JPH059687A - Production of two-directional shape memory niti alloy - Google Patents

Production of two-directional shape memory niti alloy

Info

Publication number
JPH059687A
JPH059687A JP18330591A JP18330591A JPH059687A JP H059687 A JPH059687 A JP H059687A JP 18330591 A JP18330591 A JP 18330591A JP 18330591 A JP18330591 A JP 18330591A JP H059687 A JPH059687 A JP H059687A
Authority
JP
Japan
Prior art keywords
shape memory
alloy
temperature
bidirectional
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18330591A
Other languages
Japanese (ja)
Inventor
Hiroshi Horikawa
宏 堀川
Kazuo Matsubara
和男 松原
Teruaki Tsujimoto
照明 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18330591A priority Critical patent/JPH059687A/en
Publication of JPH059687A publication Critical patent/JPH059687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Abstract

PURPOSE:To remarkably improve the two-directional characteristics of a two- directional shape memory NiTi alloy used for an actuator, etc., and the durability under a temp. cycle. CONSTITUTION:An NiTi alloy consisting of, by atom, 49.5-51.5% Ni and the balance Ti or 38.2-52.0% Ni, <=12% Cu and the balance Ti is subjected to shape memory treatment and 6-13% deformation strain is imposed in an environment at a temp. of the Ms point + 30 deg.C or below to produce a two-directional shape memory NiTi alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた2方向性および
耐久性を有する2方向性NiTi系形状記憶合金の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bidirectional NiTi type shape memory alloy having excellent bidirectionality and durability.

【0002】[0002]

【従来の技術とその課題】形状記憶合金は高温相の母相
状態で立方晶構造をとり、これを冷却するとマルテンサ
イト変態温度で変態して単斜晶構造のマルテンサイト相
(以下M相)となる。この合金を加熱すると逆変態温度
を介して、逆変態して母相に戻る。Ni−Ti合金を通
常の鋳造、熱間加工、冷間加工後、形状記憶処理を施す
と、この形状記憶合金の動作は非可逆的である。すなわ
ちマルテンサイト相において変形した合金を温度上昇さ
せ高温相に変態させると、形状が回復するが、これを冷
却しても再び低温相の形状にはならない。しかし、回復
可能な歪み量で拘束し、温度サイクルを付加するトレー
ニング法など、特殊な処理を施すことにより、2方向特
性が得られることが知られている。しかし、従来の方法
では、複雑な処理のため2方向が安定して得られなかっ
た。またその2方向性歪量も3%以下と小さく、ロボッ
トなどの通電によるアクチュエータとして用いる場合、
大きな問題となっていた。上記のように形状記憶合金は
アクチュエータとして、モーターやソレノイドの代りに
用いられる。この場合合金に直接通電することで加熱、
形状変化を起こす。したがってモーターやソレノイドに
比べて小型化できるものが大きな特徴である。しかし、
この応用は現状では一部しか用いられておらず、その最
も大きな理由は形状変化の歪量が小さいこと、および繰
返しに伴う耐久性が悪いことである。
2. Description of the Related Art Shape memory alloys have a cubic crystal structure in the parent phase of a high temperature phase, and when cooled, they transform at the martensite transformation temperature and have a monoclinic structure martensite phase (hereinafter M phase). Becomes When this alloy is heated, it undergoes reverse transformation and returns to the parent phase via the reverse transformation temperature. When the Ni-Ti alloy is subjected to ordinary casting, hot working, cold working and then subjected to shape memory treatment, the operation of the shape memory alloy is irreversible. That is, when the alloy deformed in the martensite phase is heated to a high temperature and transformed into a high temperature phase, the shape recovers, but even if the alloy is cooled, the shape does not return to the low temperature phase. However, it is known that a bidirectional characteristic can be obtained by performing a special process such as a training method in which the strain amount is recoverable and the temperature cycle is added. However, in the conventional method, two directions could not be stably obtained due to complicated processing. Also, the amount of bidirectional strain is as small as 3% or less, and when used as an actuator for energizing a robot,
It was a big problem. As described above, the shape memory alloy is used as an actuator instead of a motor or a solenoid. In this case, heating the alloy by directly energizing it,
Causes shape change. Therefore, a major feature is that it can be made smaller than a motor or solenoid. But,
This application is currently used only partly, and the main reason for this is that the amount of strain of shape change is small and the durability with repetition is poor.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記従来技術
の問題点を解決するため、4%以上の歪み量の2方向性
が得られ、その処理工程も簡単で、かつ温度サイクルに
よる繰り返し形状回復の耐久性が優れたNi−Ti系形
状記憶合金が得られる製造方法を提供するものである。
In order to solve the above-mentioned problems of the prior art, the present invention provides a bidirectionality with a strain amount of 4% or more, a simple processing step, and a repetitive shape by temperature cycle. The present invention provides a manufacturing method capable of obtaining a Ni—Ti-based shape memory alloy having excellent recovery durability.

【0004】[0004]

【課題を解決するための手段】本発明は、原子%でNi
49.5〜51.5%残部TiからなるNiTi系合金
を500〜800℃の温度で形状記憶処理を施した後、
Ms点+30℃以下の温度環境で6〜13%の変形歪を
付与することを特徴とする2方向性NiTi系形状記憶
合金の製造方法を請求項1とし、原子%でNi38.2
〜52.0%、Cu12%以下残部TiからなるNiT
i系合金を500〜800℃の温度で形状記憶処理を施
した後、Ms点+30℃以下の温度環境で6〜13%の
変形歪を付与することを特徴とする2方向性NiTi系
形状記憶合金の製造方法を請求項2とするものである。
SUMMARY OF THE INVENTION The present invention is directed to atomic percent Ni.
After shape memory treatment of a NiTi-based alloy composed of 49.5 to 51.5% balance Ti at a temperature of 500 to 800 ° C.,
A method for producing a bidirectional NiTi-based shape memory alloy, characterized in that a deformation strain of 6 to 13% is applied in a temperature environment of Ms point + 30 ° C. or lower, is claim 1, and Ni 38.2 in atomic% is used.
~ 52.0%, Cu 12% or less NiT consisting of the balance Ti
A bidirectional NiTi-based shape memory characterized by applying a deformation strain of 6 to 13% in a temperature environment of Ms point + 30 ° C. or less after performing shape memory treatment on an i-based alloy at a temperature of 500 to 800 ° C. A method for producing an alloy is defined as claim 2.

【0005】[0005]

【作用】すなわち本発明は、上記組成のNiTi系合金
を所定の形状に加工し、形状記憶処理を500℃以上8
00℃以下の温度で行い、Ms点+30℃以下の温度環
境で6%以上13%以下の変形歪を与えることを特徴と
するものである。特に線材については、同条件で直線状
に形状記憶処理し、Ms点+30℃以下の温度環境で、
長手方向に6〜13%の引っ張り変形歪を与えることに
より、高温時において、低温時に比べ4%以上短くなる
合金線材が得られる。本発明において対象とする合金の
組成範囲は、原子%でNiを49.5〜51.5%、残
部TiからなるNiTi系形状記憶合金である。また、
原子%でNiを38.0〜52.0%、Cuを12%以
下、残部TiからなるNiTi系形状記憶合金に本発明
の製造方法を施すことにより、冷却時のマルテンサイト
変態温度と加熱時の逆変態温度の差である温度とヒステ
リシスが、Ni−Ti2元合金に比べて狭い2方向性形
状記憶合金が得られる。記憶熱処理温度は、500℃未
満では2方向性歪みが充分に得られない。また800℃
を越えると合金表面の酸化が激しくなり材料的に好まし
くない。形状記憶処理後の変形歪み量は、6%未満では
2方向性歪みが充分に得られない、13%を越えると回
復歪み量が大きく低下する。変形温度はMs温度に比べ
て低い方が好ましく、Ms+30℃を越えるとやはり2
方向性歪み量が減少する。Ni量が49.5%未満およ
び51.5%を越えると加工性が劣化するため工業的に
好ましくない。Ni−Ti−Cu合金では、Ni量が3
8.2%未満および52.0%を越え、Cuが12%を
越えると同様に加工性を劣化させる。
That is, according to the present invention, the NiTi alloy having the above composition is processed into a predetermined shape, and the shape memory treatment is performed at 500 ° C. or higher.
It is characterized in that a deformation strain of 6% or more and 13% or less is given in a temperature environment of Ms point + 30 ° C. or less by performing the temperature at 00 ° C. or less. Especially for wire materials, shape memory processing is performed linearly under the same conditions, and in a temperature environment of Ms point + 30 ° C or less,
By giving a tensile deformation strain of 6 to 13% in the longitudinal direction, it is possible to obtain an alloy wire rod that is shortened by 4% or more at high temperature as compared with at low temperature. The composition range of the alloy targeted by the present invention is a NiTi-based shape memory alloy composed of 49.5 to 51.5% of Ni in atomic% and the balance of Ti. Also,
By applying the manufacturing method of the present invention to a NiTi-based shape memory alloy consisting of 38.0 to 52.0% Ni in atomic% and 12% or less Cu, and the balance Ti, the martensitic transformation temperature during cooling and the heating time A two-way shape memory alloy is obtained in which the temperature, which is the difference between the reverse transformation temperatures, and hysteresis are narrower than those of the Ni-Ti binary alloy. If the memory heat treatment temperature is less than 500 ° C., sufficient bidirectional strain cannot be obtained. Also 800 ° C
If it exceeds, the oxidation of the alloy surface becomes severe, which is not preferable in terms of material. If the deformation strain amount after shape memory processing is less than 6%, sufficient bidirectional strain cannot be obtained, and if it exceeds 13%, the recovery strain amount decreases significantly. The deformation temperature is preferably lower than the Ms temperature, and when it exceeds Ms + 30 ° C, it is 2
The amount of directional distortion is reduced. If the Ni content is less than 49.5% or more than 51.5%, the workability deteriorates, which is not industrially preferable. In the Ni-Ti-Cu alloy, the Ni content is 3
If it is less than 8.2% or more than 52.0% and Cu exceeds 12%, the workability is similarly deteriorated.

