JPH08209314A - Production of shape memory alloy with high-temperature phase-transferring function - Google Patents

Production of shape memory alloy with high-temperature phase-transferring function

Info

Publication number
JPH08209314A
JPH08209314A JP28052995A JP28052995A JPH08209314A JP H08209314 A JPH08209314 A JP H08209314A JP 28052995 A JP28052995 A JP 28052995A JP 28052995 A JP28052995 A JP 28052995A JP H08209314 A JPH08209314 A JP H08209314A
Authority
JP
Japan
Prior art keywords
temperature
alloy
temp
shape memory
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28052995A
Other languages
Japanese (ja)
Inventor
Bui Gorubaagu Dei
デイ・ブイ・ゴルバーグ
Kazuhiro Otsuka
和弘 大塚
Tatsuhiko Ueki
達彦 植木
Hiroshi Horikawa
宏 堀川
Kengo Mitose
賢悟 水戸瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP28052995A priority Critical patent/JPH08209314A/en
Publication of JPH08209314A publication Critical patent/JPH08209314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To allow an alloy to memorize shape and to obtain sufficient shape recovery factor by subjecting a shape memory alloy with high-temp. phase-transferring function to cold working and then to a specific two-stage heat treatment. CONSTITUTION: A shape memory alloy with high-temp. phase-transferring function, in which martensite inverse transformation starting temp. (As) at the first heating after cold working becomes >=350 deg.C, is cold-worked and then heat-treated. At this time, as a first-stage heat treatment, heating is performed at a temp. higher than the martensite inverse transformation finishing temp. (Af) at the first heating for a time not longer than recrystallization latent time, e.g. at a temp. in the range between >500 deg.C and a temp. lower than the melting point of the alloy for <=3min. Thereby the structure of a bace material is transformed without causing recrystallization of the alloy to improve the shape recovery. Then, as a second-stage heat treatment, annealing is performed a temp. in the range between the plastic strain recovery temp. and the recrystallization temp. It is preferable to use Ti50 Ni50-x Pdx (x=35 to 50 atomic %), Ti50-x Ni50 Zrx (X=22 to 30%), Ti50-x Ni50 Hfx (x=20 to 30%), etc., as the alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高温作動形状記憶
合金の製造方法に関するもので、具体的には、Ti−P
d−Ni合金、Ti−Ni−Zr合金、Ti−Ni−H
f合金等の高温作動形状記憶合金の形状回復特性を大幅
に改善するための製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high temperature working shape memory alloy, and more specifically, Ti-P.
d-Ni alloy, Ti-Ni-Zr alloy, Ti-Ni-H
The present invention relates to a manufacturing method for significantly improving the shape recovery characteristics of a high temperature operating shape memory alloy such as an f alloy.

【0002】[0002]

【従来技術】形状記憶合金及び超弾性合金としては、T
iNi系合金がよく知られている。形状回復温度(マル
テンサイト逆変態終了温度、以下Af温度と云う)は、
TiとNiの組成比や第3元素の添加、加工熱処理条件
等によって、−100℃から+100℃程度の範囲で変
化させることができる。これらの形状記憶合金を形状記
憶熱処理するときには、冷間加工後、塑性歪みの回復温
度以上の温度(通常400℃程度)で焼鈍を行う。塑性
歪みの回復温度とは、冷間加工によって導入された転位
が再配列する温度のことである。この温度はAf温度よ
りも高いので、この時に同時にAf温度以上に加熱さ
れ、いちど母相状態に変態することになり、形状を記憶
させることができる。
2. Description of the Related Art As shape memory alloys and superelastic alloys, T
iNi-based alloys are well known. The shape recovery temperature (martensite reverse transformation end temperature, hereinafter referred to as Af temperature) is
It can be changed in the range of about -100 ° C to + 100 ° C depending on the composition ratio of Ti and Ni, addition of the third element, processing heat treatment conditions, and the like. When performing shape memory heat treatment on these shape memory alloys, after cold working, annealing is performed at a temperature equal to or higher than the plastic strain recovery temperature (usually about 400 ° C.). The recovery temperature of plastic strain is the temperature at which dislocations introduced by cold working are rearranged. Since this temperature is higher than the Af temperature, it is simultaneously heated to the Af temperature or higher at this time and once transformed into the matrix phase, the shape can be memorized.

【0003】良好な形状記憶特性を得るための形状記憶
熱処理の条件とては、以下の3点を満たすことが重要で
ある。1)冷間加工によるマルテンサイトのバリアント
の再配列の飽和を解消すること、2)冷間加工によって
導入された転位が再配列すること、3)再結晶を起こさ
ないこと。TiNi系形状記憶合金では、Af温度(作
動温度)はせいぜい100℃を少し超えるくらいで、そ
れ以上に高いAf温度になる形状記憶合金即ち高温作動
形状記憶合金を得るためには、TiNiPd合金、Ti
NiZr合金等の別の合金系にする必要がある。高温作
動形状記憶合金の用途としては、水の沸騰や油の過熱、
ポリマーの融解などを検出し作動する部品に、あるいは
原子炉の冷却水の安全弁などに用いることができる。
It is important that the following three points are satisfied as conditions for shape memory heat treatment for obtaining good shape memory characteristics. 1) Eliminating saturation of rearrangement of martensite variants due to cold working, 2) Rearrangement of dislocations introduced by cold working, and 3) No recrystallization. In a TiNi-based shape memory alloy, the Af temperature (operating temperature) is slightly higher than 100 ° C. at most, and in order to obtain a shape memory alloy having a higher Af temperature, that is, a high temperature operating shape memory alloy, a TiNiPd alloy, Ti
It is necessary to use another alloy system such as NiZr alloy. Applications of high temperature operating shape memory alloys include boiling water and overheating of oil,
It can be used for parts that detect and act upon the melting of polymers, or for safety valves for cooling water in nuclear reactors.

【0004】Af温度が100℃を大きく超える高温作
動形状記憶合金には、Ti−Pd−X系、Ti−Au−
X系(X=Ni,Cu,W,Ta,Co,Cr,F
e)、Ti−Ni−X系(X=Zr,Hf)系など数多
くの合金系が知られているが、これらの合金系は、置換
元素とその組成範囲によってマルテンサイト逆変態開始
温度(以下As温度と云う)またはAf温度を変化させ
ることが可能である。組成範囲によってはAs温度また
はAf温度が500℃以上に達するようになる。
For high-temperature working shape memory alloys whose Af temperature greatly exceeds 100 ° C., Ti-Pd-X type and Ti-Au-type are used.
X system (X = Ni, Cu, W, Ta, Co, Cr, F
Many alloy systems such as e) and Ti-Ni-X system (X = Zr, Hf) system are known, but these alloy systems have a martensite reverse transformation start temperature (hereinafter It is possible to change the As temperature) or the Af temperature. Depending on the composition range, the As temperature or the Af temperature reaches 500 ° C. or higher.

【0005】また、通常、焼鈍状態でのAs温度とAf
温度との差は数十℃以下であるが、これらの合金を冷間
加工すると、加工歪みの導入により、冷間加工後の最初
の加熱でのAf温度はさらに150℃程度も上昇し、A
s温度とAf温度の差が広がる。従ってAs温度が35
0℃以上の合金では、冷間加工後の最初の加熱でのAf
温度が500℃以上に達し、再結晶温度を超えることに
なる。例えばTi−Ni−Pd系は、組成をTi50Ni
50-xPdx (数値はat%、以下同様)で表すときに、
xが43以上になると、焼鈍状態でのAf温度が500
℃以上になる。また、xが35以上のときにAs温度が
350℃以上であり、冷間加工後の最初の加熱でのAf
温度が500℃以上になる。またTi−Ni−Zr系で
は、組成をTi50-xNi50Zrx で表すときに、xが2
9以上になると焼鈍状態でのAf温度が500℃以上に
なる。また、xが22以上のときにAs温度が350℃
以上であり、冷間加工後の最初の加熱でのAf温度が5
00℃以上になる。さらにTi−Ni−Hf系では、組
成をTi50-xNi50Hfx で表すときに、xが27以上
になると焼鈍状態でのAf温度が500℃以上になる。
また、xが20以上のときにAs温度が350℃以上で
あり、冷間加工後の最初の加熱でのAf温度が500℃
以上になる。
Further, normally, the As temperature and Af in the annealed state are
Although the difference from the temperature is several tens of degrees Celsius or less, when these alloys are cold-worked, the Af temperature in the first heating after cold-working is further increased by about 150 ° C. due to the introduction of working strain, and
The difference between the s temperature and the Af temperature widens. Therefore, the As temperature is 35
For alloys above 0 ° C, Af at the first heating after cold working
The temperature reaches 500 ° C. or higher and exceeds the recrystallization temperature. For example, the Ti-Ni-Pd system has a composition of Ti 50 Ni.
When expressed by 50-x Pd x (numerical value is at%, the same applies below),
When x is 43 or more, the Af temperature in the annealed state is 500
℃ or more. Further, the As temperature is 350 ° C. or more when x is 35 or more, and Af in the first heating after cold working
The temperature rises above 500 ° C. In addition Ti-Ni-Zr system, when referring to a composition in Ti 50-x Ni 50 Zr x , x is 2
When it is 9 or more, the Af temperature in the annealed state becomes 500 ° C. or more. Moreover, when x is 22 or more, the As temperature is 350 ° C.
Above, the Af temperature in the first heating after cold working is 5
It will be over 00 ℃. In yet Ti-Ni-Hf-based, when referring to a composition in Ti 50-x Ni 50 Hf x , Af temperature in the annealing state x is 27 or more is equal to or higher than 500 ° C..
Further, when x is 20 or more, the As temperature is 350 ° C. or more, and the Af temperature in the first heating after cold working is 500 ° C.
That's all.

【0006】以上の例のように、As温度が350℃以
上の合金では、冷間加工後の最初の加熱でのAf温度は
500℃以上に達し、再結晶温度を超えるようになる。
勿論のことであるが、As温度が初めから500℃以上
の合金では、冷間加工後の最初の加熱でのAf温度も5
00℃以上である。このような合金では、冷間加工後、
従来のTi−Ni系形状記憶合金のように400℃で1
時間の焼鈍といった熱処理を行っても、形状を記憶させ
ることはできない。一方、冷間加工後の最初の加熱での
Af温度よりも高温で焼鈍すると、形状を記憶させるこ
とはできるが、今度は再結晶を開始するので、形状回復
率は悪くなる。これらの理由から、従来、冷間加工後の
最初の加熱でのAf温度が再結晶温度以上になる高温作
動形状記憶合金では、形状回復率の良いものが得られな
いという問題があった。
As described above, in the alloy having an As temperature of 350 ° C. or higher, the Af temperature in the first heating after cold working reaches 500 ° C. or higher and exceeds the recrystallization temperature.
As a matter of course, in the alloy having an As temperature of 500 ° C. or higher from the beginning, the Af temperature in the first heating after cold working is 5 as well.
The temperature is 00 ° C or higher. In such alloys, after cold working,
Like the conventional Ti-Ni type shape memory alloy, 1 at 400 ℃
Even if a heat treatment such as time annealing is performed, the shape cannot be memorized. On the other hand, when annealing is performed at a temperature higher than the Af temperature in the first heating after cold working, the shape can be memorized, but recrystallization is started this time, so the shape recovery rate becomes poor. For these reasons, conventionally, there has been a problem in that a high-temperature working shape memory alloy in which the Af temperature in the first heating after cold working is equal to or higher than the recrystallization temperature cannot obtain a good shape recovery rate.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、上記
の問題について種々検討し、冷間加工後の最初の加熱で
のAs温度が350℃以上であるような高温作動形状記
憶合金に形状を記憶させ、かつ、十分な形状回復率が得
られるような製造方法を開発することである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to study the above problems variously, and to form a high temperature working shape memory alloy in which the As temperature in the first heating after cold working is 350 ° C. or higher. Is to develop a manufacturing method capable of memorizing, and obtaining a sufficient shape recovery rate.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
の請求項1の発明は、高温作動形状記憶合金の冷間加工
後の最初の加熱でのマルテンサイト逆変態開始温度(A
s)が350℃以上になる合金であり、該合金を冷間加
工の後、1段目の熱処理として、冷間加工後の最初の加
熱でのマルテンサイト逆変態終了温度(Af)よりも高
い温度で、かつ再結晶の潜伏時間以内の時間加熱し、そ
の後2段目の熱処理として、塑性歪み回復温度以上で、
かつ再結晶温度以下の温度で焼鈍を施すことを特徴とす
る高温作動形状記憶合金の製造方法であり、
According to the invention of claim 1 for solving the above-mentioned problems, a martensite reverse transformation start temperature (A) at the first heating after cold working of a high temperature working shape memory alloy is used.
s) is an alloy whose temperature is 350 ° C. or higher, and is higher than the martensite reverse transformation end temperature (Af) in the first heating after cold working after cold working of the alloy. Heating at a temperature for a time within the recrystallization incubation time, and then as the second heat treatment, at a plastic strain recovery temperature or higher,
And a method of manufacturing a high temperature working shape memory alloy, characterized by performing annealing at a temperature of recrystallization temperature or less,

【0009】請求項2の発明は、請求項1の実施態様で
あり、前記の1段目の熱処理として500℃を超え合金
の融点未満の温度で、3分以内加熱処理することを特徴
とする請求項1記載の高温作動形状記憶合金の製造方法
であり、
The invention of claim 2 is the embodiment of claim 1, characterized in that the heat treatment in the first step is performed at a temperature higher than 500 ° C. and lower than the melting point of the alloy within 3 minutes. A method for manufacturing a high temperature operating shape memory alloy according to claim 1,

【0010】請求項3の発明は、請求項1または請求項
2の実施態様であり、前記の高温作動形状記憶合金の組
成が、Ti50Ni50-xPdx のxが35〜50%の合
金、Ti50-xNi50Zrx のxが22〜30%の合金お
よびTi50-xNi50Hfx のxが20〜30%の合金の
いずれかであることを特徴とする請求項1または請求項
2記載の高温作動形状記憶合金の製造方法である。
[0010] The invention of claim 3 is an embodiment of claim 1 or claim 2, the composition of the hot working the shape memory alloy, a Ti 50 Ni 50-x Pd x x is 35% to 50% alloy, according to claim 1, Ti 50-x Ni 50 Zr x of x is 22 to 30% of the alloy and Ti 50-x Ni 50 Hf x of x is equal to or is any one of 20-30% of the alloy Alternatively, it is the method for manufacturing a high temperature operating shape memory alloy according to claim 2.

【0011】[0011]

【発明の実施の形態】以下に、前記本発明について、詳
細に説明する。まず、一般的に形状記憶合金の形状記憶
処理の原理は、以下のように説明される。冷間加工によ
って結晶中に転位が高密度に導入される。これを、塑性
歪みの回復温度以上の適当な温度で適当な時間焼鈍し、
転位の再配列を起こさせる。再配列した転位はすべりに
対する抵抗となるので、マルテンサイトの再配列または
応力誘起マルテンサイトの発生の臨界応力よりも、すべ
りの臨界応力が大きくなる。これによって、変形時には
すべりが生じずにマルテンサイトの再配列または応力誘
起マルテンサイトが生じ、良好な形状記憶特性を示すよ
うになる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. First, the principle of shape memory processing of shape memory alloys is generally explained as follows. Cold working introduces a high density of dislocations into the crystal. This is annealed at an appropriate temperature above the plastic strain recovery temperature for an appropriate time,
Cause rearrangement of rearrangements. Since the rearranged dislocations become a resistance against slip, the critical stress of slip becomes larger than the critical stress of rearrangement of martensite or generation of stress-induced martensite. As a result, upon deformation, martensite rearrangement or stress-induced martensite occurs without slippage, and good shape memory characteristics are exhibited.

【0012】一方、焼鈍温度が再結晶温度以上になる
と、転位の再配列のみならず再結晶が生じるようにな
る。再結晶を生じた部分は転位密度が極端に小さくなる
ので、すべりに対する抵抗が小さくなる。そのためすべ
りの臨界応力がマルテンサイトの再配列の臨界応力より
も小さくなり、すべりが生じやすくなり、結果として形
状記憶特性が悪くなる。
On the other hand, when the annealing temperature is higher than the recrystallization temperature, not only rearrangement of dislocations but also recrystallization occurs. Since the dislocation density in the recrystallized portion is extremely small, the resistance to slip is small. Therefore, the critical stress of slippage becomes smaller than the critical stress of rearrangement of martensite, slippage is likely to occur, and as a result, shape memory characteristics deteriorate.

【0013】ところで、従来のTiNi系形状記憶合金
では、Af温度(−100℃〜100℃)が塑性歪みの
回復温度(400℃程度)以下にあるので、塑性歪みの
回復温度以上への加熱によって、母相状態に変態する。
これにより、冷間加工によって生じたマルテンサイトの
バリアントの再配列の飽和が解消された状態で、前記の
転位の再配列が起こるので、形状を記憶することがで
き、問題は生じなかった。しかし、前記のTi−Pd−
X系、Ti−Au−X系、Ti−Ni−X系等のAf温
度が再結晶開始温度よりも高い形状記憶合金では、Af
温度を超える温度で焼鈍を行うと、再結晶が生じるの
で、形状回復特性が悪くなる。Af温度を超えない温度
では、熱処理後も冷間加工によってバリアントの再配列
の飽和したマルテンサイトの状態のままであるので、形
状を記憶することはできない。
By the way, in the conventional TiNi-based shape memory alloy, since the Af temperature (-100 ° C. to 100 ° C.) is lower than the plastic strain recovery temperature (about 400 ° C.), heating to the plastic strain recovery temperature or higher is required. , Transformed into a mother phase.
As a result, the rearrangement rearrangement occurs in a state in which the saturation of the rearrangement of the martensite variant caused by cold working has been eliminated, so that the shape can be memorized and no problem occurs. However, the above-mentioned Ti-Pd-
In a shape memory alloy such as X-based, Ti-Au-X-based, and Ti-Ni-X-based having a higher Af temperature than the recrystallization start temperature, Af
When annealing is performed at a temperature higher than the temperature, recrystallization occurs, so that the shape recovery property deteriorates. At a temperature that does not exceed the Af temperature, the shape cannot be memorized because the state of the saturated martensite of the rearrangement of the variant remains after cold treatment even after the heat treatment.

【0014】本発明は上記の知見に基いてなされたもの
で、冷間加工後の最初の加熱でのAs温度が350℃以
上になる高温作動形状記憶合金、すなわち前記のTi−
Pd−X系、Ti−Au−X系、Ti−Ni−X系等の
合金に対して、該合金を冷間加工後、1段目の熱処理と
して、冷間加工後の最初の加熱でのAf温度よりも高い
温度で、かつ再結晶の潜伏時間以内の時間加熱を行うも
のである。この1段目の加熱処理によって合金の結晶構
造は母相に変態する。一度母相に変態させることによ
り、冷間加工によって生じたマルテンサイトのバリアン
トの再配列の飽和が解消された状態にするものである。
The present invention has been made on the basis of the above findings, and is a high temperature working shape memory alloy having an As temperature of 350 ° C. or higher in the first heating after cold working, that is, the above Ti-
For alloys such as Pd-X series, Ti-Au-X series, and Ti-Ni-X series, after cold working of the alloy, as a first-stage heat treatment, the first heating after cold working is performed. The heating is performed at a temperature higher than the Af temperature and within the latent time for recrystallization. The crystal structure of the alloy is transformed into a mother phase by the first heat treatment. By once transforming into the parent phase, the saturation of the rearrangement of the martensite variant caused by cold working is eliminated.

【0015】上記の加熱処理の温度は、合金の再結晶開
始温度以上であるが、母相への変態は再結晶の潜伏時間
以内に完了するのでAf温度以上への加熱は短時間で良
く、再結晶の開始を避けることができる。換言すれば、
本発明の1段目の熱処理においては、Af温度よりも高
い温度で、しかも再結晶温度よりも高い温度で熱処理を
行うが、その加熱時間は、再結晶の潜伏時間以内の極め
て短時間であるため、合金に再結晶を生じさせることな
く、したがって形状回復率の高い特性のものが得られる
のである。この1段目の熱処理は、500℃を超え合金
の融点未満の温度が望ましく、500℃未満では形状回
復率が悪く、融点を超えては溶融するからであるが、実
用的で、好ましいのは500〜1000℃の範囲であ
る。因みにTi−Au−Ni系合金の融点は約1310
〜1495℃、Ti−Ni−Pd系合金は約1310〜
1400℃、Ti−Ni−Zr系合金は約1260〜1
310℃、Ti−Ni−Hf系合金は約1310〜15
30℃である。なお、再結晶温度はそれぞれ500℃以
上である。
The temperature of the above heat treatment is not less than the recrystallization start temperature of the alloy. However, since the transformation to the parent phase is completed within the recrystallization incubation time, the heating to the Af temperature or more can be performed in a short time. The initiation of recrystallization can be avoided. In other words,
In the first-stage heat treatment of the present invention, the heat treatment is performed at a temperature higher than the Af temperature and higher than the recrystallization temperature, but the heating time is an extremely short time within the recrystallization latency time. Therefore, it is possible to obtain a material having a high shape recovery rate without causing recrystallization in the alloy. This first-stage heat treatment is preferably performed at a temperature higher than 500 ° C. and lower than the melting point of the alloy. If it is lower than 500 ° C., the shape recovery rate is poor, and if it exceeds the melting point, it melts. However, it is practical and preferable. It is in the range of 500 to 1000 ° C. By the way, the melting point of the Ti-Au-Ni alloy is about 1310.
〜1495 ° C, Ti-Ni-Pd based alloy is about 1310
1400 ° C, Ti-Ni-Zr alloy is about 1260-1
At 310 ° C., the Ti-Ni-Hf alloy is about 1310-15.
It is 30 ° C. The recrystallization temperature is 500 ° C. or higher.

【0016】また加熱時間は3分以内が望ましく、3分
を超えると再結晶が生じ、形状回復特性が悪くなる。好
ましくは1分以内がよい。上記の1段目の熱処理を行っ
た後に2段目の熱処理として、合金の塑性歪み回復温度
以上で、かつ再結晶温度以下の温度で焼鈍を行うものが
あるが、この熱処理は、再結晶を起こさずに転位の再配
列のみを生じさせるものであり、これにより良好な形状
記憶効果を得ることができる。この熱処理は300〜5
00℃の温度で30分〜2時間行うことが望ましく30
0℃未満では良好な形状記憶ができず、500℃以上で
は再結晶を生じるおそれがあるからである。
Further, the heating time is preferably 3 minutes or less, and if it exceeds 3 minutes, recrystallization occurs and the shape recovery property deteriorates. It is preferably within 1 minute. As a second heat treatment after the above first heat treatment, there is one in which annealing is performed at a temperature not lower than the plastic strain recovery temperature of the alloy and lower than the recrystallization temperature. It causes only rearrangement of dislocations without causing this, whereby a good shape memory effect can be obtained. This heat treatment is 300-5
It is desirable to carry out at a temperature of 00 ° C for 30 minutes to 2 hours.
This is because if the temperature is lower than 0 ° C, good shape memory cannot be achieved, and if the temperature is 500 ° C or higher, recrystallization may occur.

【0017】本発明の対象とする高温作動形状記憶合金
としては、前記したように冷間加工後の最初の加熱での
As温度が350℃以上になる合金、すなわち350℃
以上の高温で作動する形状記憶合金である。現在、注目
されているのは前記したTi−Pd−X系、Ti−Au
−X系(X=Ni、Cu、W、Ta、Co、Cr、F
e)、Ti−Ni−X系(X=Zr、Hf)などがある
が、特に実用的にはTi−Pd−X系、Ti−Ni−X
系であり、その組成としては、Ti50Ni50xPdx
のxが35〜50%の合金、Ti50x Ni50Zrx
xが22〜30%の合金、Ti50-xNi50Hfx のxが
20〜30%の合金が良好な特性を示し、実用上好まし
い。
As the high temperature working shape memory alloy to which the present invention is applied, as described above, an alloy having an As temperature of 350 ° C. or higher in the first heating after cold working, that is, 350 ° C.
It is a shape memory alloy that operates at the above high temperatures. At present, the Ti-Pd-X system and the Ti-Au described above are attracting attention.
-X system (X = Ni, Cu, W, Ta, Co, Cr, F
e), Ti-Ni-X type (X = Zr, Hf), etc., but particularly practically Ti-Pd-X type, Ti-Ni-X type.
The system is Ti 50 Ni 50 −x Pd x.
X 35 to 50% of the alloy, Ti 50 - x of x Ni 50 Zr x is from 22 to 30% of the alloy, x is from 20-30% of an alloy of Ti 50-x Ni 50 Hf x is favorable properties It is shown and practically preferable.

【0018】これらの高温作動形状記憶合金は、通常の
方法によって製造できる。例えば、高周波溶解、プラズ
マ溶解、粉末冶金等によりビレットを作製し、熱間圧
延、熱間押出し等の熱間加工後、冷間の圧延、伸線等の
冷間加工して、板、条、棒、線等の材料に加工される。
また熱処理方法としても通常の加熱炉でもよく、高周波
加熱,電流焼鈍等も適用でき、焼鈍後の冷却も空冷、水
冷等が適宜用いられる。
These high temperature operating shape memory alloys can be manufactured by conventional methods. For example, a billet is produced by high frequency melting, plasma melting, powder metallurgy, etc., and after hot working such as hot rolling, hot extrusion, cold rolling, cold working such as wire drawing, a plate, a strip, It is processed into materials such as rods and wires.
Further, as the heat treatment method, an ordinary heating furnace may be used, and high frequency heating, current annealing, etc. may be applied, and cooling after annealing may be appropriately performed by air cooling, water cooling or the like.

【0019】[0019]

【実施例】以下に本発明の好ましい製造実施例を、比較
例と対比して説明する。 (実施例1)組成がTi50Ni50-xPdx で示される合
金で、x=35、40、50at%となる3組成の試料
を作製した。それぞれ30gをプラズマ溶解によって溶
製し、熱間圧延、冷間圧延を経て厚さ1.0mmの板に
加工した(冷間圧延加工率約25%)。この板より放電
加工で引張試験片(ゲージ長さ16mm)を切りだし、
表面の研磨の後、表1に示す種々の温度で熱処理した。
これらの試験片について、形状回復特性試験を行い、こ
の結果を表1併記した。
EXAMPLES Preferred production examples of the present invention will be described below in comparison with comparative examples. (Example 1) composition of an alloy represented by Ti 50 Ni 50-x Pd x , to prepare a sample of 3 compositions to be x = 35,40,50at%. 30 g of each was melted by plasma melting, hot-rolled and cold-rolled to be processed into a plate having a thickness of 1.0 mm (cold-rolling processing rate of about 25%). A tensile test piece (gauge length 16 mm) is cut from this plate by electrical discharge machining,
After polishing the surface, heat treatment was performed at various temperatures shown in Table 1.
A shape recovery characteristic test was conducted on these test pieces, and the results are also shown in Table 1.

【0020】なお評価方法は、室温で試験片に引張歪み
を4%与えた後応力を除荷して、約3%の見かけの塑性
歪みの残った試験片について、表1に示す作動試験温度
に加熱して逆変態させたとき、100%近い形状回復率
を示したものを○(形状回復率95%以上)、ほとんど
形状回復しなかったものを×(形状回復率20%以
下)、中間のものを△として示した。表1中、最初の逆
変態開始温度とは、冷間加工をかけた後に最初に加熱し
たときのマルテンサイト逆変態開始温度を示す。ここで
はこれを熱分析によって決定した。熱処理温度のうち、
Tfは1段目の熱処理温度で保持時間は1分とし、Ta
は2段目の熱処理温度で保持時間は1時間とした。
The evaluation method was as follows. The test piece with an apparent plastic strain of about 3% was left after the tensile strain was applied to the test piece at room temperature for 4% and the stress was unloaded. When the material undergoes reverse transformation by heating to 0, those exhibiting a shape recovery rate of close to 100% are indicated by ○ (shape recovery rate of 95% or more), and those exhibiting almost no shape recovery are indicated by × (shape recovery rate of 20% or less), intermediate Is shown as Δ. In Table 1, the first reverse transformation start temperature refers to the martensite reverse transformation start temperature at the time of first heating after performing cold working. This was determined here by thermal analysis. Of the heat treatment temperature,
Tf is the heat treatment temperature of the first step and the holding time is 1 minute.
Was held at the second stage heat treatment temperature for 1 hour.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかなように本発明例のNo.
1、No.5、No.6、No.9、No.10は、い
ずれも冷間加工後の最初の加熱でのAs温度が350℃
以上で、100%近い形状回復率を示すことが判る。こ
れに対して比較例のNo.2、No.3、No.4、N
o.7、No.8、No.11、No.12は、1段目
の熱処理(Tf)を施さないため、形状回復をほとんど
示さないか、形状回復率が悪いことが判る。
As is clear from Table 1, No. 1 of the present invention example.
1, No. 5, no. 6, No. 9, No. No. 10 has an As temperature of 350 ° C. in the first heating after cold working.
From the above, it can be seen that the shape recovery rate is close to 100%. On the other hand, in Comparative Example No. 2, No. 3, No. 4, N
o. 7, No. 8, No. 11, No. Since No. 12 is not subjected to the first-stage heat treatment (Tf), it can be seen that there is almost no shape recovery or the shape recovery rate is poor.

【0023】(実施例2)実施例1のPd濃度35at
%、40at%の試料について、熱処理(Tf、Ta)
の温度と時間を表2に示すごとく変化させて試料を作製
し、前記実施例1と同様に形状回復特性を調べた。この
結果を表2に併記した。
(Example 2) Pd concentration of Example 1 is 35 at
%, 40at% sample, heat treatment (Tf, Ta)
Samples were prepared by changing the temperature and time as shown in Table 2, and the shape recovery characteristics were examined in the same manner as in Example 1. The results are also shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】表2に示すように、本発明例のNo.1、
No.2、No.4、No.5は、いずれもTfが再結
晶温度を越えていても、Tfでの保持時間が2分以内で
あれば、再結晶の潜伏時間内であるので、再結晶は生じ
ることがなく、形状回復特性は良好である。これに対し
て、比較例のNo.3およびNo.6は、Tfでの保持
時間が長いため再結晶が生じ、形状回復特性が悪い。
As shown in Table 2, No. 1 of the present invention example. 1,
No. 2, No. 4, no. In No. 5, even if Tf exceeds the recrystallization temperature, if the retention time at Tf is within 2 minutes, it is within the recrystallization incubation time, so recrystallization does not occur and the shape recovery characteristic Is good. On the other hand, in Comparative Example No. 3 and No. 3 In No. 6, recrystallization occurs due to a long holding time at Tf, and the shape recovery characteristic is poor.

【0026】(実施例3)組成がTi50-xNi50Zrx
で示される合金で、x=22、30at%となる2組成
の試料を作製した。それぞれ3Kgを高周波誘導加熱溶
解によって溶製、鋳造し、熱間押出し、熱間溝ロール圧
延の後、ダイス伸線と焼鈍を繰り返して直径1.0mm
の丸線に加工した(最終冷間加工率約30%)。この線
を長さ140mmに切り出した後、直線状に固定して表
3に示す種々の温度で熱処理した。これらの試験片につ
いて、形状回復特性試験を行い、この結果を表3併記し
た。引張歪みの付与にはゲージ間長さ50mmの歪み計
を使用した。評価方法、熱処理方法、表3中の記号につ
いては、実施例1と同様である。
(Example 3) The composition was Ti 50-x Ni 50 Zr x.
Samples having two compositions, x = 22 and 30 at%, were prepared from the alloy represented by. Each 3 kg is melted by high frequency induction heating melting, cast, hot extruded, hot groove roll rolled, and then die drawn and annealed repeatedly to obtain a diameter of 1.0 mm.
Round wire (final cold working rate of about 30%). This wire was cut into a length of 140 mm, fixed linearly and heat-treated at various temperatures shown in Table 3. A shape recovery characteristic test was conducted on these test pieces, and the results are also shown in Table 3. A strain gauge with a gauge length of 50 mm was used to give tensile strain. The evaluation method, the heat treatment method, and the symbols in Table 3 are the same as in Example 1.

【0027】[0027]

【表3】 [Table 3]

【0028】表3から明らかなように本発明例のNo.
1およびNo.4はいずれも最初の加熱でのAs温度が
350℃以上で形状回復特性が100%近くを示す。こ
れに対し比較例のNo.2、No.3、No.5、N
o.6は、1段目の熱処理(Tf)を施さないため形状
回復をほとんど示さないか、形状回復率が悪い。
As is apparent from Table 3, No. 1 of the present invention example.
1 and No. In all 4, the As temperature in the first heating is 350 ° C. or higher, and the shape recovery characteristic is close to 100%. On the other hand, in Comparative Example No. 2, No. 3, No. 5, N
o. No. 6 does not show the shape recovery because the first-stage heat treatment (Tf) is not performed, or the shape recovery rate is poor.

【0029】(実施例4)実施例3のZr濃度22at
%、30at%の試料について、熱処理(Tf、Ta)
の温度と時間を表4に示すごとく変化させて試料を作製
し、前記実施例3と同様に形状回復特性を調べた。この
結果を表4に併記した。
(Example 4) Zr concentration of Example 3 is 22 at
%, 30at% sample, heat treatment (Tf, Ta)
Samples were prepared by changing the temperature and time as shown in Table 4, and the shape recovery characteristics were examined in the same manner as in Example 3. The results are also shown in Table 4.

【0030】[0030]

【表4】 [Table 4]

【0031】表4から明らかなように、本発明例のN
o.1およびNo.3は、Tfが再結晶温度を越えてい
ても、Tfでの保持時間が1分であれば、再結晶の潜伏
時間内であるので、再結晶は生じることがなく、形状回
復特性は良好である。これに対して、比較例のNo.2
およびNo.4は、Tfでの保持時間が長いため再結晶
が生じ、形状回復特性が悪い。
As is apparent from Table 4, N of the present invention example
o. 1 and No. In No. 3, even if Tf exceeds the recrystallization temperature, if the holding time at Tf is 1 minute, it is within the recrystallization incubation time, so recrystallization does not occur and the shape recovery property is good. is there. On the other hand, in Comparative Example No. Two
And No. In No. 4, since the retention time at Tf is long, recrystallization occurs and the shape recovery characteristic is poor.

【0032】(実施例5)組成がTi50-xNi50Hfx
で示される合金で、x=20,30at%となる2組成
の試料を作製した。それぞれ1Kgを粉末冶金によって
ビレットに成形した後、HIP(hot isosta
tic press)処理し、熱間押出し、熱間溝ロー
ル圧延の後、ダイス伸線と焼鈍を繰り返して直径1.0
mmの丸線に加工した(最終冷間加工率約30%)。こ
の線を長さ140mmに切り出した後、直線状に固定し
て表5に示す種々の温度で熱処理した。 これらの試験
片について、形状回復特性試験を行い、この結果を表5
併記した。試験方法、評価方法、熱処理方法、表5中の
記号については、実施例3と同様である。
Example 5 The composition is Ti 50-x Ni 50 Hf x.
Samples of two compositions with x = 20 and 30 at% were prepared from the alloy represented by. After forming 1 kg of each into a billet by powder metallurgy, HIP (hot isosta)
tic press) treatment, hot extrusion, hot groove roll rolling, and then die drawing and annealing are repeated to obtain a diameter of 1.0.
It processed into a round wire of mm (final cold working rate about 30%). This wire was cut into a length of 140 mm, fixed linearly and heat-treated at various temperatures shown in Table 5. A shape recovery characteristic test was conducted on these test pieces, and the results are shown in Table 5.
I also wrote it down. The test method, evaluation method, heat treatment method, and symbols in Table 5 are the same as in Example 3.

【0033】[0033]

【表5】 [Table 5]

【0034】表5から明らかなように本発明例のNo.
1およびNo.4はいずれも最初の加熱でのAs温度が
350℃以上で形状回復率が100%近くを示す。これ
に対して比較例のNo.2、No.3、No.5、N
o.6は、1段目の熱処理(Tf)を施さないため形状
回復をほとんど示さないか、形状回復率が悪い。
As is apparent from Table 5, No. 1 of the present invention example.
1 and No. In all 4, the As temperature in the first heating is 350 ° C. or higher and the shape recovery rate is close to 100%. On the other hand, in Comparative Example No. 2, No. 3, No. 5, N
o. No. 6 does not show the shape recovery because the first-stage heat treatment (Tf) is not performed, or the shape recovery rate is poor.

【0035】(実施例6)実施例5のHf濃度20at
%、30at%の試料について、熱処理(Tf、Ta)
の温度と時間を表6に示すごとく変化させて試料を作製
し、前記実施例5と同様に形状回復特性を調べた。この
結果を表6に併記した。
(Example 6) Hf concentration of Example 5 is 20 at
%, 30at% sample, heat treatment (Tf, Ta)
Samples were prepared by changing the temperature and time as shown in Table 6, and the shape recovery characteristics were examined in the same manner as in Example 5. The results are also shown in Table 6.

【0036】[0036]

【表6】 [Table 6]

【0037】表6から明らかなように、本発明例のN
o.1およびNo.3は、Tfが再結晶温度を越えてい
ても、Tfでの保持時間が1分であれば、再結晶の潜伏
時間内であるので、再結晶は生じることがなく、形状回
復特性は良好である。これに対して、比較例のNo.2
およびNo.4は保持時間が長いため再結晶が生じ、形
状回復特性が悪い。
As is clear from Table 6, N of the present invention example
o. 1 and No. In No. 3, even if Tf exceeds the recrystallization temperature, if the holding time at Tf is 1 minute, it is within the recrystallization incubation time, so recrystallization does not occur and the shape recovery property is good. is there. On the other hand, in Comparative Example No. Two
And No. In No. 4, since the holding time is long, recrystallization occurs and the shape recovery property is poor.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
高温作動形状記憶合金の形状回復特性の優れたものが得
られるもので、水の沸騰や油の過熱、ポリマーの融解な
どを検出し作動する部品、あるいは原子炉の冷却水の安
全弁など高温での用途が期待ができるものである。
As described above, according to the present invention,
High temperature operating shape memory alloys with excellent shape recovery characteristics can be obtained, such as parts that operate by detecting boiling of water, overheating of oil, melting of polymer, etc., or safety valves for cooling water of reactors at high temperature It can be expected to be used.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植木 達彦 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社 (72)発明者 堀川 宏 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社 (72)発明者 水戸瀬 賢悟 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Tatsuhiko Ueki 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Hiroshi Horikawa 2-6-1 1-1 Marunouchi, Chiyoda-ku, Tokyo Kawa Electric Industry Co., Ltd. (72) Inventor Kengo Mito 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高温作動形状記憶合金の冷間加工後の最
初の加熱でのマルテンサイト逆変態開始温度(As)が
350℃以上になる合金であり、該合金を冷間加工の
後、1段目の熱処理として、冷間加工後の最初の加熱で
のマルテンサイト逆変態終了温度(Af)よりも高い温
度で、かつ再結晶の潜伏時間以内の時間加熱し、その後
2段目の熱処理として、塑性歪み回復温度以上で、かつ
再結晶温度以下の温度で焼鈍を施すことを特徴とする高
温作動形状記憶合金の製造方法。
1. An alloy having a martensite reverse transformation start temperature (As) of 350 ° C. or higher in the first heating after cold working of a high temperature operating shape memory alloy, and the alloy is 1 after cold working. As the heat treatment of the second step, heating is performed at a temperature higher than the finish temperature (Af) of the martensite reverse transformation in the first heating after cold working and for a time within the latent time of recrystallization, and then as the heat treatment of the second step. A method for producing a high temperature working shape memory alloy, characterized by performing annealing at a temperature not lower than a plastic strain recovery temperature and not higher than a recrystallization temperature.
【請求項2】 前記の1段目の熱処理として、500℃
を超え合金の融点未満の温度で、かつ3分以内加熱処理
することを特徴とする請求項1記載の高温作動形状記憶
合金の製造方法。
2. The first heat treatment is 500 ° C.
The method for producing a high temperature operating shape memory alloy according to claim 1, wherein the heat treatment is performed at a temperature higher than the above and lower than the melting point of the alloy and within 3 minutes.
【請求項3】 前記の高温作動形状記憶合金の組成が、
Ti50Ni50-xPdx (数値はat%、以下同様)のx
が35〜50%の合金、Ti50-xNi50Zrx のxが2
2〜30%の合金およびTi50-xNi50Hfx のxが2
0〜30%の合金のいずれかであることを特徴とする請
求項1または2記載の高温作動形状記憶合金の製造方
法。
3. The composition of the high temperature working shape memory alloy comprises:
X of Ti 50 Ni 50-x Pd x (numerical value is at%, the same applies below)
There 35% to 50% of the alloy, x of Ti 50-x Ni 50 Zr x is 2
2-30% of the alloy and Ti 50-x Ni 50 x of Hf x is 2
The method for producing a high temperature operating shape memory alloy according to claim 1 or 2, wherein the alloy is 0 to 30%.
JP28052995A 1994-10-28 1995-10-27 Production of shape memory alloy with high-temperature phase-transferring function Pending JPH08209314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28052995A JPH08209314A (en) 1994-10-28 1995-10-27 Production of shape memory alloy with high-temperature phase-transferring function

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-265611 1994-10-28
JP26561194 1994-10-28
JP28052995A JPH08209314A (en) 1994-10-28 1995-10-27 Production of shape memory alloy with high-temperature phase-transferring function

Publications (1)

Publication Number Publication Date
JPH08209314A true JPH08209314A (en) 1996-08-13

Family

ID=26547068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28052995A Pending JPH08209314A (en) 1994-10-28 1995-10-27 Production of shape memory alloy with high-temperature phase-transferring function

Country Status (1)

Country Link
JP (1) JPH08209314A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298876C (en) * 2005-01-13 2007-02-07 四川大学 Method for preparing NiTiHf shape memory alloy film by cold rolling ultra-thin laminated alloy foil
JP2009279633A (en) * 2008-05-26 2009-12-03 Nippon Steel Corp Method for manufacturing rail fishplate for connection without expansion gap
CN103045979A (en) * 2012-12-28 2013-04-17 河北省电力公司电力科学研究院 Method for preparing twin crystals in TA1 tissues
JP2018141207A (en) * 2017-02-28 2018-09-13 国立研究開発法人物質・材料研究機構 High temperature shape memory alloy and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298876C (en) * 2005-01-13 2007-02-07 四川大学 Method for preparing NiTiHf shape memory alloy film by cold rolling ultra-thin laminated alloy foil
JP2009279633A (en) * 2008-05-26 2009-12-03 Nippon Steel Corp Method for manufacturing rail fishplate for connection without expansion gap
CN103045979A (en) * 2012-12-28 2013-04-17 河北省电力公司电力科学研究院 Method for preparing twin crystals in TA1 tissues
JP2018141207A (en) * 2017-02-28 2018-09-13 国立研究開発法人物質・材料研究機構 High temperature shape memory alloy and method for producing the same

Similar Documents

Publication Publication Date Title
US5641364A (en) Method of manufacturing high-temperature shape memory alloys
JP5435333B2 (en) Manufacturing method of α + β type titanium alloy thin plate and manufacturing method of α + β type titanium alloy thin plate coil
WO2012032610A1 (en) Titanium material
JP4562830B2 (en) Manufacturing method of β titanium alloy fine wire
JPH01279736A (en) Heat treatment for beta titanium alloy stock
JP4756974B2 (en) Ni3 (Si, Ti) -based foil and method for producing the same
JPS6324048A (en) Production of zircaloy 2 or zircaloy 4 strip in partially recrystallized state and strip produced
JPS62149859A (en) Production of beta type titanium alloy wire
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JPH08209314A (en) Production of shape memory alloy with high-temperature phase-transferring function
JP4061257B2 (en) Titanium alloy for heating wire and method for producing the same
Xu et al. The effect of annealing and cold-drawing on the super-elasticity of the Ni-Ti shape memory alloy wire
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
JPS6356302B2 (en)
EP3577247B1 (en) A process for producing copper-nickel-tin alloys
JP5382518B2 (en) Titanium material
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
JP3344946B2 (en) Functionally graded alloy and method for producing the same
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
JP2706273B2 (en) Superelastic Ni-Ti-Cu alloy and method for producing the same
JPH0266142A (en) Manufacture of plate stock, bar stock, and wire rod of alpha plus beta titanium alloy
JPH101763A (en) Production of nickel-titanium alloy material
Ock et al. Effect of warm-working rate on shape memory properties in Ti–49.7 at.% Ni alloy
KR20190076749A (en) Method of processing titanium alloys
JPH09176807A (en) Production of shape memory alloy material