JP4562830B2 - Manufacturing method of β titanium alloy fine wire - Google Patents

Manufacturing method of β titanium alloy fine wire Download PDF

Info

Publication number
JP4562830B2
JP4562830B2 JP25662599A JP25662599A JP4562830B2 JP 4562830 B2 JP4562830 B2 JP 4562830B2 JP 25662599 A JP25662599 A JP 25662599A JP 25662599 A JP25662599 A JP 25662599A JP 4562830 B2 JP4562830 B2 JP 4562830B2
Authority
JP
Japan
Prior art keywords
titanium alloy
wire
treatment
fine wire
aging treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25662599A
Other languages
Japanese (ja)
Other versions
JP2001081537A (en
Inventor
伸 住本
秀樹 山本
一郎 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSEN CO.,LTD
Original Assignee
TOKUSEN CO.,LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSEN CO.,LTD filed Critical TOKUSEN CO.,LTD
Priority to JP25662599A priority Critical patent/JP4562830B2/en
Priority to US09/655,949 priority patent/US6402859B1/en
Priority to EP00307786A priority patent/EP1083243A3/en
Publication of JP2001081537A publication Critical patent/JP2001081537A/en
Priority to US10/120,716 priority patent/US6800153B2/en
Application granted granted Critical
Publication of JP4562830B2 publication Critical patent/JP4562830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高強度のβチタン合金細線の製造方法に関し、特に、通信ケーブル用テンションメンバー、導電検査用のプローブカードピン、金属製釣り糸等の真直性を要求される金属細線として好適に用いることができるβチタン合金細線の製造方法に関する。
【0002】
【従来の技術および背景】
チタンは常温で六方最密構造(hcp、α組織)であるが、1158K以上では同素変態して体心立方構造(bcc、β組織)になる。チタンの密度は鉄の約60%であり、比強度(耐力/密度)が金属の中で最も高く、ヤング率と熱膨脹係数はステンレス鋼の約半分であり、比熱と電気および熱伝導度はAl合金やMg合金に比べて著しく低く、化学的性質においては酸化性環境に対して完全に耐食性であり、塩素イオンに対しても耐食性が優れている等の数々の優れた特性を有しているので、冷却海水が流れる火力および原子力発電所の熱交換器用伝熱管、海水淡水化装置、各種電解用電極、石油精製プラントなど、各種の工業分野で広く使用されている。
【0003】
係るチタン基の2元系平衡状態図は、α安定型、β安定型、β共析型、α−β全率固溶体型の4種類に分類され、α相領域を高温側に拡げてα−β変態点を上昇させるα安定化元素(例えば、Al、Snなど)や、β相領域を低温側に拡げてα−β変態点を低下させるβ安定化元素(例えば、V、Crなど)や、相安定性に影響を及ぼさない中性的元素(例えば、Zr、Hfなど)の組合せによって得られるTi合金は、常温のミクロ組織を構成する相の結晶構造により、αTi合金(hcp)、α+β型Ti合金(hcp+bcc)、βTi合金(bcc)に大別できる。
【0004】
αTi合金は、チタンにα安定化元素を添加して固溶硬化させた単相合金で、添加元素としてはチタンに対して大きな固溶度をもち、しかも、固溶強化能が大きいアルミニウムが主に使われているので、高温での耐酸化性が優れているが、加工性がやや劣っている。α+β型Ti合金は、α安定化元素とβ安定化元素を複合添加することにより、常温でα相とβ相を共存させた2相合金であり、代表的なα+β型Ti合金であるTi−6Al−4Vは高比強度と高靱性を有するが、熱間加工において加工条件を十分に制御しないと脆性を示すことがある。
【0005】
これらに対してβTi合金は、高温β相を常温で完全に残留させた単相合金であり、冷間加工性に優れ、熱処理により優れた強度と靱性が得られるので、近年その研究が活発に行われている。例えば、Ti−15V−3Cr−3Sn−3Alでは、冷間圧延および溶体化処理条件を最適化することにより、1.9GPaに近い引張り強さと10%の伸びが得られたとの報告がある。そして、特開平11−71621号公報には、時効処理前にβ相の加工集合組織を形成し、時効処理で析出するα相の変態集合組織を制御することにより強度と延性を高めたβ型チタン合金棒線に関する発明として、「β型チタン合金棒線を、β変態点超の温度で溶体化処理或いは熱間圧延した後、減面率30%以上の冷間加工を加え、続いてβ変態点−100℃〜β変態点−10℃の温度域で焼鈍した後、所定の形状に成形し、時効処理することを特徴とする高強度・高延性β型チタン合金棒線の製造方法」が開示されている(以下「従来のβチタン合金棒線の製造方法」という)。
【0006】
【発明が解決しようとする課題】
