JPS6356302B2 - - Google Patents

Info

Publication number
JPS6356302B2
JPS6356302B2 JP6950480A JP6950480A JPS6356302B2 JP S6356302 B2 JPS6356302 B2 JP S6356302B2 JP 6950480 A JP6950480 A JP 6950480A JP 6950480 A JP6950480 A JP 6950480A JP S6356302 B2 JPS6356302 B2 JP S6356302B2
Authority
JP
Japan
Prior art keywords
copper
cold working
weight
based alloy
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6950480A
Other languages
Japanese (ja)
Other versions
JPS56166364A (en
Inventor
Kazuo Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6950480A priority Critical patent/JPS56166364A/en
Publication of JPS56166364A publication Critical patent/JPS56166364A/en
Publication of JPS6356302B2 publication Critical patent/JPS6356302B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は銅基合金の冷間加工方法に係り、詳し
くのべると形状記憶効果、超弾性挙動あるいは防
振効果などの機能を有する銅基合金の冷間加工方
法に関するものである。 近年Cu―Zn、Cu―Zn―Al、Cu―Alあるいは
Cu―Al―Niなどのいわゆるβ黄銅型銅基合金に
おいて、そのマルテンサイト変態に伴なう現象と
して形状記憶効果や超弾性挙動あるいは防振効果
などの機能を有することはよく知られている。 そしてこれら銅基合金はTi―Ni合金などに比
べて原料コストが安価なだけでなく溶解や熱処理
も比較的容易なため、工業的な利用が望まれてい
るのであるが、冷間加工性に乏しく所望形状に加
工し難いという欠点を有しているためにその利用
が今一つ進んでいない。 このため従来これらの合金は熱間押出しや熱間
圧延加工により成形したのち、時には鋳造したま
まの合金に対し、最終的に高温から焼入れる(β
化処理)ことにより上記の機能を付与して用いら
れて来た。 しかしながら、このように加工方法が熱間加工
に限定されると、コイルに加工するための細物線
材や薄物テープを得るには潤滑剤の問題や加熱設
備、表面酸化皮膜の問題さらには寸法精度の問題
などがあつて工業的には多くの難点となつてい
る。 本発明はこのような銅基合金を用いてしかも上
記のような問題点を解消する方法として検討した
ものであつて、冷間伸線による細物、薄物などの
形状に加工するのに有効な冷間加工方法を提供し
ようとするものである。 即ち、本発明はβ黄銅型銅基合金を冷間加工す
るに先立つて最終的に所望形状の合金に対して形
状記憶効果、超弾性挙動あるいは防振効果などの
機能付与のための熱処理とは別に合金をβ相構造
を有する温度から急冷処理することを特徴とする
冷間加工方法である。 上記において冷間加工に先立つβ相構造からの
急冷処理によつて合金は冷間加工を行なおうとす
る温度(通常室温付近)において熱的に安定なマ
ンテンサイト組織になつている方が好ましいが、
冷間加工度が小さい場合には、加工時に応力誘起
マンテンサイト変態を起すような状態であつても
差支えない。 また使用目的によつて室温付近ではマンテンサ
イト組織となりにくい組成の合金の場合には、例
えば液体窒素などにより合金を強制的に冷却し、
マンテンサイト組織とした状態で冷間加工すれば
よい。 本発明方法において試料の冷間加工度が大きい
場合などにはβ相構造を有する温度からの急冷処
理を冷間加工の間に複数回行つても差支えない。 本発明はβ黄銅型銅基合金が母相状態では脆く
て冷間加工が非常に困難であるものを熱処理によ
り延性に富むマンテンサイト組織にして加工する
ものであるので容易に冷間加工が可能となり、工
業的な製品加工に有効な方法である。 以下実施例により本発明を詳細に説明する。 実施例 1 形状記憶効果を有するコイルバネを作製する目
的をもつて (A) Cu―23.3%Zn―4.8%Al合金と (B) Cu―28.0%Zn―2.9%Al合金の2種類のCu合
金を溶製し、800℃で10時間の均質化焼鈍した
のち、800℃の熱間押出しにて8mmφの棒状と
し、次いでこの棒状の表面酸化皮膜を酸洗いに
て除去した。 なお夫々の合金の変態温度(Ms点で代表する)
はおおよそ(A)が+80℃(B)が−30℃であつた。 これらの棒材を用いて第1表に示す方法で冷間
伸線を試み、その加工性を調べたところ第1表の
通りであつた。
The present invention relates to a method for cold working copper-based alloys, and more specifically, to a method for cold-working copper-based alloys having functions such as shape memory effect, superelastic behavior, and vibration damping effect. In recent years, Cu-Zn, Cu-Zn-Al, Cu-Al or
It is well known that so-called β-brass copper-based alloys such as Cu--Al--Ni have functions such as shape memory effect, superelastic behavior, and vibration damping effect as phenomena associated with their martensitic transformation. These copper-based alloys not only have lower raw material costs than Ti-Ni alloys, but also are relatively easy to melt and heat treat, making them desirable for industrial use.However, they have poor cold workability. Its use has not progressed at all because it has the drawback of being scarce and difficult to process into a desired shape. For this reason, these alloys have traditionally been formed by hot extrusion or hot rolling, and sometimes the as-cast alloys are finally quenched at high temperatures (β
It has been used with the above functions imparted by oxidation processing). However, when the processing method is limited to hot processing, obtaining thin wire rods and thin tapes for processing into coils requires problems with lubricants, heating equipment, surface oxide films, and dimensional accuracy. There are many problems in the industrial field, such as the following. The present invention was developed as a method for solving the above-mentioned problems using such a copper-based alloy. It is intended to provide a cold working method. That is, the present invention provides heat treatment to impart functions such as shape memory effect, superelastic behavior, or vibration damping effect to the alloy in the final desired shape before cold working the β-brass type copper-based alloy. This is a cold working method characterized by rapidly cooling an alloy from a temperature at which it has a β-phase structure. In the above, it is preferable that the alloy undergoes rapid cooling treatment from the β-phase structure prior to cold working to form a mantensite structure that is thermally stable at the temperature at which cold working is to be performed (usually around room temperature). ,
When the degree of cold working is small, there is no problem even if the state is such that stress-induced mantensite transformation occurs during working. Depending on the purpose of use, if the alloy has a composition that does not easily form a mantensite structure near room temperature, the alloy may be forcibly cooled using liquid nitrogen, for example.
It is sufficient to cold-work the material into a mantensite structure. In the method of the present invention, if the degree of cold working of the sample is large, quenching treatment from a temperature having a β phase structure may be performed multiple times during the cold working. In the present invention, β-brass type copper-based alloy is brittle in the matrix state and very difficult to cold-work, but it is processed into a mantensite structure with high ductility through heat treatment, so cold-working can be easily performed. Therefore, it is an effective method for industrial product processing. The present invention will be explained in detail below with reference to Examples. Example 1 Two types of Cu alloys, (A) Cu-23.3%Zn-4.8%Al alloy and (B) Cu-28.0%Zn-2.9%Al alloy, were used for the purpose of producing a coil spring with shape memory effect. After melting and homogenizing annealing at 800°C for 10 hours, it was hot extruded at 800°C to form a rod shape of 8 mmφ, and then the oxide film on the surface of this rod shape was removed by pickling. Furthermore, the transformation temperature of each alloy (represented by the Ms point)
(A) was approximately +80°C (B) was -30°C. Using these bars, cold wire drawing was attempted using the method shown in Table 1, and the workability was examined, and the results were as shown in Table 1.

【表】 上表からCu―Zn―Al合金を用いてコイル状に
加工する目的で線材に冷間伸線加工を行なうには
本発明の方法によるのが最も有効であることが認
められた。 なお得られた1.0mmφの材を使用して直径25mm
φのコイルを作成し、コイルバネを圧縮した状態
に固定して700℃から氷水中に焼入れたところコ
イルバネはそれぞれの変態温度近傍の温度範囲の
上下の温度の間において形状記憶効果を示した。 実施例 2 防振効果や超弾性挙動あるいは形状記憶効果を
有する板バネを作製する目的で高周波真空溶解炉
にて (C) Cu―14.3%Al合金と (D) Cu―14.1%Al―3.0%Ni合金 の夫々を30mmφに溶解鋳造し、950℃にて5時間
の均質化焼鈍をしたのち、950℃にて熱間スウエ
ージを行なつて12mmφの棒材を得た。 この棒材をさらに950℃にて熱間圧延して2mmt
のテープ状とし、この段階で酸洗いにて棒状の表
面酸化皮膜を除去した。 次いでこれを第2表に示す種々の加工方法によ
つて0.5mmtの条材とし、所望の板バネなどを得
た。 その加工性や精度さらには加工後の機能は第2
表の通りであつた。
[Table] From the above table, it was recognized that the method of the present invention is the most effective method for cold drawing a wire rod using a Cu-Zn-Al alloy for the purpose of processing it into a coil shape. In addition, using the obtained 1.0mmφ material, the diameter is 25mm.
When a coil of φ was made, the coil spring was fixed in a compressed state, and quenched in ice water at 700℃, the coil spring showed a shape memory effect between the upper and lower temperatures of the temperature range near each transformation temperature. Example 2 (C) Cu-14.3% Al alloy and (D) Cu-14.1% Al-3.0% were prepared in a high-frequency vacuum melting furnace for the purpose of producing a leaf spring with vibration damping effect, superelastic behavior, or shape memory effect. Each of the Ni alloys was melted and cast to a diameter of 30 mm, homogenized annealed at 950°C for 5 hours, and then hot swaged at 950°C to obtain a bar of 12 mm diameter. This bar was further hot rolled at 950℃ to 2mm t.
It was made into a tape shape, and at this stage, the rod-shaped surface oxide film was removed by pickling. Next, this was made into a 0.5 mm t strip material by various processing methods shown in Table 2 to obtain a desired leaf spring or the like. Its workability, accuracy, and post-processing functionality are second to none.
It was as shown in the table.

【表】 にて行つた。
上表から本発明の方法は製品酸化皮膜を殆んど
有しない寸法精度の良好な機能合金を得るのに有
効な方法であることが認められた。 以上詳述の通り本発明はβ黄銅型銅基合金を冷
間加工するに当つて該合金をβ相構造を有する温
度から急冷処理し、次いで冷間加工することを特
徴とする方法であつて、合金が延性を有した状態
で冷間加工されるための細物線材や薄物条件など
の加工において熱間加工のような潤滑剤の問題や
製品寸法精度、表面酸化皮膜の問題を有すること
なく工業的に容易に冷間加工しうる方法を提供す
るものであり、形状記憶コイル、超弾性バネ、防
振材などの製法に適用して多大の効果を有するも
のである。
I went to [Table].
From the above table, it was confirmed that the method of the present invention is an effective method for obtaining a functional alloy with almost no oxide film and good dimensional accuracy. As detailed above, the present invention is a method for cold working a β-brass type copper-based alloy, which is characterized in that the alloy is rapidly cooled from a temperature at which it has a β-phase structure, and then cold worked. , since the alloy is cold-worked in a ductile state, it does not have the problems of lubricants, product dimensional accuracy, and surface oxide film, as in hot working, when processing thin wire rods and thin materials. The present invention provides a method that can be industrially easily cold-worked, and has great effects when applied to manufacturing methods for shape memory coils, superelastic springs, vibration damping materials, etc.

Claims (1)

【特許請求の範囲】 1 β黄銅型銅基合金をβ相構造を有する温度か
ら急冷処理し、次いで冷間加工を施こすことを特
徴とする銅基合金の冷間加工方法。 2 銅基合金はその組成中に少くともZn 3〜50
重量%を含有することを特徴とする特許請求の範
囲第1項記載の銅基合金の冷間加工方法。 3 銅基合金はその組成中に少くともAl 2〜15
重量%を含有することを特徴とする特許請求の範
囲第1項記載の銅基合金の冷間加工方法。 4 銅基合金はその組成中に少くともZn 10〜40
重量%およびAl 10重量%以下を含有することを
特徴とする特許請求の範囲第1項記載の銅基合金
の冷間加工方法。 5 銅基合金がその組成中に少くともAl 10〜15
重量%およびNi 10重量%以下を含有することを
特徴とする特許請求の範囲第1項記載の銅基合金
の冷間加工方法。 6 冷間加工前の合金構造が冷間加工温度におい
てマルテンサイト組織であることを特徴とする特
許請求の範囲第1項ないし第5項のいずれかに記
載の銅基合金の冷間加工方法。 7 冷間加工を液体窒素などの強制冷却温度下に
て行うことを特徴とする特許請求の範囲第1項な
いし第6項のいずれかに記載の銅基合金の冷間加
工方法。
[Scope of Claims] 1. A method for cold working copper-based alloys, which comprises rapidly cooling a β-brass-type copper-based alloy from a temperature at which it has a β-phase structure, and then subjecting it to cold working. 2 Copper-based alloys contain at least 3 to 50 Zn in their composition.
% by weight of a copper-based alloy according to claim 1. 3 Copper-based alloys contain at least Al2-15 in their composition.
% by weight of a copper-based alloy according to claim 1. 4 Copper-based alloys contain at least 10 to 40 Zn in their composition.
The method for cold working a copper-based alloy according to claim 1, characterized in that it contains 10% by weight or less of Al by weight. 5. The copper-based alloy contains at least 10-15 Al in its composition.
% by weight and 10% by weight or less of Ni. 6. The method for cold working a copper-based alloy according to any one of claims 1 to 5, wherein the alloy structure before cold working is a martensitic structure at the cold working temperature. 7. A method for cold working a copper-based alloy according to any one of claims 1 to 6, characterized in that the cold working is performed under a forced cooling temperature of liquid nitrogen or the like.
JP6950480A 1980-05-24 1980-05-24 Cold working method for copper base alloy Granted JPS56166364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6950480A JPS56166364A (en) 1980-05-24 1980-05-24 Cold working method for copper base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6950480A JPS56166364A (en) 1980-05-24 1980-05-24 Cold working method for copper base alloy

Publications (2)

Publication Number Publication Date
JPS56166364A JPS56166364A (en) 1981-12-21
JPS6356302B2 true JPS6356302B2 (en) 1988-11-08

Family

ID=13404627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6950480A Granted JPS56166364A (en) 1980-05-24 1980-05-24 Cold working method for copper base alloy

Country Status (1)

Country Link
JP (1) JPS56166364A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8103612A (en) * 1981-07-30 1983-02-16 Leuven Res & Dev Vzw BETA ALLOYS WITH IMPROVED PROPERTIES.
JPS58189346A (en) * 1982-04-26 1983-11-05 Furukawa Electric Co Ltd:The Damping copper alloy for acoustic use
DE4013481A1 (en) * 1990-04-27 1991-10-31 Teves Gmbh Alfred VALVE BLOCK, ESPECIALLY FOR SLIP-CONTROLLED BRAKE SYSTEMS
DE10234542A1 (en) * 2002-07-30 2004-03-04 Continental Teves Ag & Co. Ohg Sealing sleeve with a middle support rib
FI118328B (en) * 2005-02-18 2007-10-15 Luvata Oy Use of alloy
CN110777310A (en) * 2019-11-25 2020-02-11 盐城璟盛电线电缆有限公司 Copper wire drawing and annealing method

Also Published As

Publication number Publication date
JPS56166364A (en) 1981-12-21

Similar Documents

Publication Publication Date Title
US5641364A (en) Method of manufacturing high-temperature shape memory alloys
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
JPWO2004022805A1 (en) High strength copper alloy
US4142918A (en) Method for making fine-grained Cu-Ni-Sn alloys
JP3335224B2 (en) Method for producing high formability copper-based shape memory alloy
US4406712A (en) Cu-Ni-Sn Alloy processing
JPH06264202A (en) Production of high strength copper alloy
JP5610789B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JPS6356302B2 (en)
JPS6132386B2 (en)
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JPH0138867B2 (en)
JPS61119660A (en) Manufacture of copper alloy having high strength and electric conductivity
US4715910A (en) Low cost connector alloy
US3287180A (en) Method of fabricating copper base alloy
US3019102A (en) Copper-zirconium-hafnium alloys
JP6541583B2 (en) Copper alloy material and copper alloy pipe
JPS6328975B2 (en)
JPH0314896B2 (en)
US3653980A (en) Method of obtaining exceptional formability in aluminum bronze alloys
JPS6120618A (en) Manufacture of rod and wire rod of shape memory alloy
US3656945A (en) High strength aluminum bronze alloy
JPH03285053A (en) Production of copper alloy for electronic equipment
US4067753A (en) Process for the manufacture of shaped parts from multi-component silver-copper alloys
JPH08209314A (en) Production of shape memory alloy with high-temperature phase-transferring function