【0006】[0006]

【実施例】【Example】

〔実施例1〕次に本発明の実施例について説明する。表
1に示す組成の合金を鋳造、熱間加工後、焼鈍と冷間加
工を繰り返し、線径1mmの合金線を作製した。
[Embodiment 1] Next, an embodiment of the present invention will be described. Alloys having the compositions shown in Table 1 were cast, hot-worked, and then repeatedly annealed and cold-worked to produce an alloy wire having a wire diameter of 1 mm.

【0007】[0007]

【表1】 [Table 1]

【0008】この合金に表2及び表3に示すような処理
条件で直線記憶熱処理を行った。更に表2及び表3に示
すような恒温槽で制御された雰囲気温度で、引っ張り試
験機により引っ張り変形を加えた。変形前の合金の変態
温度Ms、As点はDSC法により決定した。処理後の
合金線に、伸び計を付けるために合金線材を安定させる
だけの応力である定荷重1kgf /mm2 に相当する重りを
乗せ、3℃/min の速度で温度サイクル試験を行い、そ
の時の歪みの変化をストレーンゲージ式の伸び計で測定
した。得られた温度−歪曲線を図1に示した。図に示す
ように、As点、Ms点および2方向形状回復歪み量を
決定した。結果を表2及び表3に示す。表中の比較例
は、本発明の形状記憶処理温度、変形歪付与条件のいず
れかが欠けているため2方向歪み量が4%以上にならな
い。
This alloy was subjected to a linear memory heat treatment under the treatment conditions shown in Tables 2 and 3. Further, tensile deformation was applied by a tensile tester at an atmospheric temperature controlled by a constant temperature bath as shown in Tables 2 and 3. The transformation temperature Ms and As point of the alloy before deformation were determined by the DSC method. A weight corresponding to a constant load of 1 kgf / mm 2 which is a stress for stabilizing the alloy wire to attach an extensometer is applied to the treated alloy wire, and a temperature cycle test is performed at a speed of 3 ° C / min. The change in strain was measured with a strain gauge type extensometer. The obtained temperature-strain curve is shown in FIG. As shown in the figure, the As point, the Ms point, and the bidirectional shape recovery strain amount were determined. The results are shown in Tables 2 and 3. In the comparative example in the table, the bidirectional strain amount does not reach 4% or more because either the shape memory processing temperature of the present invention or the deformation strain imparting condition is lacking.

【0009】[0009]

【表2】 [Table 2]

【0010】[0010]

【表3】 [Table 3]