従来のβチタン合金棒線の製造方法によれば、減面率30%以上の冷間加工を行うことによりβ相の加工集合組織を形成し、次いで、β変態点−100℃〜β変態点−10℃の温度域での焼鈍により、再結晶を抑制して加工集合組織のランダム化を避けて加工硬化した棒線を軟化し、所定形状に成形した後、時効処理を行うことによりβ相中に微細なα相を析出させて強度を高めることができる。
【0007】
このように、従来のβチタン合金棒線の製造方法によれば、β型チタン合金棒線の強度を高めるとともに延性を増すことは可能であるが、真直性(まっすぐである特性)を得ることは困難である。例えば、細径化したβ型チタン合金ワイヤを、通常の形状矯正ローラやロータリー矯正器に通してもその真直性を高めることはできない。というのは、β型チタン合金ワイヤはヤング率が小さく、ローラによる塑性変形で真直加工(まっすぐになるように機械加工すること)を施しても、その効果が期待できないからである。
【0008】
従って、通信ケーブル用テンションメンバー、導電検査用のプローブカードピン、金属製釣り糸等の真直性が要求される金属細線の製造に従来のβチタン合金棒線の製造方法を適用することは困難である。
【0009】
本発明は従来の技術の有するこのような問題点に鑑みてなされたものであって、その目的は、高強度且つ真直性が良好なβチタン合金細線の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明は、βチタン合金線の伸線加工後に二段階の時効処理を行うこととしている。すなわち、一段目の時効処理によりβ相中に微細なα相を析出させて強度を高めるようにしている。そして、二段目の時効処理で適正な張力を付与しながら熱処理を行うことにより、伸線加工に伴う歪みを除去して真直性を向上させるようにしている。
【0011】
【発明の実施の形態】
すなわち、本発明の要旨は、βチタン合金線を冷間伸線加工により細径化した後、熱処理を行うβチタン合金細線の製造方法において、熱処理が析出強化のための第一時効処理と加工歪み除去のための第二時効処理からなり、第二時効処理においてβチタン合金細線に張力を付与しつつ熱処理を行うことを特徴とするβチタン合金細線の製造方法にある。
【0012】
本発明によれば、第一時効処理によりβ相中に微細なα相を多量に析出させて強度を高め、第二時効処理で適正な張力を付与しながら熱処理を行うことにより、伸線加工に伴う歪みを除去して真直性を向上させることができる。この場合、冷間伸線前にβ変態点超の温度で溶体化処理を行い、α相のない状態にすることにより冷間加工性を良好にして冷間伸線を容易にすると共に冷間伸線でのβ相の加工集合組織をより均一に形成することができる。
【0013】
βチタンは加工性に優れているが、一方、凝着しやすい金属であり、伸線加工においてダイス表面に対する凝着を避けるためには、伸線加工前に適度の酸化被膜をβチタン合金線に施すことが好ましい。
【0014】
伸線加工は、カセットローラダイスによる伸線でも、孔ダイスによる伸線でもよい。
【0015】
第一時効処理の処理温度は、425〜650℃の範囲が好ましい。というのは、650℃を超えると、過時効が起き、強度が低下するので好ましくなく、425℃未満では、長時間時効処理を行っても微細なα相を析出させることができないからである。また、第一時効処理の処理時間は、線径によって適宜設定すればよい。例えば、線径が10μmの場合なら、1分〜数分で十分であるし、線径が1mmの場合は、4〜48時間の範囲で設定することができる。この場合、処理時間があまりに短いと微細なα相を多量に析出させることができず、逆に処理時間が長すぎても、α相の析出量はそれほど増えず、効率的でない。
【0016】
第二時効処理の温度は、300℃に満たない場合、張力を付与しても加工歪みを除去できず、真直性を向上することはできない。一方、600℃を超えると、溶体化等の金属組織の変化が起こり、延性が低下するなどの弊害が現れるので、好ましくない。この点で、第二時効処理の温度は、300〜600℃が好ましい。
【0017】
第二時効処理の時間が短すぎると、張力を付与しても加工歪みを除去できず、真直性を向上することはできない。逆に、あまりに時間を長くしても、効果が変わらないばかりか、製造能率を低下させるだけである。この点で、第二時効処理の時間は、3〜10分程度が好ましい。
【0018】
第二時効処理時にβチタン合金細線に付与する張力は該細線の破断荷重の0.1〜30%が好ましい。0.1%未満であると形状矯正(真直性改善)効果が小さく、30%を超えるとチタン細線が伸びる恐れがあるからである。さらに、第二時効処理時にβチタン合金細線に付与する張力は、その細線の破断荷重の0.5〜10%がより好ましい。というのは、0.5%未満に張力調整することは機械構造的な制約が厳しすぎて現実の工業設備として経済的でなくなるからである。また、チタン細線の巻取張力変動を考慮すると、瞬間最大張力が設定張力よりかなり大きくなることがあるので、設定張力は破断荷重の10%を超えないようにするのが現実的である。
【0019】
通信ケーブル用テンションメンバー、導電検査用のプローブカードピン、金属製釣り糸等の金属細線の線径は、0.01〜1.0mmのものが多く、線径0.01〜1.0mmのβチタン合金細線はこれらの用途の金属細線として好適に用いることができる。とりわけ、プローブカードピンは、後記する真直度の要求レベルが0.3mm/50mm以下と極めて厳しいので、本発明の方法で製造することができる真直性に優れたβチタン合金細線を好適に用いることができる。
【0020】
【実施例】
以下に本発明の実施例を比較例とともに説明する。850℃で10分間溶体化処理した直径3.0mmのTi−15V−3Cr−3Sn−3Al(β変態点は約760℃)のβチタン合金線を、700℃の酸素含有雰囲気下で加熱してそのβチタン合金線に酸化被膜を形成し、次いで、孔ダイスを用いて、0.3〜1.0mmまで伸線した。その後、このβチタン合金細線を電気ヒーターを熱源とするバッチ形式の電気炉(図示せず)に挿入して、Arガス雰囲気で第一時効処理を施した。さらに、このβチタン合金細線を、電気ヒーターを熱源とする連続熱処理形式の電気炉(図示せず)に挿入して、Arガス雰囲気で第二時効処理を施しながら、図1に示すように、電気炉の外に配置したガイドダイス1の後方のダンサー2により第二時効処理中のβチタン合金細線Wに付与する張力を調整しつつ、引取キャプスタン3を介して後続の巻取機(図示せず)に巻き取った。
