〜5.0%およびTi:0.1〜3.0%を含有し、更にREM:0.007〜0.10%、B:0.001〜0.010%、Mg:0.0007〜0.010%およびZr:0.001〜0.20%のうちの1種または2種以上を含有し、残部がCoおよび不可避的不純物からなる合金を固溶化熱処理後に加工率40%以上の冷間または温間加工を施し、続いて応力負荷状態で600〜800℃に0.5〜16時間加熱する時効熱処理を施すことを特徴とする微細双晶組織を形成させ、同時にこの微細双晶組織と母相の界面にCo3 MoまたはCo7 Mo6 が析出した析出強化型Co−Ni基耐熱合金の製造方法。C: 0.05% or less, Si: 0.5% or less, Mn: 1.0% or less, Ni: 25-45%, Cr: 13-22%, Mo or Mo and W and Mo + 1/2 W: 10 -18%, Nb: 0.1-5.0%, Fe: 0.1-5.0% and Ti: 0.1-3.0%, and REM: 0.007-0.10 %, B: 0.001 to 0.010%, Mg: 0.0007 to 0.010%, and Zr: 0.001 to 0.20%, and the balance is Co. In addition, an alloy composed of inevitable impurities is subjected to a solution heat treatment followed by a cold or warm work with a working rate of 40% or more, followed by an aging heat treatment in which the alloy is heated to 600 to 800 ° C. for 0.5 to 16 hours in a stress load state. At the same time, a Co 3 Mo is formed at the interface between the fine twin structure and the parent phase. Or method for producing precipitation-strengthened Co-Ni base heat-resistant alloy Co 7 Mo 6 is precipitated.
JP2002197142A 2002-07-05 2002-07-05 Method for producing precipitation-strengthened Co-Ni heat resistant alloy Expired - Fee Related JP4264926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197142A JP4264926B2 (en) 2002-07-05 2002-07-05 Method for producing precipitation-strengthened Co-Ni heat resistant alloy

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002197142A JP4264926B2 (en) 2002-07-05 2002-07-05 Method for producing precipitation-strengthened Co-Ni heat resistant alloy
ES03015101T ES2250793T3 (en) 2002-07-05 2003-07-03 CO-NI ALLOY OF THERMORESISTENT CO-NI PRECIPITATION AND METHOD FOR PREPARATION.
US10/612,039 US20040033158A1 (en) 2002-07-05 2003-07-03 Precipitation hardened Co-Ni based heat-resistant alloy and production method therefor
EP03015101A EP1378579B1 (en) 2002-07-05 2003-07-03 Precipitation hardened Co-Ni based heat-resistant alloy and production method therefor
DE60302108T DE60302108T8 (en) 2002-07-05 2003-07-03 Precipitation-hardened cobalt-nickel alloy with good heat resistance and associated production method

Publications (2)

Publication Number Publication Date
JP2004035974A JP2004035974A (en) 2004-02-05
JP4264926B2 true JP4264926B2 (en) 2009-05-20

Family

ID=29720314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197142A Expired - Fee Related JP4264926B2 (en) 2002-07-05 2002-07-05 Method for producing precipitation-strengthened Co-Ni heat resistant alloy

Country Status (5)

