JPH01268835A - Super elastic alloy material and super elastic element - Google Patents

Super elastic alloy material and super elastic element

Info

Publication number
JPH01268835A
JPH01268835A JP9266888A JP9266888A JPH01268835A JP H01268835 A JPH01268835 A JP H01268835A JP 9266888 A JP9266888 A JP 9266888A JP 9266888 A JP9266888 A JP 9266888A JP H01268835 A JPH01268835 A JP H01268835A
Authority
JP
Japan
Prior art keywords
super elastic
alloy material
superelastic
alloy
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9266888A
Other languages
Japanese (ja)
Other versions
JPH0776401B2 (en
Inventor
Kiyoshi Yamauchi
清 山内
Hiroshi Ishikawa
洋 石川
Shinichi Kubo
久保 進一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63092668A priority Critical patent/JPH0776401B2/en
Publication of JPH01268835A publication Critical patent/JPH01268835A/en
Publication of JPH0776401B2 publication Critical patent/JPH0776401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Adornments (AREA)
  • Springs (AREA)

Abstract

PURPOSE:To obtain the title material retaining super elastic characteristics at the room temp. or the below and having improved cold workability at reduced working cost by substituting the Ti components of an TiNi alloy having specific compsn. by Fe in the specific composition range. CONSTITUTION:In a TiNi alloy constituted of at least 44-50at% Ni and the balance consisting of Ti, the above Ti is substituted by Fe in the range of 0.5-5%. In this way, a super elastic alloy material having excellent cold workability, drastically reducible of working cost and retaining super elastic characteristics at the room temp. or the below can be obtd. At the time of manufacturing a super elastic element in the use of the above super elastic alloy material, the above material is cold-worked and is thereafter subjected to heat treatment in the temp. range of 350-600 deg.C. By this method, the good super elastic characteristics can be obtd. without impairing its fatigue resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、加工性の優れた安価な超弾性バネ等に用いら
れる超弾性合金材料及び超弾性素子に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a superelastic alloy material and a superelastic element used in inexpensive superelastic springs with excellent workability.

〔従来の技術〕[Conventional technology]

一般に、TiNi合金が熱弾性型マルテンサイト変態の
逆変態に付随して顕著な形状記憶効果、および擬弾性効
果を示すことはよく知られている。
Generally, it is well known that TiNi alloys exhibit remarkable shape memory effects and pseudoelastic effects accompanying the reverse transformation of thermoelastic martensitic transformation.

TiNi合金をヒステリシスの小さな形状記憶バネとし
て用いる場合、冷間加工後400〜500℃で焼鈍し、
冷間の加工組織を残すことで中間相変態を利用すること
が知られている。また擬弾性バネについても同様な方法
が取られている。
When using a TiNi alloy as a shape memory spring with small hysteresis, it is annealed at 400 to 500°C after cold working.
It is known to utilize intermediate phase transformation by leaving a cold processed structure. A similar method is also used for pseudoelastic springs.

これらは、家電用アクチュエーター、歯列矯正線、ガイ
ドワイヤー、ブラジャー等への実用化が進められている
が、いずれも体温(約35℃)近傍で使用されるもので
あった。
These devices are being put to practical use in home appliance actuators, orthodontic wires, guide wires, brassiere, etc., but all of them are used at temperatures close to body temperature (approximately 35° C.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

形状記憶合金を用いて室温(約20℃以下)とりわけ0
℃前後で作動するバネを得ようとする場合、TlNi2
元合金は500〜550℃の温度で短時間処理(5〜1
0分間)を必要とする。この場合、処理時間が短いため
に、スプリング・バックを無視できず、成型性に難点を
有していた。
Using shape memory alloys, temperature at room temperature (approximately 20℃ or less), especially
When trying to obtain a spring that operates around ℃, TlNi2
The original alloy was treated at a temperature of 500-550°C for a short time (5-1
0 minutes). In this case, since the processing time was short, spring back could not be ignored and moldability was problematic.

また、500℃を越えた熱処理条件では、冷間加工で与
えられた加工組織が消えるために、ヒステリシスが大き
くなる難点を有している。
Furthermore, under heat treatment conditions exceeding 500° C., the processed structure imparted by cold working disappears, resulting in a disadvantage of increased hysteresis.

また0℃前後から擬弾性を示すバネは、400〜450
℃で短時間(5〜10分間)の処理によって得られる。
Also, springs that exhibit pseudoelasticity from around 0°C have a temperature of 400 to 450°C.
Obtained by short-term (5-10 minutes) treatment at <RTIgt;C.

しかし前記と同様スプリングバックが大きくコイルバネ
の成型は困誼であった。
However, like the above, the springback was large and it was difficult to mold the coil spring.

これらの難点を克服し、室温以下で作動する素子の製造
を可能にすることは、冷蔵庫、住宅用換気口、等のアク
チュエーター、自動車、衣料、医療等への擬弾性バネへ
の実用化にとって極めて重要なことである。
Overcoming these difficulties and making it possible to manufacture elements that operate below room temperature will be extremely important for practical application to actuators for refrigerators, residential ventilation, etc., and pseudoelastic springs for automobiles, clothing, medical care, etc. It's important.

一方、このようなTiNi合金は、加工性が悪いことが
よく知られている。このTiNi合金は通常、熱間加工
によって直径的5〜101W+にされた後、冷間加工に
よって所定の寸法に加工される。
On the other hand, it is well known that such TiNi alloys have poor workability. This TiNi alloy is usually hot worked to a diameter of 5 to 101 W+, and then cold worked to a predetermined size.

TiNi合金線は、加工硬化が激しいため、繰り返しの
焼な孔を要する。このため、冷間加工に要する費用はT
iNi合金線のコストの大部分を占めている。
TiNi alloy wire is severely work hardened and requires repeated annealing. Therefore, the cost required for cold working is T
It accounts for most of the cost of iNi alloy wire.

本発明の技術的課題は、これらの問題を解決し、室温以
下での超弾性特性を保持し、且つ、冷間加工性を改善し
た超弾性合金材料及び超弾性素子を提供することにある
A technical object of the present invention is to solve these problems and provide a superelastic alloy material and a superelastic element that maintain superelastic properties at room temperature or lower and have improved cold workability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、少くとも44〜50at%(50は含
まず)のNiと残部TiよりなるTiNi合金であって
、上記Tiを、0.5〜5at%の範囲内で、Feと置
換したことを特徴とする超弾性合金材料が得られる。
According to the present invention, there is provided a TiNi alloy consisting of at least 44 to 50 at% Ni (excluding 50 at%) and the remainder Ti, in which the Ti is replaced with Fe within the range of 0.5 to 5 at%. A superelastic alloy material is obtained.

更に本発明によれば、上記した超弾性合金材料を冷間加
工後、350℃〜600℃の範囲内の温度にて熱処理し
てなることを特徴とする超弾性素子が得られる。
Furthermore, according to the present invention, a superelastic element is obtained, which is obtained by cold-working the above-mentioned superelastic alloy material and then heat-treating it at a temperature within the range of 350°C to 600°C.

本発明で、TiNi合金のFe成分の置換量を0.5〜
5原子パーセント(at%)としたのは、0.5at%
未満ではFe添加の効果が薄いためであり、5at%を
越えると顕著な超弾性が認められ難しくなることによっ
ている。
In the present invention, the amount of Fe component substitution in the TiNi alloy is 0.5 to
5 atomic percent (at%) is 0.5 at%
This is because if it is less than 5 at %, the effect of Fe addition is weak, and if it exceeds 5 at %, remarkable superelasticity is observed and it becomes difficult.

まなNiの下限を44原子パーセント(at%)とした
のは、TiNi合金はNiが低下するととともに、変態
温度が上昇し、室温以下での超弾性が得難くなる。同様
なことはTiN1Fe合金に対しても云えるからである
The reason why the lower limit of Ni is set to 44 atomic percent (at%) is that as the Ni content decreases, the transformation temperature of the TiNi alloy increases, making it difficult to obtain superelasticity below room temperature. This is because the same can be said for the TiN1Fe alloy.

熱処理温度を350〜600℃としたのは、350℃未
満では、十分な超弾性特性は得られず、600℃を越え
ると超弾性特性は得られるが、曲げ伸し等の変形の繰り
返しに弱くなることによるためである。
The reason why the heat treatment temperature was set at 350 to 600°C is that sufficient superelastic properties cannot be obtained at temperatures below 350°C, while superelastic properties can be obtained at temperatures above 600°C, but it is susceptible to repeated deformation such as bending and stretching. It is because of what you become.

〔実施例〕〔Example〕

本発明の実施例について説明する。 Examples of the present invention will be described.

第1表は、本発明の実施例に係るTiN1Fe超弾性合
金材料の加工特性及び超弾性素子の超弾性開始温度を示
している。
Table 1 shows the processing properties of the TiN1Fe superelastic alloy material and the superelasticity onset temperature of the superelastic element according to the embodiments of the present invention.

比較例として、Feを含有しないTiNi超弾性合金材
料及び超弾性素子の測定結果を併記した。
As a comparative example, the measurement results of a TiNi superelastic alloy material containing no Fe and a superelastic element are also shown.

この表において、冷間加工性の試験は、合金材料の試料
の1バスの加工率を20%、30%、40%、50%と
して行われている0表中の○印は3回バスしても3回と
も可、Δ印は3回バスすると1乃至2同町、X印は3回
バスすると3回とも不可を示す、0.58t%以上のF
eを含有している試料(2〜5及び7〜10)は、1バ
スの加工率が50%まて可能であった。これに対し′〔
、比較例に係る超弾性合金材料試料(11〜13)では
1バスの加工率が30%程度が限度で、40%以上にな
ると加工がやや難しいことが判明した。
In this table, the cold workability test was conducted at a working rate of 20%, 30%, 40%, and 50% for each bath of the alloy material sample. 0.58t% or more F
Samples containing e (2 to 5 and 7 to 10) could be processed at a processing rate of up to 50% per bath. On the other hand,
It was found that for the superelastic alloy material samples (11 to 13) according to comparative examples, the machining rate per bath was limited to about 30%, and when it exceeded 40%, machining was somewhat difficult.

ここで、やや難しいとは3回程度の加工性試験で1乃至
2回破断し、必すしも加工できないことはないが、実際
の作業において、破断しやすいことは必ずしも適当な加
工法とは言えない、そして安全性からの見地からは、T
iNi合金材料について、加工率30%以下に抑えられ
る。
Here, "somewhat difficult" means that it breaks once or twice in about three workability tests, and does not necessarily mean that it cannot be processed, but in actual work, if it is easy to break, it does not necessarily mean that it is an appropriate processing method. No, and from a safety standpoint, T
For iNi alloy materials, the processing rate can be suppressed to 30% or less.

また、表1の超弾性開始温度は、実施例に係るT i 
N i F e超弾性合金材料を冷間加工後、400゛
Cで30分間熱処理、−20℃〜5℃毎に温度を上げ各
温度での応力−ひずみ曲線より測定された。
In addition, the superelasticity starting temperature in Table 1 is T i
After cold working the N i Fe superelastic alloy material, it was heat treated at 400°C for 30 minutes, and the temperature was increased from -20°C to every 5°C, and the stress-strain curve was measured at each temperature.

比較例として、Feを含有しないTiNi超弾性合金材
料の冷間加工後の超弾性開始温度の測定結果を併記した
As a comparative example, the measurement results of the superelasticity onset temperature after cold working of a TiNi superelastic alloy material that does not contain Fe are also shown.

この表より、Fe添加量の増加とともに超弾性を示す温
度は低下し、5at%添加した超弾性合金素子(試料4
及び9)は0℃以下であった。Feを7at%添加した
超弾性合金素子(試料5及び10)は、超弾性特性は良
好でなかった。
From this table, as the amount of Fe added increases, the temperature at which superelasticity occurs decreases, and the superelastic alloy element with 5 at% addition (Sample 4)
and 9) were below 0°C. The superelastic alloy elements (Samples 5 and 10) to which 7 at% Fe was added did not have good superelastic properties.

尚、比較例(試料11〜13)は、室温以上の超弾性温
度を示した。
Note that the comparative examples (samples 11 to 13) exhibited superelastic temperatures higher than room temperature.

実施例に係る超弾性合金材料及び超弾性素子は次のよう
に製造された。
The superelastic alloy material and superelastic element according to the example were manufactured as follows.

高周波真空溶解で第1表中に示した組成のTiN1Fe
合金をそれぞれ準備し、次に温度900℃にて2時間の
均一化処理後熱間ハンマー、熱間ロール、続いて冷間伸
線により径2.OBまで加工し、超弾性合金線型材料(
第1表中の試料1〜10)を得た。
TiN1Fe with the composition shown in Table 1 by high frequency vacuum melting
Each alloy was prepared and then homogenized at 900°C for 2 hours, then hot hammered, hot rolled, and then cold wire drawn to a diameter of 2. Processed to OB, superelastic alloy linear material (
Samples 1 to 10) in Table 1 were obtained.

この超弾性合金材料を、冷間加工し、350℃〜600
℃範囲内で熱処理を施すと、超弾性素子第1表中の超弾
性開始温度測定試料1〜10が形成される。また比較例
に係る超弾性合金材料及び弾性素子も実施例と同様な方
法で製造された。
This superelastic alloy material is cold worked and heated to a temperature of 350°C to 600°C.
When the heat treatment is performed within the temperature range of .degree. C., superelasticity start temperature measurement samples 1 to 10 in Table 1 of the superelastic element are formed. Further, superelastic alloy materials and elastic elements according to comparative examples were also manufactured in the same manner as in the examples.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、冷間加工性が優
れ、加工コストを大巾に削減でき、且つ、室温以下での
超弾性特性を保持する超弾性合金材料及び超弾性素子の
提供が可能となる。
As described above, the present invention provides a superelastic alloy material and a superelastic element that have excellent cold workability, can significantly reduce processing costs, and maintain superelastic properties at room temperature or below. becomes possible.

Claims (1)

【特許請求の範囲】 1、少くとも44〜50at%(50は含まず)のNi
と残部TiよりなるTiNi合金であって、上記Tiを
、0.5〜5at%の範囲内で、Feと置換したことを
特徴とする超弾性合金材料。 2、第1の請求項記載の超弾性合金材料を冷間加工後、
350℃〜600℃の範囲内の温度にて熱処理してなる
ことを特徴とする超弾性素子。
[Claims] 1. At least 44 to 50 at% (excluding 50) Ni
A superelastic alloy material comprising a TiNi alloy with the remainder being Ti, wherein the Ti is replaced with Fe within a range of 0.5 to 5 at%. 2. After cold working the superelastic alloy material according to the first claim,
A superelastic element characterized by being heat-treated at a temperature within the range of 350°C to 600°C.
JP63092668A 1988-04-16 1988-04-16 Superelastic alloy material and superelastic element Expired - Lifetime JPH0776401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092668A JPH0776401B2 (en) 1988-04-16 1988-04-16 Superelastic alloy material and superelastic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092668A JPH0776401B2 (en) 1988-04-16 1988-04-16 Superelastic alloy material and superelastic element

Publications (2)

Publication Number Publication Date
JPH01268835A true JPH01268835A (en) 1989-10-26
JPH0776401B2 JPH0776401B2 (en) 1995-08-16

Family

ID=14060855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092668A Expired - Lifetime JPH0776401B2 (en) 1988-04-16 1988-04-16 Superelastic alloy material and superelastic element

Country Status (1)

Country Link
JP (1) JPH0776401B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265680A (en) * 2005-03-25 2006-10-05 Toyohashi Univ Of Technology Superelastic material and its production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161746A (en) * 1982-03-19 1983-09-26 Furukawa Electric Co Ltd:The Nickel-titanium alloy for precision casting
JPS6159390A (en) * 1984-08-30 1986-03-26 東芝ライテック株式会社 Display unit
JPS61177346A (en) * 1985-02-01 1986-08-09 Sumitomo Electric Ind Ltd Functional alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161746A (en) * 1982-03-19 1983-09-26 Furukawa Electric Co Ltd:The Nickel-titanium alloy for precision casting
JPS6159390A (en) * 1984-08-30 1986-03-26 東芝ライテック株式会社 Display unit
JPS61177346A (en) * 1985-02-01 1986-08-09 Sumitomo Electric Ind Ltd Functional alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265680A (en) * 2005-03-25 2006-10-05 Toyohashi Univ Of Technology Superelastic material and its production method

Also Published As

Publication number Publication date
JPH0776401B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US6921441B2 (en) Super-elastic titanium alloy for medical uses
JPH0665742B2 (en) Shape memory TiNiV alloy manufacturing method
US5958159A (en) Process for the production of a superelastic material out of a nickel and titanium alloy
JPH0543969A (en) Shape-memory alloy of high critical temperature
JP2541802B2 (en) Shape memory TiNiV alloy and manufacturing method thereof
JPS6362583B2 (en)
JPH01268835A (en) Super elastic alloy material and super elastic element
JPS62294130A (en) Production of stainless steel having high strength and non-magnetism
JPS63235444A (en) Ti-ni-al based shape memory alloy and its production
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JP2004197112A (en) Method of producing biological superelastic titanium alloy
JP5831283B2 (en) Titanium alloy member whose shape is deformed in the same direction as the processing direction by heat treatment and its manufacturing method
JPH11269585A (en) Titanium-vanadium-aluminum superelastic alloy and its production
JPS6396234A (en) Shape memory alloy material
JPH0860277A (en) Nickel-titanium alloy
WO2006082682A1 (en) Ti-Nb-Zr BASED ALLOY
JP3141328B2 (en) Manufacturing method of super elastic spring alloy
JP3915543B2 (en) Partly superelastic parts and method of manufacturing the same
JP2724815B2 (en) Shape memory alloy coil spring and method of manufacturing the same
JPH07207390A (en) Super elastic spring
JPS622026B2 (en)
JPS622027B2 (en)
JP2706273B2 (en) Superelastic Ni-Ti-Cu alloy and method for producing the same
JPH059686A (en) Production of shape memory niti alloy
JPS62284047A (en) Manufacture of shape memory alloy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 13