【0021】
ダンサー2は固定ローラ2aと可動ローラ2bとからなり、張力調整は可動ローラ2bの上下運動により行う。すなわち、可動ローラ2bが下がると張力が増大し、逆に可動ローラ2bが上がると張力が減少する。βチタン合金細線Wの張力値はロードセル等の荷重測定機構によって測定する。そして、荷重測定機構によって測定した実測値を電気信号に置き換えて制御機器にフィードバックし、この実測値とあらかじめ入力した設定張力値とを比較演算し、演算した修正値を電気信号に置き換えてダンサー2に送り、可動ローラ2bを所定量移動させることにより、βチタン合金細線Wに所望の設定張力を連続的に与えることができる。
【0022】
また、引取キャプスタン3は、駆動ローラ3aと従動ローラ3bとからなり、駆動ローラ3aによりβチタン合金細線Wを引き取るものである。
【0023】
各実施例および比較例の線径、破断荷重、第一時効処理の温度および時間、第二時効処理の温度と時間と張力、および真直度を以下の表1に示す。なお、真直度は、βチタン合金細線を単位長さに切断し、いわゆる「反り」を計測することによって評価した。ここでいう反りとは、単位長さに切断したβチタン合金細線の両端を結ぶ直線から該細線の中点までの距離をいう。この真直度は、本発明の方法で製造したβチタン合金細線を適用する技術分野においては、0.3mm/50mm以下が好ましい範囲である。
【0024】
【表1】

Figure 0004562830
【0025】
表1に示すように、本実施例1〜6のβチタン合金細線は、いずれも真直度の数値が低く、本発明の方法で得られるβチタン合金細線を適用する技術分野の金属細線として好適に用いることができる。
【0026】
しかし、比較例1は、第二時効処理の張力が小さすぎるため、真直度が悪い。
【0027】
また、比較例2は、第二時効処理の時間が短かすぎるため、真直度が悪い。
【0028】
さらに、比較例3は、第二時効処理の温度が低すぎるため、真直度が悪い。
【0029】
そして、比較例4は、第二時効処理を行わなかったため、真直度が極めて悪い。
【0030】
【発明の効果】
本発明は上記のとおり構成されているので、以下の効果を奏する。
(1)請求項1記載の発明によれば、高強度且つ真直性が良好なβチタン合金細線の製造方法を提供することができる。
(2)請求項2記載の発明によれば、真直性を改良する具体的な時効処理条件が示される。
(3)請求項3記載の発明によれば、通信ケーブル用テンションメンバー、導電検査用のプローブカードピン、金属製釣り糸等の金属細線に好適に用いることができるβチタン合金細線が得られる。
【図面の簡単な説明】
【図1】第二時効処理を行う電気炉の外部に配置した張力付与機構の概略構成図である。
【符号の説明】
1…ガイドダイス
2…ダンサー
3…引取キャプスタン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-strength β-titanium alloy thin wire, and in particular, it is suitably used as a thin metal wire that requires straightness, such as a tension member for a communication cable, a probe card pin for conductivity inspection, and a metal fishing line. The present invention relates to a method for producing a β-titanium alloy fine wire.
[0002]
[Background Art and Background]
Titanium has a hexagonal close-packed structure (hcp, α structure) at room temperature, but at 1158K or more, it undergoes an allotropic transformation to a body-centered cubic structure (bcc, β structure). The density of titanium is about 60% of that of iron, the specific strength (yield strength / density) is the highest among metals, Young's modulus and thermal expansion coefficient are about half that of stainless steel, and the specific heat, electrical and thermal conductivity are Al. It is extremely low compared to alloys and Mg alloys, and has a number of excellent properties in terms of chemical properties such as being completely corrosion resistant to oxidizing environments and excellent corrosion resistance to chlorine ions. Therefore, it is widely used in various industrial fields such as thermal power through which cooled seawater flows and heat transfer tubes for heat exchangers in nuclear power plants, seawater desalination devices, various electrolysis electrodes, and oil refineries.
[0003]
Binary system equilibrium diagrams of such titanium groups are classified into four types, α-stable, β-stable, β-eutectoid, and α-β total solid solution types. an α-stabilizing element (for example, Al, Sn, etc.) that raises the β-transformation point, a β-stabilizing element (for example, V, Cr, etc.) that lowers the α-β transformation point by expanding the β-phase region to the low temperature side, Ti alloys obtained by a combination of neutral elements (for example, Zr, Hf, etc.) that do not affect the phase stability are obtained from αTi alloys (hcp), α + β depending on the crystal structure of the phase constituting the microstructure at room temperature. Type Ti alloy (hcp + bcc) and βTi alloy (bcc).
[0004]
An αTi alloy is a single-phase alloy that is solid solution hardened by adding an α-stabilizing element to titanium. As the additive element, aluminum that has a large solid solubility with respect to titanium and has a large solid solution strengthening ability is mainly used. Therefore, it has excellent oxidation resistance at high temperatures, but its workability is slightly inferior. The α + β type Ti alloy is a two-phase alloy in which an α phase and a β phase coexist at room temperature by adding an α stabilizing element and a β stabilizing element in combination. 6Al-4V has high specific strength and high toughness, but may show brittleness if the processing conditions are not sufficiently controlled in hot working.
[0005]
On the other hand, βTi alloy is a single-phase alloy in which the high-temperature β-phase is completely left at room temperature, and it has excellent cold workability and excellent strength and toughness can be obtained by heat treatment. Has been done. For example, in Ti-15V-3Cr-3Sn-3Al, there is a report that a tensile strength close to 1.9 GPa and an elongation of 10% were obtained by optimizing cold rolling and solution treatment conditions. In JP-A-11-71621, a β-phase processed texture is formed before the aging treatment, and a β-type having enhanced strength and ductility by controlling the transformation texture of the α-phase precipitated by the aging treatment. As an invention related to a titanium alloy bar wire, “β-type titanium alloy bar wire is subjected to a solution treatment or hot rolling at a temperature exceeding the β transformation point, followed by cold working with a surface reduction rate of 30% or more, followed by β A method for producing a high-strength, high-ductility β-type titanium alloy rod characterized by annealing in a temperature range of −100 ° C. to β-transformation temperature −10 ° C., forming into a predetermined shape, and aging treatment ” (Hereinafter referred to as “conventional method for producing a β-titanium alloy rod”).