Country Link
US (1) US20040033158A1 (en)
EP (1) EP1378579B1 (en)
JP (1) JP4264926B2 (en)
DE (1) DE60302108T8 (en)
ES (1) ES2250793T3 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4421877B2 (en) * 2003-03-26 2010-02-24 セイコーインスツル株式会社 Co-Ni based high elastic alloy, power spring using Co-Ni based high elastic alloy and method for manufacturing the same
CN100590210C (en) * 2007-09-19 2010-02-17 中国科学院金属研究所 Technological process for improving twin boundary amount in gamma' precipitation strengthened type ferrous alloy
JP5582532B2 (en) * 2010-08-23 2014-09-03 大同特殊鋼株式会社 Co-based alloy
JP5736140B2 (en) 2010-09-16 2015-06-17 セイコーインスツル株式会社 Co-Ni base alloy and method for producing the same
WO2016043759A1 (en) 2014-09-18 2016-03-24 Halliburton Energy Services, Inc. Precipitation hardened matrix drill bit
EP3237803B1 (en) * 2014-12-24 2019-09-25 Ansaldo Energia S.p.A. Supporting member for thermoinsulating tiles of gas turbine combustion chambers
CN106756404B (en) * 2016-11-29 2019-01-01 四川六合锻造股份有限公司 A kind of Co based alloy and preparation method thereof for combustion chamber components
US20180340438A1 (en) * 2017-05-01 2018-11-29 General Electric Company Turbine Nozzle-To-Shroud Interface
CN107127343A (en) * 2017-05-05 2017-09-05 桂林电子科技大学 A kind of electron beam increasing material manufacturing method of nickel-base alloy structural member
US10533571B2 (en) * 2018-01-20 2020-01-14 Carolyn Rende Fortin Pump systems with variable diameter impeller devices
CN111187999B (en) * 2020-02-17 2020-12-08 河北工业大学 Heat treatment method for enhancing fuel gas corrosion resistance of polycrystalline Ni-Cr-Al-based alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795504A (en) * 1984-08-08 1989-01-03 Latrobe Steel Company Nickel-cobalt base alloys
US5476555A (en) * 1992-08-31 1995-12-19 Sps Technologies, Inc. Nickel-cobalt based alloys
US5725692A (en) * 1995-10-02 1998-03-10 United Technologies Corporation Nickel base superalloy articles with improved resistance to crack propagation
JP4315582B2 (en) * 2000-09-19 2009-08-19 日本発條株式会社 Co-Ni base heat-resistant alloy and method for producing the same

Also Published As

Publication number Publication date
DE60302108T2 (en) 2006-07-27
JP2004035974A (en) 2004-02-05
EP1378579B1 (en) 2005-11-02
DE60302108T8 (en) 2006-11-30
EP1378579A1 (en) 2004-01-07
DE60302108D1 (en) 2005-12-08
US20040033158A1 (en) 2004-02-19
ES2250793T3 (en) 2006-04-16

Similar Documents

Publication Publication Date Title
JP4264926B2 (en) Method for producing precipitation-strengthened Co-Ni heat resistant alloy
JP4995570B2 (en) Nickel base alloy and heat treatment method of nickel base alloy
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
JP5657964B2 (en) High-strength Ni-base forged superalloy and manufacturing method thereof
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
JP5792500B2 (en) Ni-base superalloy material and turbine rotor
Smith et al. The role of niobium in wrought precipitation-hardened nickel-base alloys
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
US20130206287A1 (en) Co-based alloy
WO2000020652A1 (en) Creep resistant gamma titanium aluminide alloy
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
Sun et al. Effects of Al on microstructural stability and related stress-rupture properties of a third-generation single crystal superalloy
JP6660042B2 (en) Method for manufacturing extruded Ni-base superalloy and extruded Ni-base superalloy
JP5769204B2 (en) Fe-Ni base alloy having excellent high temperature characteristics and hydrogen embrittlement resistance and method for producing the same
JP4923996B2 (en) Heat-resistant spring and method for manufacturing the same
JPH11236655A (en) Performance recovering treating method for nickel base heat resistant alloy
Bian et al. The influence of Mo on Suzuki-segregation-related microstructure evolution and mechanical properties of Co− Ni-based superalloy
JP4315582B2 (en) Co-Ni base heat-resistant alloy and method for producing the same
KR20200002965A (en) Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JP4167242B2 (en) Method for recovering performance of Ni-base heat-resistant alloy
JP6025216B2 (en) Fe-Ni base alloy and method for producing Fe-Ni base alloy
Soleimani Gilakjani et al. The effect of niobium addition on the microstructure and tensile properties of iron-nickel base A286 superalloy
JP2012107269A (en) Nickel-based heat-resistant superalloy and heat-resistant superalloy member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees