JPH02301514A - Method for allowing shape memory stainless steel to memorize shape - Google Patents

Method for allowing shape memory stainless steel to memorize shape

Info

Publication number
JPH02301514A
JPH02301514A JP12122189A JP12122189A JPH02301514A JP H02301514 A JPH02301514 A JP H02301514A JP 12122189 A JP12122189 A JP 12122189A JP 12122189 A JP12122189 A JP 12122189A JP H02301514 A JPH02301514 A JP H02301514A
Authority
JP
Japan
Prior art keywords
deformation
steel
shape memory
phase
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12122189A
Other languages
Japanese (ja)
Inventor
Toshihiko Takemoto
敏彦 武本
Masahiro Kinugasa
衣笠 雅普
Teruo Tanaka
照夫 田中
Takashi Igawa
井川 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP12122189A priority Critical patent/JPH02301514A/en
Publication of JPH02301514A publication Critical patent/JPH02301514A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow even a stainless steel having >10% Cr content and superior corrosion resistance to advantageously exhibit shape memory characteristics by rendering a specified compsn. based on the compsn. of an Fe-Cr steel and having property regulated Mn, Si and Co contents. CONSTITUTION:A steel consisting of, by weight, <=0.03% C, 3.0-6.0% Si, 6.0-25.0% Mn, <=7.0% Ni, 10.0%<Cr<=17.0%, 0.02-0.3% N, 2.0-10.0% Co, 0.05-0.8% one or more among Nb, V, Zr and Ti and the balance Fe or if necessary further contg. <=2.0% Mo and/or <=2.0% Cu and having >=-26.0 D defined by the equation is worked into a prescribed shape, annealed, deformed at ordinary temp. or below and heat-treated at 450-700 deg.C. After this deformation and heat treatment are repeated once or more, the temp. of the steel is returned to ordinary temp. The steel is allowed to memorize the final shape.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、優れた形状記憶効果を示す形状記憶ステンレ
ス鋼の記憶特性向上方法に係り1例えば機械部品等の固
定、締めつけ部あるいはバイブ継手などに対して形状記
憶効果をを利に発現させる耐食性に優れたステンレス鋼
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for improving the memory properties of shape memory stainless steel, which exhibits an excellent shape memory effect. This invention relates to a stainless steel with excellent corrosion resistance that takes advantage of the shape memory effect of steel.

〔従来の技術と問題点〕[Conventional technology and problems]

従来より、形状記憶効果を示す合金としてNi−Ti合
金やCu合金などの非鉄系、およびFe−Pd系、Fe
−Ni系、Fe−Mn系等の鉄合金のものが知られてい
る。そのうちFe−Mn系は安価であり。
Conventionally, nonferrous alloys such as Ni-Ti alloys and Cu alloys, Fe-Pd alloys, and Fe alloys have been used as alloys that exhibit shape memory effects.
Iron alloys such as -Ni series and Fe-Mn series are known. Among them, the Fe-Mn type is inexpensive.

その工業的価値が大きいことから1例えば特開昭55−
73846号公報にF e−(15,9〜30.0%)
 M n合金、特開昭55−76043号公報にFe−
Mn−(S i、 Ni、 Cr)合金。
Because of its great industrial value, 1, for example, JP-A-55-
Fe-(15.9-30.0%) in Publication No. 73846
Mn alloy, Fe-
Mn-(Si, Ni, Cr) alloy.

特開昭61−76647号公報にFe−(20〜40%
)Mn−(3,5〜8%)Si合金、特開昭63−16
946号公報にFe−(15〜30)Mn−N合金など
が報告されている。また特開昭62−112720号公
報にはFe−Mn−Si合金の形状記憶効果の特性向上
方法が報告されており、20%以下の加工と400°C
以上の加熱を一回以上与える。いわゆるトレーニング効
果を利用している。
JP-A No. 61-76647 discloses that Fe-(20 to 40%
)Mn-(3.5~8%)Si alloy, JP-A-63-16
No. 946 reports Fe-(15-30)Mn-N alloy and the like. Furthermore, JP-A No. 62-112720 reports a method for improving the shape memory effect of Fe-Mn-Si alloy, which requires processing of 20% or less and heating at 400°C.
Apply the above heating one or more times. It uses the so-called training effect.

しかしながら、これらの鉄系の形状記憶合金は耐食性に
劣るという大きな欠点を有している。そこで特開昭61
−201761号公報にはFe−Mn−Si合金にCr
などを含有させ耐食性を改善させた例もみられるが、C
r含有量が10.0%以下と低いため、いわゆるステン
レス鋼としての耐食性を有しているとは言い難い、また
、特開昭63−216946号公報も耐食性を高めるた
めにCrを含有させることを教示しているが、実例では
10%までのCr含有量であり、フェライト生成元素で
あるC「をこれ以上含有させた場合に形状記憶特性をど
のようにして有利に発現させるかについては教えていな
い。
However, these iron-based shape memory alloys have a major drawback of poor corrosion resistance. Therefore, JP-A-61
-201761 publication describes Cr in Fe-Mn-Si alloy.
There are examples of improving corrosion resistance by adding C.
Since the r content is as low as 10.0% or less, it cannot be said that it has the corrosion resistance of a so-called stainless steel, and JP-A No. 63-216946 also states that it contains Cr to improve corrosion resistance. However, in actual examples, the Cr content is up to 10%, and it does not teach how to advantageously develop shape memory properties when C, which is a ferrite-forming element, is contained higher than this. Not yet.

一方、ステンレス鋼においてはr 5Cripta M
eta−11urgicaJ、1977、VOl、51
1.663〜667に5US304鋼にて一196°C
で変形させ9次いで室温まで昇温することで形状記憶効
果を示すことが報告されているが、形状回、復率は小さ
く実用化にはほど遠いものであった。
On the other hand, in stainless steel, r 5Cripta M
eta-11urgicaJ, 1977, VOl, 51
1.196°C in 5US304 steel from 663 to 667
It has been reported that a shape memory effect can be exhibited by deforming the material at 9°C and then heating it to room temperature, but the shape recovery and recovery rate were small and it was far from practical use.

〔発明の目的〕[Purpose of the invention]

本発明はフェライト生成元素であるCrを10%を超え
て多量に含有させたステンレス鋼においても形状記憶特
性を有利に発揮させることを目的としたものであり、耐
食性に優れた形状記憶ステンレス鋼の形状記憶方法を提
供しようとするものである。
The purpose of the present invention is to advantageously exhibit shape memory properties even in stainless steel containing a large amount of Cr, a ferrite-forming element, exceeding 10%. This paper aims to provide a shape memory method.

〔発明の構成〕[Structure of the invention]

本発明は1重量%にて、C;0.03%以下、  St
、 3.0〜6.0%、  Mn ; 6.0〜25.
0%、N1H7,0%以下、Cr;10.0%a〜17
.0%、  N ;0.02〜0.3%。
In the present invention, at 1% by weight, C: 0.03% or less, St
, 3.0-6.0%, Mn; 6.0-25.
0%, N1H7.0% or less, Cr; 10.0%a~17
.. 0%, N; 0.02-0.3%.

Co ; 2.0〜10.0%、Nb、V、Zr、Ti
の一種または二種以上: 0.05〜0.8%、場合に
よってはさらに2.0%以下のMoもしくは2.0%以
下のCuの一種または二種を含有し、残部Feならびに
不可避的不純物からなる鋼であって、かっ。
Co; 2.0-10.0%, Nb, V, Zr, Ti
One or more of: 0.05 to 0.8%, and in some cases further contains one or two of Mo or less than 2.0% Cu, with the remainder being Fe and unavoidable impurities. It is a steel made of.

D = Ni+0.30Mn+56.8C+19.0N
 +0.73Co−+Cu  1.85〔Cr+1.6
Si+1.5(Nb+V+ Zr+Ti)十Mo) で定義されるD値が−26,0以上である鋼を所定の形
状に加工し、焼鈍を施した後、常温以下の温度での変形
と450°C以上、700°C以下の温度域での加熱処
理を一回以上繰り返してから、常温に戻して最終形状を
記憶させることを特徴とする形状記憶ステンレス鋼の形
状記憶方法°を提供するものである。
D=Ni+0.30Mn+56.8C+19.0N
+0.73Co-+Cu 1.85[Cr+1.6
After processing steel with a D value of -26.0 or more, defined as Si + 1.5 (Nb + V + Zr + Ti) + Mo) into a predetermined shape and annealing, it is deformed at a temperature below room temperature and heated at 450°C. As described above, we provide a shape memory method for shape memory stainless steel, which is characterized by repeating heat treatment in a temperature range of 700°C or less once or more, and then returning to room temperature to memorize the final shape. .

〔発明の詳細な 説明におけるステンレス鋼の形状記憶現象は。[Details of the invention] Explain the shape memory phenomenon of stainless steel.

焼鈍状態で6フエライト相およびマルテンサイト相が存
在せず実質的にオーステナイI−(r)相単相組織であ
る鋼に対して変形を与え、そのさい。
Deformation is applied to steel which has a substantially austenite I-(r) single phase structure in an annealed state without the presence of a 6-ferrite phase and a martensitic phase.

転位および加工誘起マルテンサイト(α″)相の永久ひ
ずみが生成しないように、加工誘起ε相の生成のみで変
形を進行させ1次いでε相がγ相へ変態を開始する温度
(As点)以上に加熱してε→T変態が生じさせ、これ
によって、変形前の形状に回復させるものである。
In order to prevent the generation of dislocations and permanent strain of the strain-induced martensitic (α'') phase, deformation proceeds only by the formation of strain-induced ε phase, and the temperature is higher than the temperature (As point) at which the ε phase starts to transform into the γ phase. The material is heated to cause ε→T transformation, thereby recovering the shape before deformation.

「ステンレス鋼便覧」(日刊工業新聞社) 11.18
7に5tlS304L# ”qの引張り変形後のε相5
α′相の生成挙動が報告されており5 ε相は低温域は
ど多量に生成することが示されている。しかし形状記憶
効果を阻害するα°相も同時に生成されることから前述
の5LIS304L鋼の低温変形における形状記憶効果
は小さいものであると考えられる。
“Stainless Steel Handbook” (Nikkan Kogyo Shimbun) 11.18
7 to 5tlS304L# ε phase 5 after tensile deformation of q
The formation behavior of the α' phase has been reported, and it has been shown that the ε phase is formed in large quantities at low temperatures. However, since the α° phase that inhibits the shape memory effect is also generated at the same time, it is thought that the shape memory effect during low temperature deformation of the 5LIS304L steel described above is small.

本発明者等はγ系ステンレス鋼において変形遇程で転位
やα°相などの永久ひずみの生成を抑制しつつ、加工誘
起ε相の生成を促進させことが優れた形状記憶効果を示
す鍵と考え、鋭意研究を重ねたところ、Fe−Cr鋼に
M n + S iI NおよびCo−を適量含有させ
、かつC,Niなとの合金元素の含有量をコントロール
し、T相が転位やα°相の生成に対して安定な組織とし
た場合、加工誘起ε相は、Md点(変形によりε相が生
成を開始する温度)以下では、低温での変形はど、より
多く生成することが明らかとなった。
The present inventors believe that the key to exhibiting excellent shape memory effects in γ-based stainless steel is to suppress the generation of permanent strains such as dislocations and α° phase during the deformation process, while promoting the generation of deformation-induced ε phase. After much thought and extensive research, we found that Fe-Cr steel contains appropriate amounts of Mn + SiI N and Co-, and also controls the content of alloying elements such as C and Ni, so that the T phase is free from dislocations and α If the structure is stable against the formation of the ° phase, the deformation-induced ε phase will be more likely to be generated below the Md point (the temperature at which the ε phase starts to form due to deformation) than when deformed at low temperatures. It became clear.