[0006]
[Problems to be solved by the invention]
According to the conventional method for manufacturing a β titanium alloy bar wire, a β-phase processed texture is formed by performing cold working with a reduction in area of 30% or more, and then a β transformation point of −100 ° C. to a β transformation point. By annealing in the temperature range of −10 ° C., the recrystallization is suppressed and the work-hardened bar wire is softened by avoiding the randomization of the work texture, and formed into a predetermined shape, and then subjected to an aging treatment, thereby performing the β phase. It is possible to increase the strength by precipitating a fine α phase therein.
[0007]
Thus, according to the conventional β titanium alloy bar wire manufacturing method, it is possible to increase the strength of the β type titanium alloy bar wire and increase the ductility, but to obtain straightness (characteristic of being straight). It is difficult. For example, even if a β-type titanium alloy wire having a reduced diameter is passed through a normal shape correction roller or a rotary straightener, its straightness cannot be improved. This is because the β-type titanium alloy wire has a small Young's modulus, and the effect cannot be expected even if it is straightened (machined to be straight) by plastic deformation with a roller.
[0008]
Therefore, it is difficult to apply the conventional β titanium alloy bar wire manufacturing method to the manufacture of fine metal wires that require straightness such as communication cable tension members, probe cards pins for conductivity inspection, and metal fishing lines. .
[0009]
The present invention has been made in view of such problems of the prior art, and an object thereof is to provide a method for producing a β titanium alloy fine wire having high strength and good straightness.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a two-stage aging treatment is performed after the β titanium alloy wire is drawn. That is, a fine α phase is precipitated in the β phase by the first stage aging treatment to increase the strength. Then, heat treatment is performed while applying an appropriate tension in the second-stage aging treatment, thereby removing distortion associated with wire drawing and improving straightness.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
That is, the gist of the present invention is that the β titanium alloy wire is thinned by cold wire drawing and then heat treated, and in the β titanium alloy wire production method, the heat treatment is the first temporary effect treatment and processing for precipitation strengthening. A method for producing a β-titanium alloy thin wire comprising a second aging treatment for strain removal, wherein heat treatment is performed while applying tension to the β-titanium alloy thin wire in the second aging treatment.
[0012]
According to the present invention, by drawing a large amount of fine α phase in the β phase by the first temporary effect treatment to increase the strength and performing heat treatment while applying an appropriate tension in the second aging treatment, the wire drawing work It is possible to improve the straightness by removing the distortion caused by. In this case, before cold drawing, solution treatment is performed at a temperature above the β transformation point, and by eliminating the α phase, cold workability is improved and cold drawing is facilitated. The processed texture of the β phase by wire drawing can be formed more uniformly.
[0013]
β-titanium is excellent in workability, but on the other hand, it is a metal that easily adheres, and in order to avoid adhesion to the die surface during wire drawing, an appropriate oxide film is applied before the wire drawing. It is preferable to apply.
[0014]
The wire drawing may be performed by a cassette roller die or a hole die.
[0015]
The treatment temperature of the first temporary treatment is preferably in the range of 425 to 650 ° C. This is because if the temperature exceeds 650 ° C., overaging occurs and the strength decreases, and this is not preferable. If the temperature is lower than 425 ° C., a fine α-phase cannot be precipitated even if aging treatment is performed for a long time. Further, the processing time of the first temporary effect processing may be appropriately set depending on the wire diameter. For example, if the wire diameter is 10 μm, 1 minute to several minutes is sufficient, and if the wire diameter is 1 mm, it can be set in the range of 4 to 48 hours. In this case, if the treatment time is too short, a large amount of fine α-phase cannot be precipitated, and conversely if the treatment time is too long, the amount of precipitation of α-phase does not increase so much, which is not efficient.