【0011】また試料No.2〜7における引っ張り変形
歪量と2方向歪量の関係を図2に示した。この図から6
%〜13%の引っ張り変形歪により、4%以上の2方向
歪量が得られることが明らかである。図3、図4には変
形温度と2方向歪みの関係を示した。図3には、合金B
のNo.11〜16と合金CのNo.19〜22の結果を、
図4には合金DのNo.22〜25の結果を記載した。何
れも横軸は変形温度とMs点との温度差を示した。変形
温度はMs+30℃を越えると2方向歪が極端に低下す
ることが明らかである。したがってMs+30以下の変
形温度が望ましい。さらに、合金Dの2方向性における
温度ヒステリシスはNi−Ti元合金に比べ狭いことが
判る。 〔実施例2〕合金Aの0.15mmの合金線について、N
o.4と同条件の試作方法で、2方向のための引っ張り
変形を施したNi−Ti合金線材と、比較材として引っ
張り変形を施さなかった試料について繰返し温度サイク
ル試験を行った。No.24と同製造条件での0.15mm
の線径のものも合わせて試験に供した。線の長さは20
0mmとし、上部を固定し、275gの重りをぶらさげ
た。これに0.5Aの直流電流を合金線材に負荷するこ
とによる加熱でON−OFF動作をした。通電間隔は5
秒である。そして各繰返し数における重りの位置を測定
した。図5に結果を示した。耐久率は次の式で定義し
た。 図5の縦軸にはこの耐久率を示し、横軸に繰返し数を
示した。本発明方法によるNo.4およびNo.24は、比
較材に比べ、温度サイクルによる耐久性が優れているこ
とが明らかである。
Sample No. The relationship between the tensile deformation strain amount and the bidirectional strain amount in 2 to 7 is shown in FIG. 6 from this figure
It is clear that a tensile deformation strain of 13% to 13% gives a bidirectional strain amount of 4% or more. 3 and 4 show the relationship between deformation temperature and bidirectional strain. In FIG. 3, alloy B
No. No. 11 to 16 and alloy C. 19 ~ 22 results,
In FIG. 4, alloy D No. The results of 22 to 25 are described. In each case, the horizontal axis represents the temperature difference between the deformation temperature and the Ms point. It is clear that when the deformation temperature exceeds Ms + 30 ° C., the bidirectional strain is extremely reduced. Therefore, a deformation temperature of Ms + 30 or less is desirable. Further, it can be seen that the temperature hysteresis in the bidirectionality of alloy D is narrower than that of the Ni-Ti base alloy. [Example 2] For an alloy wire of 0.15 mm of alloy A, N
o. Under the same trial production method as in No. 4, a repeated temperature cycle test was performed on a Ni—Ti alloy wire rod that was subjected to tensile deformation for two directions and a sample that was not subjected to tensile deformation as a comparative material. No. 0.15mm under the same manufacturing conditions as 24
The wire having the same wire diameter was also subjected to the test. The length of the line is 20
It was set to 0 mm, the upper part was fixed, and a 275 g weight was hung. An ON-OFF operation was performed by heating by applying a DC current of 0.5 A to the alloy wire. Energization interval is 5
Seconds. And the position of the weight in each repetition number was measured. The results are shown in FIG. The durability was defined by the following formula. The vertical axis of FIG. 5 shows this durability, and the horizontal axis shows the number of repetitions. No. by the method of the present invention 4 and No. It is clear that the sample No. 24 is superior in durability due to the temperature cycle as compared with the comparative material.

【0012】[0012]

【発明の効果】以上説明したように本発明によれば、N
iTi系形状記憶合金において優れた2方向特性および
温度サイクルによる耐久性を有する合金が得られるもの
であり、モーターやソレノイドの代りとなるコンパクト
なアクチュエータとして応用することが出来る等、工業
上顕著な効果を有する。
As described above, according to the present invention, N
The iTi-based shape memory alloy is an alloy that has excellent bidirectional characteristics and durability due to temperature cycling, and can be applied as a compact actuator in place of a motor or solenoid. Have.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る2方向性NiTi系形
状記憶合金の歪−温度特性を示すグラフ。
FIG. 1 is a graph showing strain-temperature characteristics of a bidirectional NiTi-based shape memory alloy according to an example of the present invention.

【図2】本発明の一実施例に係る2方向性NiTi系形
状記憶合金の2方向歪みと変形歪み量の関係を示すグラ
フ。
FIG. 2 is a graph showing the relationship between bidirectional strain and deformation strain of a bidirectional NiTi-based shape memory alloy according to an example of the present invention.

【図3】本発明の一実施例に係る2方向性NiTi系形
状記憶合金の2方向歪みと変形温度の関係を示すグラ
フ。
FIG. 3 is a graph showing the relationship between bidirectional strain and deformation temperature of a bidirectional NiTi-based shape memory alloy according to an example of the present invention.

【図4】本発明の一実施例に係る2方向性NiTi系形
状記憶合金の2方向歪みと変形温度の関係を示すグラ
フ。
FIG. 4 is a graph showing the relationship between bidirectional strain and deformation temperature of a bidirectional NiTi-based shape memory alloy according to an example of the present invention.