一方1 T相が十分に安定でない場合には、α。On the other hand, if the 1T phase is not sufficiently stable, α.

相が生成されたり、また変形温度が低すぎMs点(冷却
するだけでε相が生成を開始する温度)以下になると、
冷却時にすでにε相が生成するために、変形を施しても
ε相の生成が抑制され、形状記憶効果が低下することが
わかった。
If a phase is formed or the deformation temperature is too low below the Ms point (the temperature at which the ε phase begins to form simply by cooling),
It was found that since the ε phase is already generated during cooling, the formation of the ε phase is suppressed even when deformation is applied, and the shape memory effect is reduced.

以上の知見をもとにFe−Cr1ilをベースにMn。Based on the above knowledge, Mn based on Fe-Cr1il.

Sl、Co、N、C,Niなどの含有量を適正にコント
ロールすることにより、焼鈍状態でδフェライト相やマ
ルテンサイト相が存在せず、T相単相組織とし、かつ0
°C以下の低温域で曲げ変形させることで転位やα゛相
の生成を抑制しつつ、加工誘起ε相の生成を著しく促進
させることができ、その結果、変形後As点点上上加熱
することにより優れた形状記憶効果を発現することを見
出した。
By appropriately controlling the contents of Sl, Co, N, C, Ni, etc., there is no δ ferrite phase or martensitic phase in the annealed state, and a T-phase single phase structure is created.
By bending and deforming in a low temperature range below °C, it is possible to suppress the generation of dislocations and α゛ phase, while significantly promoting the formation of deformation-induced ε phase, and as a result, heating above the As point after deformation is possible. It has been found that a more excellent shape memory effect can be achieved.

しかしながら上述の方法では曲げ変形のごとく変形量が
小さい場合には優れた形状記憶効果を示すものの、パイ
プ継手など実用化を想定した場合には変形量が8%程度
にも達することもあり、このように変形量が大きい場合
には必ずしも良好な形状記憶効果を示すとはいえなかっ
た。これは変形量が大きい場合、加工誘起ε相のみなら
ず、転位やα゛相も多量に生成され、これが形状記憶効
果を阻害するためであることがわかった。
However, although the above-mentioned method shows an excellent shape memory effect when the amount of deformation is small, such as in bending deformation, the amount of deformation may reach about 8% when it is assumed to be used in practical applications such as pipe joints. When the amount of deformation is large, it cannot necessarily be said that a good shape memory effect is exhibited. It has been found that this is because when the amount of deformation is large, not only a large amount of deformation-induced ε phase but also dislocations and α゛ phase are generated, which inhibits the shape memory effect.

そこで、変形量が大きい場合でも優れた形状記憶効果を
得るためにさらに種々研究を重ねたところ、常温以下の
温度での変形とε→T変態が完了するとともに永久ひず
みが回復する温度、すなわち450°C以上の温度域で
の加熱処理を繰り返すことにより、永久ひずみの生成に
対する抵抗力が増加し、その後の変形においては永久ひ
ずみの生成が抑制され、変形が実質的にε相の生成によ
ってのみ進行するようになるため、続く、加熱処理によ
り形状記憶効果が著しく改善されることを見出した。さ
らに上述の加熱温度は高すぎるといわゆる鋭敏化温度域
となり、低温変形と加熱処理を繰り返すとC「炭化物が
生成され、Cr欠乏層が生じるため耐食性が損なわれる
が、加熱温度の上限を700°Cとし5さらにC含有量
を規制し、かつNb。
Therefore, in order to obtain an excellent shape memory effect even when the amount of deformation is large, we have conducted various studies and found that the temperature at which deformation and ε→T transformation are completed at temperatures below room temperature and the permanent strain is recovered, that is, 450 By repeating heat treatment in the temperature range above °C, the resistance to the generation of permanent strain increases, and the generation of permanent strain is suppressed in subsequent deformation, and deformation is substantially only due to the generation of the ε phase. It has been found that the shape memory effect is significantly improved by subsequent heat treatment. Furthermore, if the above-mentioned heating temperature is too high, it will reach the so-called sensitization temperature range, and if low-temperature deformation and heat treatment are repeated, C'carbide will be generated and a Cr-deficient layer will be formed, which will impair corrosion resistance. C and 5 further regulate the C content, and Nb.

V、Zr、Tiの一種または二種以上を適量含有させる
ことで、Cr炭化物の生成が抑制され、優れた耐食性を
維持できることを見出した。
It has been found that by containing appropriate amounts of one or more of V, Zr, and Ti, the formation of Cr carbides can be suppressed and excellent corrosion resistance can be maintained.

本発明において鋼の各成分の含有量を前記の範囲に限定
する理由は以下の通りである。
The reason why the content of each component of the steel is limited to the above range in the present invention is as follows.

Cは低温変形と加熱処理の繰り返しに伴いCr炭化物を
生成し、耐食性を劣化させるため、その上限を0.03
%とする。
C produces Cr carbide with repeated low-temperature deformation and heat treatment and deteriorates corrosion resistance, so the upper limit is set at 0.03.
%.

Stは変形時の永久ひずみの発生を防止し、加工誘起ε
相の生成を促進させ優れた形状記憶効果を発現させる必
須の元素であり、3,0%以上の含有が必要である。し
かしながら、Siは強力なフェライト生成元素であり、
多量に含有させると。
St prevents the generation of permanent strain during deformation and reduces deformation-induced ε
It is an essential element that promotes phase formation and exhibits an excellent shape memory effect, and must be contained in an amount of 3.0% or more. However, Si is a strong ferrite-forming element;
When contained in large amounts.

焼鈍状態でδフェライト相が多量に残存するようになり
形状記憶効果が低下し、また熱間加工性も劣化し製造が
困難となるため、Siの上限を6.0%とする。
The upper limit of Si is set to 6.0% because a large amount of δ ferrite phase remains in the annealed state, reducing the shape memory effect and also deteriorating hot workability, making manufacturing difficult.

Mr+はオーステナイト生成元素であり、焼鈍状態でδ
フェライト相の生成を抑制するのに寄与する。またMn
は変形時の永久ひずみの発生を防止し、加工誘起ε相の
生成を促進させ形状記憶効果を高める有効な元素であり
6.0%以上の含有が必要である。しかしながら、多量
に含有させると逆に加工誘起ε相の生成を抑制するよう
になり、形状記憶効果を低下させるようになるためその
上限を25.0%とする。
Mr+ is an austenite-forming element, and in the annealed state δ
Contributes to suppressing the formation of ferrite phase. Also Mn
is an effective element that prevents the generation of permanent strain during deformation, promotes the formation of deformation-induced ε phase, and enhances the shape memory effect, and must be contained in an amount of 6.0% or more. However, if it is contained in a large amount, it will conversely suppress the formation of the deformation-induced ε phase and reduce the shape memory effect, so the upper limit is set at 25.0%.

Niはオーステナイト生成元素であり、焼鈍状態でδフ
ェライト相の生成を防止するに有効な元素である。しか
しながら、N1は変形時の永久ひずみの発生を誘起し、
形状記憶効果を低下させるため、その上限を7.0%と
する。
Ni is an austenite-forming element and is an effective element for preventing the formation of a δ ferrite phase in an annealed state. However, N1 induces the generation of permanent strain during deformation,
In order to reduce the shape memory effect, the upper limit is set to 7.0%.

Crはステンレス鋼の必須元素であり優れた耐食性を得
るには10%を超える含有が必要である。
Cr is an essential element for stainless steel, and to obtain excellent corrosion resistance, the content must exceed 10%.

また、Crは変形時の永久ひずみの生成を抑制し形状記
憶効果を向上させる元素でもある。しかしながらCrは
フェライト生成元素であり、多量に含有させると焼鈍状
態でδフェライト相が残存しやすくなり、形状記憶効果
を低下させるためその上限を17,0%とする。
Cr is also an element that suppresses the generation of permanent strain during deformation and improves the shape memory effect. However, Cr is a ferrite-forming element, and if it is contained in a large amount, the δ ferrite phase tends to remain in the annealed state, reducing the shape memory effect, so the upper limit is set at 17.0%.

Nはオーステナイト生成元素であり、焼鈍状態でδフェ
ライト相の残存の防止に有効である。またNは変形時の
永久ひずみの生成を抑制し、形状記憶効果を向上させる
。さらにNは鋼の強度の増大に極めて著しい効果を呈し
1例えばパイプ継手などに使用される際に必要となる引
き抜き抵抗力(強度)を増大させる。これらの理由によ
りNは0.02%以上含有させる必要がある。しかしな
がら多量のNを含有させると鋼塊にブローホールが生成
し、U全な鋼塊が得られないため、その上限を0.3%
とする。
N is an austenite-forming element and is effective in preventing the δ ferrite phase from remaining in the annealed state. Furthermore, N suppresses the generation of permanent strain during deformation and improves the shape memory effect. Furthermore, N has a very significant effect on increasing the strength of steel, 1 increasing the pull-out resistance (strength) required when it is used, for example, in pipe joints. For these reasons, N needs to be contained in an amount of 0.02% or more. However, if a large amount of N is contained, blowholes will be generated in the steel ingot, making it impossible to obtain a complete steel ingot, so the upper limit has been set at 0.3%.
shall be.

Coはオーステナイト生成元素であり、焼鈍状態で6フ
エライト相の残存の防止に有効である。
Co is an austenite-forming element and is effective in preventing the hexaferrite phase from remaining in the annealed state.

またCoは変形時の永久ひずみの生成を抑制し。Co also suppresses the generation of permanent strain during deformation.

加工誘起ε相の生成を促進させ形状記憶効果を高める有
効な元素であり、2.0%以上の含有が必要である。し
かしながら、Coを多量に含有させてもこれらの効果は
飽和するため、その上限をl010%とする。
It is an effective element that promotes the formation of the deformation-induced ε phase and enhances the shape memory effect, and must be contained in an amount of 2.0% or more. However, even if a large amount of Co is contained, these effects are saturated, so the upper limit is set to 1010%.

Nb、V、ZrおよびTiは常温以下の温度での変形と
450°C〜700”Cでの加熱処理の繰り返し時にお
けるCr炭化物の生成を抑制し、優れた耐食性を維持す
るに必須の元素であり、それぞれ0.05%以上含有さ
せる必要がある。しかしながら、これらの元素はフェラ
イト生成元素であるため多量に含有すると、焼鈍状態で
δフェライト相が残存しやすくなり、形状記憶効果が低
下するようになるため、それぞれの上限を0.8%とす
る。
Nb, V, Zr, and Ti are essential elements to suppress the formation of Cr carbide during repeated deformation at temperatures below room temperature and heat treatment at 450°C to 700"C, and to maintain excellent corrosion resistance. However, since these elements are ferrite-forming elements, if they are included in large amounts, the δ ferrite phase tends to remain in the annealed state, which may reduce the shape memory effect. Therefore, each upper limit is set to 0.8%.

Moは耐食性を向上させる有効な元素である。Mo is an effective element for improving corrosion resistance.

しかし、Moはフェライト生成元素であり、多量に含有
させると焼鈍状態でδフェライト相が残存し、形状記憶
効果が低下するためその上限を2.0%とする。
However, Mo is a ferrite-forming element, and if it is contained in a large amount, the δ ferrite phase will remain in the annealed state, reducing the shape memory effect, so the upper limit is set at 2.0%.

Cuは耐食性を向上させる元素である。またCuはオー
ストナイト生成元素であり、焼鈍状態でのδフェライト
相の残存を防止させるに有効に作用する。これらの効果
は2.0%以上含有させても変化しないため、2.0%
を上限とする。
Cu is an element that improves corrosion resistance. Further, Cu is an austonite-forming element and effectively acts to prevent the δ ferrite phase from remaining in the annealed state. These effects do not change even if the content exceeds 2.0%, so 2.0%
is the upper limit.

D値は形状記憶効果に悪影響を及ぼすδフェライト相の
残存型を規制するもので、D値と合金元素との上述の関
係式は実験的に得られた経験式である。D値が−26,
0未満では多量のδフェライト相が残存し、形状記憶効
果を低下させるためD 41iは−26,0以上とする
The D value regulates the residual form of the δ ferrite phase that adversely affects the shape memory effect, and the above-mentioned relational expression between the D value and the alloying elements is an empirical expression obtained experimentally. D value is -26,
If D41i is less than 0, a large amount of δ ferrite phase remains, reducing the shape memory effect, so D41i is set to -26.0 or more.

以上の成分組成よりなる耐食性に優れた本発明のステン
レス鋼は、所定の形状に温間または冷間加工後、焼鈍し
1次いで常温以下の温度での変形と450°C以上70
0’C以下の温度域での加熱処理を繰り返すことにより
8%程度の変形を受けても優れた形状記憶効果を有する
The stainless steel of the present invention, which has the above-mentioned composition and has excellent corrosion resistance, is hot or cold worked into a predetermined shape, then annealed, then deformed at a temperature of 450°C or higher and 70°C at a temperature below room temperature.
It has an excellent shape memory effect even if it is deformed by about 8% by repeating heat treatment in a temperature range of 0'C or lower.

この形状記憶方法についてさらに説明すると。Let me explain this shape memory method further.

先ず1本発明鋼を所定の形状に加工し、焼鈍を施すので
あるが、該加工は常温または温間であればよい0本発明
鋼は焼鈍ままで(焼鈍温度まで加熱後常温まで冷却した
状態で)δフェライト相やマルテンサイト相が存在せず
、実質上オーステナイト単相を呈し、該加工によってε
相、並びに転位およびα”相の永久ひずみが生しるが5
この加工品を焼鈍することによって、ε相や永久ひすみ
は完全に除去される。
First, the steel of the present invention is processed into a predetermined shape and then annealed. This processing can be performed at room temperature or at a warm temperature. ) There is no δ ferrite phase or martensitic phase, and a substantially austenite single phase is present, and by this processing, ε
phase, as well as dislocations and permanent strain of the α” phase.5
By annealing this workpiece, the ε phase and permanent strain are completely removed.

次いで、常温以下の温度での変形と450°C〜700
℃の温度域での加熱処理を繰り返す。該変形によって加
工誘起ε相は生成されるが、低温での変形はどε相の生
成量が増加する。しかしながら、8%程度の高い変形量
が付与される場合、ε相のみならず、永久ひずみの生成
を完全に防止することができず、形状記憶効果が阻害さ
れる。したがって、変形後の加熱処理はε相のT相への
変態が完了し、かつ永久ひずみが回復する温度以上で行
なう必要があり、これらの理由により、加熱温度は45
0°C以上で行なう必要がある。しかしながら加熱温度
が高すぎるとCr炭化物が生成されやすくなり1本発明
鋼の特徴である耐食性が劣化するようになる。したがっ
て、加熱温度の上限は700’Cとする。この低温変形
と加熱処理を1回以上繰り返すことにより、以後の変形
においては永久ひずみが生成されにくくなり、変形が実
質的にε相の生成によって進行するようになるため、変
形後の加熱処理にて優れた形状記憶効果を示すわけであ
る。
Next, deformation at a temperature below room temperature and 450°C to 700°C
Repeat the heat treatment in the temperature range of °C. The deformation produces a deformation-induced epsilon phase, but deformation at low temperatures increases the amount of epsilon phase produced. However, when a high deformation amount of about 8% is applied, it is not possible to completely prevent the generation of not only the ε phase but also permanent strain, and the shape memory effect is inhibited. Therefore, the heat treatment after deformation must be carried out at a temperature higher than the temperature at which the transformation of the ε phase to the T phase is completed and the permanent strain is recovered.For these reasons, the heating temperature is 45°C.
It is necessary to carry out the process at 0°C or higher. However, if the heating temperature is too high, Cr carbides are likely to be formed, and the corrosion resistance, which is a characteristic of the steel of the present invention, will deteriorate. Therefore, the upper limit of the heating temperature is set to 700'C. By repeating this low-temperature deformation and heat treatment one or more times, permanent strain is less likely to be generated in the subsequent deformation, and the deformation proceeds substantially by the formation of the ε phase, so the heat treatment after deformation is This shows an excellent shape memory effect.

〔実施例〕〔Example〕

第1表に示す合金を高周波溶解にて溶製した。 The alloys shown in Table 1 were produced by high frequency melting.

A1〜AI4鋼は本発明鋼である。Bl〜B4鋼は比較
鋼であり、Bl鋼およびB2鋼はMn、Siがそれぞれ
本発明の範囲外のもの、B3鋼はC,oを含有せず、か
つD値も本発明の範囲外のものである。84mはCが本
発明の範囲外でかつNb、V。
Steels A1 to AI4 are steels of the present invention. Bl to B4 steels are comparative steels, Bl steel and B2 steel have Mn and Si that are outside the range of the present invention, and B3 steel does not contain C and O, and the D value is also outside the range of the present invention. It is something. In 84m, C is outside the scope of the present invention, and Nb and V are included.

ZrおよびTiを含有しないものである。It does not contain Zr and Ti.

これらの鋼塊を鍛造、熱間圧延により3鍋−厚さとし、
その後、焼鈍、冷間圧延をくり返して0.511+1厚
さの焼鈍板とした。この焼鈍板から引張り試験片(0,
5mm’ X 20−霞’ X 200m−1)を切り
出した後。
These steel ingots were forged and hot rolled to a thickness of 3 ladle.
Thereafter, annealing and cold rolling were repeated to obtain an annealed plate having a thickness of 0.511+1. A tensile test piece (0,
After cutting out 5mm' x 20-kasumi' x 200m-1).

20°C,−73°Cまたは一196°cでの引張り与
ひずみと加熱処理を繰り返し、形状回復率(R値)を測
定した。また、耐食性については0.5mmLX 50
s+I@”X 200mm’ の試験片を切り出し、引
張り与ひずみと600°Cでの加熱処理を繰り返した後
、キャス試験を行い1発錆の程度で耐食性を評価した。
Tensile strain and heat treatment at 20°C, -73°C or -196°C were repeated, and the shape recovery rate (R value) was measured. In addition, regarding corrosion resistance, 0.5mmLX 50
A test piece measuring s+I@"

形状回復率(R値)は次のように算出した。最終の変形
−加熱処理サイクルにおいて変形前のゲージ長さく 1
0= 50+sm)を測定し、ついで引張りひずみを付
与し、ひずみfil)を測定した後。
The shape recovery rate (R value) was calculated as follows. Final deformation - Gauge length before deformation in heat treatment cycle 1
0=50+sm), then applying a tensile strain and measuring the strain fil).

加熱処理を行い、ゲージ長さの回復量(p2)を測定し
た。これらの測定値より1次式 %式%() にて回復率(%)を算出した。
Heat treatment was performed, and the amount of gauge length recovery (p2) was measured. The recovery rate (%) was calculated from these measured values using the linear % formula %().

第2表にAl鋼の20’C,−73”Cおよび一196
°Cでの引張りひずみ量と加熱温度(保持時間:15分
)。
Table 2 shows the 20'C, -73"C and -196 Al steels.
Tensile strain amount and heating temperature in °C (holding time: 15 minutes).

繰り返し回数、形状回復率(R値)と一部耐食性の評価
結果を示した。これらの結果から、まず比較例において
、工程N[111,Ntx12. Nn15を見ると。
The evaluation results of the number of repetitions, shape recovery rate (R value), and partial corrosion resistance are shown. From these results, first, in the comparative example, process N[111, Ntx12. Looking at Nn15.

6%変形と600’Cの加熱処理を行ったのみの場合低
温はどR値は高いが、それでも−196°Cで41%に
すぎない。また、工程k13あるいは阻16での変形量
が12%と大きい場合、あるいは工程k14のように加
熱温度が400°Cと低い場合ではR値が17%〜20
%と著しく低い、一方、工程Nll!7のように加熱温
度が750°Cと高い場合、R値は75%と優れた形状
記憶効果を有するようになるが、加熱温度が600°C
である工程Na 10 、 No、 15などに比べて
耐食性に劣っている。
In the case of only 6% deformation and heat treatment at 600'C, the R value is high at low temperatures, but it is still only 41% at -196°C. In addition, if the amount of deformation in step k13 or step 16 is as large as 12%, or if the heating temperature is as low as 400°C as in step k14, the R value will be 17% to 20%.
%, on the other hand, the process Nll! When the heating temperature is as high as 750°C as in 7, the R value is 75% and has an excellent shape memory effect, but when the heating temperature is 600°C
The corrosion resistance is inferior to that of steps Na 10, No. 15, etc.

これに対して本発明法においは工程Nctl、 k3お
よび漱6にみられるように3%変形と600°Cでの加
熱処理を4回繰り返すことにより、変形温度が20’C
でもR値が76%と高<、−73°C,−196°Cで
はR値が98%、100%とほぼ完全に形状回復する。
On the other hand, in the method of the present invention, as seen in steps Nctl, k3, and Sake 6, the deformation temperature is increased to 20'C by repeating 3% deformation and heat treatment at 600°C four times.
However, when the R value is as high as 76%, at -73°C and -196°C, the R value is 98% and 100%, and the shape is almost completely recovered.

また変形量が6〜7%と高い場合でも、工程N114.
Na5およびN[L8.に9にみられるように。
Moreover, even when the amount of deformation is as high as 6 to 7%, step N114.
Na5 and N[L8. As seen in 9.

−73°Cあるいは一196°Cでの低温域で変形し、
ついで600°Cでの加熱処理を繰り返すことにより形
状記憶効果が著しく改善されることがわかる。
It deforms in the low temperature range of -73°C or -196°C,
It can be seen that the shape memory effect is significantly improved by repeating the heat treatment at 600°C.

第3表は1本発明鋼と比較鋼の20°C,−73°Cま
たは一196°Cでの6%ひずみと600°Cの加熱処
理を4回繰り返した際のR4Mと、繰り返し処理後のキ
ャス試験における耐食性の評価を示したものである。
Table 3 shows the R4M of the invention steel and comparative steel when heat treatment at 600°C and 6% strain at 20°C, -73°C or -196°C was repeated four times, and after the repeated treatments. This figure shows the evaluation of corrosion resistance in the CASS test.

この第3表の結果から、まず、R値についてみると5比
較鋼ではBl綱のR値は20’Cで21%と低く、はと
んど形状記憶効果を示さず、−73’Cおよび一+96
°CではR値は向上するものの、各々32%。
From the results in Table 3, first of all, looking at the R value, among the 5 comparative steels, the R value of Bl steel is as low as 21% at 20'C, and most of them do not show any shape memory effect, and at -73'C and 1+96
Although the R value improves at °C, it is only 32% for each.

34%と低い、B2鋼、B3鋼も20°cでのR値はそ
れぞれ13%、24%と形状記憶効果は小さい。また低
温変形でのR値は20°Cの場合に比べてかなり増加す
るが、それでも40%以下と低く十分な形状記憶効果は
示さない。
The shape memory effect of B2 steel and B3 steel is as low as 34%, and the R value at 20°C is 13% and 24%, respectively. Furthermore, although the R value at low temperature deformation increases considerably compared to the case at 20°C, it is still low at 40% or less and does not exhibit a sufficient shape memory effect.

これに対して本発明鋼では20°CでのR値はすべて4
5%以上と鴬<、さらに低温で変形した場合。
On the other hand, all the steels of the present invention have an R value of 4 at 20°C.
If it is 5% or more and it is deformed at low temperature.

R値が70%以上と著しく増加している。The R value is significantly increased to 70% or more.

一方、耐食性についてみると本発明鋼およびB1−1B
3鋼はC含存量が低く、かつNb、V、ZrおよびTI
の一種または二種を適量含有しているため優れた耐食性
を有している。これに対してB4鋼はC含有量が高くか
つNb、V、ZrおよびTiを含有していないため耐食
性に劣っている。
On the other hand, regarding corrosion resistance, the present invention steel and B1-1B
3 steel has low C content and Nb, V, Zr and TI
It has excellent corrosion resistance because it contains appropriate amounts of one or two of the following. On the other hand, B4 steel has a high C content and does not contain Nb, V, Zr, and Ti, and therefore has poor corrosion resistance.

第3表 0耐食性の評価 ○:発発錆し1△:やや発話あり、×
二発錆あり以上のように1本発明によれば、Crを10
%を超えて含有させ耐食性を向上させたステンレス鋼に
おいて、変形ひずみ量が高い場合でも、Mn、Si。
Table 3 0 Evaluation of corrosion resistance ○: Rust developed 1△: Slightly cracked, ×
As described above, according to the present invention, Cr is added to 10
% of Mn and Si to improve corrosion resistance, even when the amount of deformation strain is high.

N + Co + N rなどの合金元素の含有量を適
正にコントロールしたうえ、低温での変形と450°C
〜700°Cでの加熱処理を繰り返すことによって、優
れた形状記憶特性を発現させることができ、また、C含
有量を規制しNb、V、ZrまたはTiを適量含有させ
ることによって耐食性の劣化も防止できたものであり、
耐食性を必要とする分野の機械部品等の固定、締め付は
部あるいはパイプ継手などに好適な部材を促供すること
ができ、その工業的価値は極めて大きい。
In addition to properly controlling the content of alloying elements such as N + Co + N
By repeating heat treatment at ~700°C, excellent shape memory properties can be developed, and by regulating the C content and containing appropriate amounts of Nb, V, Zr, or Ti, corrosion resistance can be prevented from deteriorating. It could have been prevented,
It can be used to fix and tighten mechanical parts in fields that require corrosion resistance, and can be used as a suitable member for pipe joints, etc., and its industrial value is extremely large.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%にて、C;0.03%以下、Si:3.0
〜6.0%、Mn;6.0〜25.0%、Ni;7.0
%以下、Cr;10.0%超〜17.0%、N;0.0
2〜0.3%、Co;2.0〜10.0%、およびNb
、V、Zr、Tiの一種または二種以上:0.05〜0
.8%を含有し、残部Feならびに不可避的不純物から
なる鋼であって、かつ、D=Ni+0.30Mn+56
.8C+19.0N+0.73Co−1.85〔Cr+
1.6Sl+1.5(Nb+V+Zr+Ti)〕 で定義されるD値が−26.0以上である鋼を、所定の
形状に加工し、焼純を施した後、次いで常温以下の温度
での変形と450℃以上、700℃以下の温度域での加
熱処理を一回以上繰り返してから、常温に戻して最終形
状を記憶させることを特徴とする形状記憶ステンレス鋼
の形状記憶方法。
(1) In weight%, C: 0.03% or less, Si: 3.0
~6.0%, Mn; 6.0-25.0%, Ni; 7.0
% or less, Cr; more than 10.0% to 17.0%, N; 0.0
2-0.3%, Co; 2.0-10.0%, and Nb
, V, Zr, Ti or more: 0.05-0
.. 8%, with the balance consisting of Fe and unavoidable impurities, and D=Ni+0.30Mn+56
.. 8C+19.0N+0.73Co-1.85[Cr+
1.6Sl+1.5(Nb+V+Zr+Ti)] After processing the steel with a D value of -26.0 or more as defined by A shape-memory method for shape-memory stainless steel, which comprises repeating heat treatment in a temperature range of .degree. C. or higher and 700.degree. C. or lower one or more times, and then returning the temperature to room temperature to memorize the final shape.
(2)重量%にて、C;0.03%以下、Si;3.0
〜6.0%、Mn;6.0〜25.0%、Ni;7.0
%以下、Cr;10.0%超〜17.0%、N;0.0
2〜0.3%、Co;2.0〜10.0%、Nb、V、
Zr、Tiの一種または二種以上:0.05〜0.8%
、および2.0%以下のMoもしくは2.0%以下のC
uの一種または二種を含有し、残部Feならびに不可避
的不純物からなる鋼であって、かつ、D=Ni+0.3
0Mn+56.8C+19.0N+0.73Co+Cu
−1.85〔Cr+1.6Si+1.5(Nb+V+Z
r+Ti)+Mo〕 で定義されるD値が−26.0以上である鋼を所定の形
状に加工し、焼鈍を施した後、次いで常温以下の温度で
の変形と450℃以上、700℃以下の温度域での加熱
処理を一回以上繰り返してから、常温に戻して最終形状
を記憶させることを特徴とする形状記憶ステンレス鋼の
形状記憶方法。
(2) In weight%, C: 0.03% or less, Si: 3.0
~6.0%, Mn; 6.0-25.0%, Ni; 7.0
% or less, Cr; more than 10.0% to 17.0%, N; 0.0
2-0.3%, Co; 2.0-10.0%, Nb, V,
One or more of Zr and Ti: 0.05 to 0.8%
, and 2.0% or less Mo or 2.0% or less C
A steel containing one or two types of u, the balance consisting of Fe and unavoidable impurities, and D=Ni+0.3
0Mn+56.8C+19.0N+0.73Co+Cu
-1.85 [Cr+1.6Si+1.5(Nb+V+Z
r+Ti)+Mo] Steel having a D value defined as -26.0 or more is processed into a predetermined shape, annealed, and then deformed at a temperature below room temperature and at a temperature of 450°C or more and 700°C or less. A shape memory method for shape memory stainless steel, which is characterized by repeating heat treatment in a temperature range one or more times and then returning the temperature to room temperature to memorize the final shape.
JP12122189A 1989-05-15 1989-05-15 Method for allowing shape memory stainless steel to memorize shape Pending JPH02301514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12122189A JPH02301514A (en) 1989-05-15 1989-05-15 Method for allowing shape memory stainless steel to memorize shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12122189A JPH02301514A (en) 1989-05-15 1989-05-15 Method for allowing shape memory stainless steel to memorize shape

Publications (1)

Publication Number Publication Date
JPH02301514A true JPH02301514A (en) 1990-12-13

Family

ID=14805893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12122189A Pending JPH02301514A (en) 1989-05-15 1989-05-15 Method for allowing shape memory stainless steel to memorize shape

Country Status (1)

Country Link
JP (1) JPH02301514A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244513A (en) * 1991-03-29 1993-09-14 Mitsubishi Jukogyo Kabushiki Kaisha Fe-cr-ni-si shape memory alloys with excellent stress corrosion cracking resistance
WO1997003215A1 (en) * 1995-07-11 1997-01-30 Kari Martti Ullakko Iron-based shape memory and vibration damping alloys containing nitrogen
EP1123983A1 (en) * 2000-02-09 2001-08-16 Japan as represented by Director General of Shape memory alloy
US6515382B1 (en) 1998-03-03 2003-02-04 Kari M Ullakko Actuators and apparatus
JP2006257707A (en) * 2005-03-16 2006-09-28 Nippon Steel Corp Member for rail joint using shape memory alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244513A (en) * 1991-03-29 1993-09-14 Mitsubishi Jukogyo Kabushiki Kaisha Fe-cr-ni-si shape memory alloys with excellent stress corrosion cracking resistance
WO1997003215A1 (en) * 1995-07-11 1997-01-30 Kari Martti Ullakko Iron-based shape memory and vibration damping alloys containing nitrogen
US6515382B1 (en) 1998-03-03 2003-02-04 Kari M Ullakko Actuators and apparatus
EP1123983A1 (en) * 2000-02-09 2001-08-16 Japan as represented by Director General of Shape memory alloy
JP2001226747A (en) * 2000-02-09 2001-08-21 National Institute For Materials Science Shape memory alloy
JP2006257707A (en) * 2005-03-16 2006-09-28 Nippon Steel Corp Member for rail joint using shape memory alloy
JP4695417B2 (en) * 2005-03-16 2011-06-08 新日本製鐵株式会社 Rail joint member using shape memory alloy

Similar Documents

Publication Publication Date Title
EP0176272B1 (en) Shape memory alloy and method for producing the same
US7160399B2 (en) Nanocarbide precipitation strengthened ultrahigh-strength, corrosion resistant, structural steels
EP1216311B1 (en) Method for the manufacture of products of precipitation hardened martensitic stainless steel and use of the method
JPS6014097B2 (en) Hot rolled steel strip consisting of two phases
JP2003507576A5 (en)
JP6223124B2 (en) High-strength duplex stainless steel sheet and its manufacturing method
JPH0382741A (en) Shape memory staiinless steel excellent in stress corrosion cracking resistance and shape memory method therefor
JPS61295356A (en) High strength stainless steel
JPH05255813A (en) High strength alloy excellent in workability and damping capacity
JPH02301514A (en) Method for allowing shape memory stainless steel to memorize shape
US2799602A (en) Process for producing stainless steel
US5685921A (en) Method of preparing a magnetic article from a duplex ferromagnetic alloy
JPS62112720A (en) Improvement of characteristic fe-mn-si shape memory alloy
JP3970645B2 (en) Method for producing iron-based shape memory alloy
US4353755A (en) Method of making high strength duplex stainless steels
JPS60106952A (en) Process hardenable stainless steel of substantially austenite and manufacture
JPS585965B2 (en) The first and last day of the year.
US5951788A (en) Superconducting high strength stainless steel magnetic component
JPH01172516A (en) Manufacture of acicular ferritic stainless steel having excellent stress corrosive cracking resistance
Li Heat Treating of Precipitation-Hardenable Stainless Steels and Iron-Base Superalloys
JPH04173926A (en) Method for providing fatigue characteristic to martensitic stainless steel strip
JPS61133312A (en) Production of low temperature steel plate having high toughness
JP7308202B2 (en) Method for manufacturing articles from maraging steel
JPH02149648A (en) Shape memory stainless steel and its shape memorizing method
JPH05271768A (en) Manufacture of non-magnetic stainless steel thick plate