[0016]
When the temperature of the second aging treatment is less than 300 ° C., the processing strain cannot be removed even if tension is applied, and the straightness cannot be improved. On the other hand, when the temperature exceeds 600 ° C., a change in the metal structure such as solution solution occurs, and adverse effects such as a decrease in ductility appear. In this respect, the temperature of the second aging treatment is preferably 300 to 600 ° C.
[0017]
If the time of the second aging treatment is too short, the processing strain cannot be removed even if tension is applied, and the straightness cannot be improved. On the other hand, if the time is too long, the effect is not changed and the production efficiency is only lowered. In this respect, the time for the second aging treatment is preferably about 3 to 10 minutes.
[0018]
The tension applied to the β titanium alloy fine wire during the second aging treatment is preferably 0.1 to 30% of the breaking load of the fine wire. If it is less than 0.1%, the shape correction (straightness improvement) effect is small, and if it exceeds 30%, the titanium fine wire may be stretched. Furthermore, the tension applied to the β titanium alloy fine wire during the second aging treatment is more preferably 0.5 to 10% of the breaking load of the fine wire. This is because adjusting the tension to less than 0.5% is not economical as an actual industrial facility because the mechanical structural restrictions are too severe. In consideration of the winding tension fluctuation of the titanium thin wire, the instantaneous maximum tension may be considerably larger than the set tension. Therefore, it is realistic that the set tension does not exceed 10% of the breaking load.
[0019]
Tension members for communication cables, probe card pins for conductivity testing, and metal thin wires such as metal fishing lines have a diameter of 0.01 to 1.0 mm, and β titanium with a diameter of 0.01 to 1.0 mm. The alloy fine wire can be suitably used as a metal fine wire for these applications. In particular, since the probe card pin has a very strict requirement level of straightness described below of 0.3 mm / 50 mm or less, a β titanium alloy fine wire excellent in straightness that can be manufactured by the method of the present invention is preferably used. Can do.
[0020]
【Example】
Examples of the present invention will be described below together with comparative examples. A titanium alloy wire of Ti-15V-3Cr-3Sn-3Al (β transformation point is about 760 ° C.) having a diameter of 3.0 mm that was solution treated at 850 ° C. for 10 minutes was heated in an oxygen-containing atmosphere at 700 ° C. An oxide film was formed on the β titanium alloy wire, and then drawn to 0.3 to 1.0 mm using a hole die. Thereafter, the β titanium alloy fine wire was inserted into a batch-type electric furnace (not shown) using an electric heater as a heat source, and a first temporary treatment was performed in an Ar gas atmosphere. Furthermore, while inserting this β titanium alloy fine wire into an electric furnace (not shown) of a continuous heat treatment type using an electric heater as a heat source, and performing a second aging treatment in an Ar gas atmosphere, as shown in FIG. While adjusting the tension applied to the β-titanium alloy thin wire W during the second aging treatment by the dancer 2 behind the guide die 1 arranged outside the electric furnace, a subsequent winder (see FIG. (Not shown).
[0021]
The dancer 2 includes a fixed roller 2a and a movable roller 2b, and tension adjustment is performed by the vertical movement of the movable roller 2b. That is, when the movable roller 2b is lowered, the tension is increased. Conversely, when the movable roller 2b is raised, the tension is decreased. The tension value of the β titanium alloy fine wire W is measured by a load measuring mechanism such as a load cell. Then, the actual measurement value measured by the load measuring mechanism is replaced with an electric signal and fed back to the control device. The actual measurement value is compared with a preset tension value input in advance, and the calculated correction value is replaced with an electric signal to obtain the dancer 2. , And by moving the movable roller 2b by a predetermined amount, a desired set tension can be continuously applied to the β titanium alloy fine wire W.
[0022]
The take-up capstan 3 is composed of a driving roller 3a and a driven roller 3b, and takes the β titanium alloy fine wire W by the driving roller 3a.
[0023]
Table 1 below shows the wire diameter, breaking load, temperature and time of the first aging treatment, temperature, time, tension, and straightness of the second aging treatment of each Example and Comparative Example. The straightness was evaluated by cutting a β-titanium alloy fine wire into a unit length and measuring a so-called “warp”. The warp here refers to the distance from the straight line connecting both ends of the β titanium alloy fine wire cut to unit length to the midpoint of the fine wire. This straightness is preferably in the range of 0.3 mm / 50 mm or less in the technical field to which the β titanium alloy fine wire produced by the method of the present invention is applied.