【図5】本発明の一実施例に係る2方向性NiTi系形
状記憶合金の耐久率と通電サイクルの関係を示すグラ
フ。
FIG. 5 is a graph showing the relationship between the durability and the energization cycle of the bidirectional NiTi-based shape memory alloy according to an example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原子%でNi49.5〜51.5%残部
TiからなるNiTi系合金を500〜800℃の温度
で形状記憶処理を施した後、Ms点+30℃以下の温度
環境で6〜13%の変形歪を付与することを特徴とする
2方向性NiTi系形状記憶合金の製造方法。
1. A NiTi-based alloy having an atomic percentage of Ni of 49.5 to 51.5% and a balance of Ti is subjected to shape memory treatment at a temperature of 500 to 800 ° C., and then 6 to 6 at a temperature environment of Ms point + 30 ° C. or less. A method for manufacturing a bidirectional NiTi-based shape memory alloy, which is characterized by imparting a deformation strain of 13%.
【請求項2】 原子%でNi38.2〜52.0%、C
u12%以下残部TiからなるNiTi系合金を500
〜800℃の温度で形状記憶処理を施した後、Ms点+
30℃以下の温度環境で6〜13%の変形歪を付与する
ことを特徴とする2方向性NiTi系形状記憶合金の製
造方法。
2. Ni38.2-52.0%, C in atomic%
u12% or less 500 NiTi-based alloy consisting of the balance Ti
After shape memory treatment at a temperature of ~ 800 ° C, Ms point +
A method for producing a bidirectional NiTi-based shape memory alloy, which comprises imparting a deformation strain of 6 to 13% in a temperature environment of 30 ° C. or lower.
JP18330591A 1991-06-27 1991-06-27 Production of two-directional shape memory niti alloy Pending JPH059687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18330591A JPH059687A (en) 1991-06-27 1991-06-27 Production of two-directional shape memory niti alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18330591A JPH059687A (en) 1991-06-27 1991-06-27 Production of two-directional shape memory niti alloy

Publications (1)

Publication Number Publication Date
JPH059687A true JPH059687A (en) 1993-01-19

Family

ID=16133360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18330591A Pending JPH059687A (en) 1991-06-27 1991-06-27 Production of two-directional shape memory niti alloy

Country Status (1)

Country Link
JP (1) JPH059687A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336534A (en) * 2004-05-26 2005-12-08 Tokyo Univ Of Science Shape memory alloy member, shape memorizing method therefor, and actuator for controlling flow rate
JP2014058710A (en) * 2012-09-14 2014-04-03 Oita Univ SHAPE MEMORY TREATMENT METHOD OF Ti-Ni SHAPE MEMORY ALLOY

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336534A (en) * 2004-05-26 2005-12-08 Tokyo Univ Of Science Shape memory alloy member, shape memorizing method therefor, and actuator for controlling flow rate
JP4633387B2 (en) * 2004-05-26 2011-02-16 学校法人東京理科大学 Shape memory alloy member, shape memory method thereof, and actuator for flow rate control
JP2014058710A (en) * 2012-09-14 2014-04-03 Oita Univ SHAPE MEMORY TREATMENT METHOD OF Ti-Ni SHAPE MEMORY ALLOY

Similar Documents

Publication Publication Date Title
JP5065904B2 (en) Iron-based alloy having shape memory and superelasticity and method for producing the same
EP0176272B1 (en) Shape memory alloy and method for producing the same
JPH0543969A (en) Shape-memory alloy of high critical temperature
US4502896A (en) Method of processing beta-phase nickel/titanium-base alloys and articles produced therefrom
JPS6237353A (en) Manufacture of shape memory alloy
JPH0382741A (en) Shape memory staiinless steel excellent in stress corrosion cracking resistance and shape memory method therefor
JPH059687A (en) Production of two-directional shape memory niti alloy
JPH02270938A (en) Iron-based shape memorizing alloy and preparation thereof
US10196714B2 (en) Shape memory alloy comprising Ti, Ni and Si
JPH07233432A (en) Shape memory alloy and its production
JPS61227141A (en) Niti shape memory alloy wire
JPS63235444A (en) Ti-ni-al based shape memory alloy and its production
JPH059686A (en) Production of shape memory niti alloy
JPS6144150B2 (en)
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JP3755032B2 (en) SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME
JPS6314834A (en) Tiniv shape memory alloy
JPS60155657A (en) Production of ti-ni superelastic alloy
JPH0238547A (en) Manufacture of ti-ni shape memory alloy
JPH02301514A (en) Method for allowing shape memory stainless steel to memorize shape
JP3271329B2 (en) Shape memory alloy
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JPS62211339A (en) Ni-ti-cr shape memory alloy
JPH0317238A (en) Cu-al-mn series shape memory alloy and its manufacture
JPH03150333A (en) Shape memory alloy and its manufacture