[0024]
[Table 1]
Figure 0004562830
[0025]
As shown in Table 1, all the β titanium alloy thin wires of Examples 1 to 6 have low straightness values, and are suitable as metal thin wires in the technical field to which the β titanium alloy thin wires obtained by the method of the present invention are applied. Can be used.
[0026]
However, Comparative Example 1 has poor straightness because the tension of the second aging treatment is too small.
[0027]
Moreover, since the time of the 2nd aging treatment is too short, the comparative example 2 has bad straightness.
[0028]
Furthermore, since the temperature of the second aging treatment is too low in Comparative Example 3, the straightness is poor.
[0029]
And since the comparative example 4 did not perform the 2nd aging treatment, straightness is very bad.
[0030]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
(1) According to the invention described in claim 1, it is possible to provide a method for producing a β titanium alloy fine wire having high strength and good straightness.
(2) According to the invention described in claim 2, specific aging treatment conditions for improving straightness are shown.
(3) According to the invention described in claim 3, a β titanium alloy fine wire that can be suitably used for a fine metal wire such as a communication cable tension member, a probe card pin for conductivity inspection, a metal fishing line or the like is obtained.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a tension applying mechanism disposed outside an electric furnace that performs a second aging treatment.
[Explanation of symbols]
1 ... Guide dice 2 ... Dancer 3 ... Take capstan

Claims (2)

Ti−15V−3Cr−3Sn−3Alである成分組成のβチタン合金線を冷間伸線加工により細径化した後、熱処理を行うβチタン合金細線の製造方法において、熱処理が析出強化のための第一時効処理と加工歪み除去ための第二時効処理からなり、第二時効処理において、βチタン合金細線に対して該細線の破断荷重の0.19ないし9.1%の張力を付与しつつ、処理温度が300ないし550℃であり、処理時間が3ないし10分である熱処理を行うことを特徴とするβチタン合金細線の製造方法。 In a method of manufacturing a β titanium alloy thin wire in which a titanium alloy wire having a component composition of Ti-15V-3Cr-3Sn-3Al is thinned by cold drawing and then heat treated, the heat treatment is for precipitation strengthening. It comprises a first aging treatment and a second aging treatment for removing work strain, and in the second aging treatment, a tension of 0.19 to 9.1% of the breaking load of the fine wire is applied to the β titanium alloy fine wire. A method for producing a β-titanium alloy fine wire, comprising performing a heat treatment at a treatment temperature of 300 to 550 ° C. and a treatment time of 3 to 10 minutes. 最終線径が0.3ないし1.0mmである請求項1記載のβチタン合金細線の製造方法。  The method for producing a β titanium alloy fine wire according to claim 1, wherein the final wire diameter is 0.3 to 1.0 mm.
JP25662599A 1999-09-10 1999-09-10 Manufacturing method of β titanium alloy fine wire Expired - Fee Related JP4562830B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25662599A JP4562830B2 (en) 1999-09-10 1999-09-10 Manufacturing method of β titanium alloy fine wire
US09/655,949 US6402859B1 (en) 1999-09-10 2000-09-06 β-titanium alloy wire, method for its production and medical instruments made by said β-titanium alloy wire
EP00307786A EP1083243A3 (en) 1999-09-10 2000-09-08 Beta titanium wire, method for its production and medical devices using beta titanium wire
US10/120,716 US6800153B2 (en) 1999-09-10 2002-04-11 Method for producing β-titanium alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25662599A JP4562830B2 (en) 1999-09-10 1999-09-10 Manufacturing method of β titanium alloy fine wire

Publications (2)

Publication Number Publication Date
JP2001081537A JP2001081537A (en) 2001-03-27
JP4562830B2 true JP4562830B2 (en) 2010-10-13

Family

ID=17295220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25662599A Expired - Fee Related JP4562830B2 (en) 1999-09-10 1999-09-10 Manufacturing method of β titanium alloy fine wire

Country Status (1)

Country Link
JP (1) JP4562830B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) * 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
WO2014073453A1 (en) * 2012-11-08 2014-05-15 株式会社放電精密加工研究所 Electrode, electrochemical machining device using aforementioned electrode, electrochemical machining method, and machined article machined by means of said method
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
EP3502785B1 (en) * 2017-12-21 2020-08-12 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
CN112281095B (en) * 2020-09-30 2022-04-01 西安交通大学 Heat treatment method for improving performance of titanium alloy
CN115255021B (en) * 2022-09-29 2023-01-24 西安赛特思迈钛业有限公司 Large-single-weight TC4 titanium disc round wire for aerospace fastener and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279736A (en) * 1988-05-02 1989-11-10 Nippon Mining Co Ltd Heat treatment for beta titanium alloy stock
JPH0261042A (en) * 1988-08-26 1990-03-01 Sumitomo Metal Ind Ltd Production of beta titanium alloy wire having high fatigue strength
JPH0474856A (en) * 1990-07-17 1992-03-10 Kobe Steel Ltd Production of beta ti alloy material having high strength and high ductility
JPH05125508A (en) * 1991-08-29 1993-05-21 Akira Nozue Beta type titanium alloy having low hydrogen embrittlement sensitivity and heat-treating method therefor
JPH0890074A (en) * 1994-09-20 1996-04-09 Nippon Steel Corp Method for straightening titanium and titanium alloy wire
JPH10132035A (en) * 1996-10-29 1998-05-22 Nippon Bell Parts Kk Method for heat-treating veryfine wire rope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279736A (en) * 1988-05-02 1989-11-10 Nippon Mining Co Ltd Heat treatment for beta titanium alloy stock
JPH0261042A (en) * 1988-08-26 1990-03-01 Sumitomo Metal Ind Ltd Production of beta titanium alloy wire having high fatigue strength
JPH0474856A (en) * 1990-07-17 1992-03-10 Kobe Steel Ltd Production of beta ti alloy material having high strength and high ductility
JPH05125508A (en) * 1991-08-29 1993-05-21 Akira Nozue Beta type titanium alloy having low hydrogen embrittlement sensitivity and heat-treating method therefor
JPH0890074A (en) * 1994-09-20 1996-04-09 Nippon Steel Corp Method for straightening titanium and titanium alloy wire
JPH10132035A (en) * 1996-10-29 1998-05-22 Nippon Bell Parts Kk Method for heat-treating veryfine wire rope

Also Published As

Publication number Publication date
JP2001081537A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
JP4562830B2 (en) Manufacturing method of β titanium alloy fine wire
JP3300684B2 (en) Copper-based alloy having shape memory characteristics and superelasticity, member made of the same, and method of manufacturing the same
JP5795030B2 (en) Expanded material made of Cu-Al-Mn alloy material with excellent stress corrosion resistance
WO2012026610A1 (en) Copper alloy sheet and manufacturing method for same
JP5051647B2 (en) High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same
JP5840310B1 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
EP3128019A1 (en) Copper alloy wire material and manufacturing method thereof
CN103249851A (en) Cu-Ni-Si-Co copper alloy for electron material and method for producing same
CN105264105A (en) Copper alloy production method, and copper alloy
US4594116A (en) Method for manufacturing high strength copper alloy wire
JP4061257B2 (en) Titanium alloy for heating wire and method for producing the same
JPS6362583B2 (en)
US20220205074A1 (en) Copper alloys with high strength and high conductivity, and processes for making such copper alloys
CN112853230B (en) Low-layer-dislocation-energy face-centered cubic structure high-entropy shape memory alloy and preparation method thereof
JP2009215650A (en) Shape memory alloy
JPH07180011A (en) Production of alpha+beta type titanium alloy extruded material
JP2001107206A (en) beta TITANIUM ALLOY FINE WIRE AND ITS PRODUCTION METHOD
JP2006097113A (en) Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product
JPH08199308A (en) Invar alloy wire rod and its production
JP2001262298A (en) METHOD FOR WORKING Ni-Ti SHAPE MEMORY ALLOY, AND Ni-Ti SHAPE MEMORY ALLOY STOCK MANUFACTURED THEREBY
JP2006265680A (en) Superelastic material and its production method
JPH08209314A (en) Production of shape memory alloy with high-temperature phase-transferring function
JP3344946B2 (en) Functionally graded alloy and method for producing the same
US4838959A (en) Method for manufacturing high strength copper alloy wire
JPS6144166A (en) Manufacture of titanium alloy plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4562830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees