JP4302604B2 - Superelastic titanium alloy for living body - Google Patents

Superelastic titanium alloy for living body Download PDF

Info

Publication number
JP4302604B2
JP4302604B2 JP2004279094A JP2004279094A JP4302604B2 JP 4302604 B2 JP4302604 B2 JP 4302604B2 JP 2004279094 A JP2004279094 A JP 2004279094A JP 2004279094 A JP2004279094 A JP 2004279094A JP 4302604 B2 JP4302604 B2 JP 4302604B2
Authority
JP
Japan
Prior art keywords
mol
content
group
titanium alloy
superelastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004279094A
Other languages
Japanese (ja)
Other versions
JP2006089825A (en
Inventor
豊延 田中
宏 堀川
修一 宮崎
秀樹 細田
熙榮 金
宰逸 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Techno Material Co Ltd
Original Assignee
Furukawa Techno Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Techno Material Co Ltd filed Critical Furukawa Techno Material Co Ltd
Priority to JP2004279094A priority Critical patent/JP4302604B2/en
Publication of JP2006089825A publication Critical patent/JP2006089825A/en
Application granted granted Critical
Publication of JP4302604B2 publication Critical patent/JP4302604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Endoscopes (AREA)

Description

本発明は超弾性チタン合金に関する。特に、医療用機器などに最適な生体用超弾性チタン合金に関する。   The present invention relates to a superelastic titanium alloy. In particular, it relates to a bioelastic superelastic titanium alloy that is optimal for medical equipment and the like.

近年、超弾性特性を備えた合金材料が医療分野で用いられてきている。
例えば、Ti−Ni系合金は強度、耐磨耗性、耐食性に優れ、生体とのなじみが良いなどの特徴を有し、生体用材料として多種多様の医療機器に利用されている。
しかし、Ti−Ni系合金を用いた生体用材料では含有されているNiがアレルギー症状を引き起こす恐れがあることから、生体に対して毒性やアレルギーを起す恐れのある元素を含まず、より安全な生体用材料として、Niを含まない生体用Ti−Nb−Sn形状記憶合金(特許文献1参照)や生体用超弾性Ti−Mo−X(X:Ga、Al、Ge)合金(特許文献2参照)などが提案されている。
In recent years, alloy materials having superelastic properties have been used in the medical field.
For example, Ti—Ni-based alloys have characteristics such as excellent strength, wear resistance, and corrosion resistance, and good compatibility with living organisms, and are used in various medical devices as biomaterials.
However, in biomaterials using Ti-Ni alloys, the contained Ni may cause allergic symptoms, so it does not contain elements that may cause toxicity or allergies to the living body, and is safer. Biomaterials include Ni-free Ti-Nb-Sn shape memory alloys (see Patent Document 1) and super-elastic Ti-Mo-X (X: Ga, Al, Ge) alloys for living bodies (see Patent Document 2). ) Etc. have been proposed.

特開2001−329325号公報JP 2001-329325 A 特開2003−293058号公報JP 2003-293058 A

特許文献1及び特許文献2で提案されるNiを含まないチタン合金の登場により、生体内や素肌に直接触れるような利用分野において、超弾性特性や形状記憶特性を有効に活用できる製品の開発が促される。
しかしながら、医療用ガイドワイヤ、歯列矯正用ワイヤ、ステントなどの各種多様な医療機器部材や眼鏡フレーム、眼鏡ノーズパッドなどの素肌と直接に接する生活品部材としてNiを含まない前記チタン合金を利用するには、冷間加工性や超弾性特性の面で満足すべきものではなく、より高性能な材料の開発が望まれている。
そこで、本発明では優れた超弾性特性を具備すると共に、冷間加工性にも優れ生産性の良いNiを含まない超弾性チタン合金を提案するものである。
With the advent of titanium alloys that do not contain Ni proposed in Patent Document 1 and Patent Document 2, the development of products that can effectively utilize superelastic characteristics and shape memory characteristics in the fields of use that directly touch the living body or the skin. Prompted.
However, a variety of medical equipment members such as medical guide wires, orthodontic wires, and stents, and daily products such as spectacle frames and spectacle nose pads that use the titanium alloy that does not contain Ni are used. However, it is not satisfactory in terms of cold workability and superelastic properties, and development of higher performance materials is desired.
Accordingly, the present invention proposes a superelastic titanium alloy which does not contain Ni, which has excellent superelastic characteristics, is excellent in cold workability and has good productivity.

請求項1記載の発明は、チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、更にZrを1〜20mol%、Moを1〜6mol%含有し、Ta、Nb、Zr及びMoの総量が60mol%以下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金である。   The invention according to claim 1 is characterized in that one or two of Ta and Nb, which are β-phase stabilizing elements of titanium, are 15 mol% ≦ 1.5x + y ≦ 45 mol% (x is Nb content, y is Ta content) In addition, the content of Zr is 1 to 20 mol%, the content of Mo is 1 to 6 mol%, the total amount of Ta, Nb, Zr and Mo is 60 mol% or less, and the balance is Ti and inevitable impurities. This is a superelastic titanium alloy for living bodies.

請求項2記載の発明は、チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、更にZrを1〜10mol%、Moを1〜4mol%含有し、Ta、Nb、Zr及びMoの総量が50mol%以下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金である。   The invention according to claim 2 is characterized in that one or two of Ta and Nb, which are β-phase stabilizing elements of titanium, are 15 mol% ≦ 1.5x + y ≦ 45 mol% (x is Nb content, y is Ta content) 2), Zr is contained in a range of 1 to 10 mol%, Mo is contained in an amount of 1 to 4 mol%, and the total amount of Ta, Nb, Zr and Mo is 50 mol% or less, and the remainder is composed of Ti and inevitable impurities. This is a superelastic titanium alloy for living bodies.

請求項3記載の発明は、チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、次いでZrを1〜20mol%、Moを1〜6mol%含有し、Al、Ge、Ga、In、SnからなるA群より1種または2種以上を合計で1〜10mol%含有し、更にTa、Nb、Zr、MoおよびA群の総量が60mol%以下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金である。   The invention according to claim 3 is characterized in that one or two of Ta and Nb, which are β-phase stabilizing elements of titanium, are 15 mol% ≦ 1.5x + y ≦ 45 mol% (x is Nb content, y is Ta content) In the range indicated by the formula (1), Zr is contained in an amount of 1 to 20 mol%, Mo is contained in an amount of 1 to 6 mol%, and one or two or more of A, Ge, Ga, In, and Sn are combined in total. A bioelastic super-titanium alloy containing 1 to 10 mol%, further comprising a total amount of Ta, Nb, Zr, Mo and A group of 60 mol% or less and comprising the remainder Ti and inevitable impurities.

請求項4記載の発明は、チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、次いでZrを1〜10mol%、Moを1〜4mol%含有し、Al、Ge、Ga、In、SnからなるA群より1種または2種以上を合計で1〜6mol%含有し、更にTa、Nb、Zr、MoおよびA群の総量が50mol%以下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金である。   The invention according to claim 4 is characterized in that one or two of Ta and Nb, which are β-phase stabilizing elements of titanium, are 15 mol% ≦ 1.5x + y ≦ 45 mol% (x is Nb content, y is Ta content). In the range indicated by the following formula: Zr is contained in an amount of 1 to 10 mol%, Mo is contained in an amount of 1 to 4 mol%, and one or more of A, Ge, Ga, In, and Sn are included in total. A bioelastic super-titanium alloy containing 1 to 6 mol%, further comprising Ta, Nb, Zr, Mo, and group A in a total amount of 50 mol% or less and comprising the remainder Ti and inevitable impurities.

請求項5記載の発明は、チタンのβ相安定化元素であるTa、Nbの1種又は2種を、
15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)
で示される範囲で含有し、次いでZr、Moの1種または2種を、Zrが1〜20mol
%、Moが1〜6mol%の範囲内において合計で1〜26mol%含有し、Al、Ge
、Ga、In、Au、Ag、Pt、PdからなるB群より1種または2種以上を合計で1
〜10mol%含有し、更にTa、Nb、Zr、MoおよびB群の総量が60mol%以
下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金であ
る。
In the invention according to claim 5, one or two of Ta and Nb, which are β-phase stabilizing elements of titanium,
15 mol% ≦ 1.5x + y ≦ 45 mol% (x represents Nb content, y represents Ta content)
In the range indicated by the following, then one or two of Zr and Mo, Zr is 1 to 20 mol
%, Mo is contained in the range of 1 to 6 mol% in total, and 1 to 26 mol% in total, Al, Ge
, Ga, In , Au, Ag, Pt, Pd, one or two or more from group B consisting of 1 in total
It is a bioelastic super-titanium alloy characterized in that it is contained in an amount of 10 to 10 mol%, and the total amount of Ta, Nb, Zr, Mo and B group is 60 mol% or less, and consists of the remainder Ti and inevitable impurities.

請求項6記載の発明は、チタンのβ相安定化元素であるTa、Nbの1種又は2種を、
15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)
で示される範囲で含有し、次いでZr、Moの1種または2種を、Zrが1〜10mol
%、Moが1〜4mol%の範囲内において合計で1〜14mol%含有し、Al、Ge
、Ga、In、Au、Ag、Pt、PdからなるB群より1種または2種以上を合計で1
〜6mol%含有し、更にTa、Nb、Zr、MoおよびB群の総量が50mol%以下
で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金である

In the invention according to claim 6, one or two of Ta and Nb, which are β-phase stabilizing elements of titanium,
15 mol% ≦ 1.5x + y ≦ 45 mol% (x represents Nb content, y represents Ta content)
In the range indicated by the following, then one or two of Zr and Mo, Zr is 1 to 10 mol
%, Mo is contained in the range of 1 to 4 mol% in total, 1 to 14 mol% in total, Al, Ge
, Ga, In , Au, Ag, Pt, Pd, one or two or more from group B consisting of 1 in total
It is a superelastic titanium alloy for living bodies, characterized in that it contains ˜6 mol%, and the total amount of Ta, Nb, Zr, Mo and B group is 50 mol% or less, and consists of the remainder Ti and inevitable impurities.

請求項7記載の発明は、チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、次いでZr、Moの1種または2種を、Zrが1〜20mol%、Moが1〜6mol%の範囲内において合計で1〜26mol%含有し、C、B、O、N、H、SiからなるC群を合計で0.01〜1.0mol%含有し、更にTa、Nb、Zr、MoおよびC群の総量が60mol%以下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金である。   The invention according to claim 7 is characterized in that one or two of Ta and Nb, which are β-phase stabilizing elements of titanium, are 15 mol% ≦ 1.5x + y ≦ 45 mol% (x is Nb content, y is Ta content) In the range represented by the formula (1), and then one or two of Zr and Mo, 1 to 26 mol% in total within a range of 1 to 20 mol% Zr and 1 to 6 mol%, and C, C group consisting of B, O, N, H, Si is contained in a total of 0.01 to 1.0 mol%, and the total amount of Ta, Nb, Zr, Mo, and C group is 60 mol% or less, and the remainder is inevitable with Ti. It is a superelastic titanium alloy for living body characterized by comprising impurities.

請求項8記載の発明は、チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、次いでZr、Moの1種または2種を、Zrが1〜20mol%、Moが1〜6mol%の範囲内において合計で1〜26mol%含有し、Al、Ge、Ga、In、Sn、Au、Ag、Pt、PdからなるB群より1種または2種以上を合計で1〜10mol%含有し、C、B、O、N、H、SiからなるC群を合計で0.01〜1.0mol%含有し、更にTa、Nb、Zr、Mo、B群およびC群の総量が60mol%以下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金である。   The invention according to claim 8 is characterized in that one or two of Ta and Nb, which are β-phase stabilizing elements of titanium, are 15 mol% ≦ 1.5x + y ≦ 45 mol% (x is Nb content, y is Ta content). In the range indicated by the formula (1), and then one or two of Zr and Mo are contained in a range of 1 to 20 mol% Zr and 1 to 6 mol% of Mo in a total of 1 to 26 mol%, Al, 1 to 10 mol% in total of 1 type or 2 types or more from B group consisting of Ge, Ga, In, Sn, Au, Ag, Pt, Pd, and C consisting of C, B, O, N, H, Si The total amount of the group is 0.01 to 1.0 mol%, and the total amount of Ta, Nb, Zr, Mo, B group and C group is 60 mol% or less, and is composed of the balance Ti and inevitable impurities. It is a superelastic titanium alloy for living organisms.

請求項9記載の発明は、チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、次いでZr、Moの1種または2種を、Zrが1〜10mol%、Moが1〜4mol%の範囲内において合計で1〜14mol%含有し、Al、Ge、Ga、In、Sn、Au、Ag、Pt、PdからなるB群より1種または2種以上を合計で1〜6mol%含有し、C、B、O、N、H、SiからなるC群を合計で0.01〜0.5mol%含有し、更にTa、Nb、Zr、Mo、B群およびC群の総量が50mol%以下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金である。   The invention according to claim 9 is characterized in that one or two of Ta and Nb, which are β-phase stabilizing elements of titanium, are 15 mol% ≦ 1.5x + y ≦ 45 mol% (x is Nb content, y is Ta content) In the range represented by the formula (1), and then containing one or two of Zr and Mo within a range of 1 to 10 mol% Zr and 1 to 4 mol% of Mo, 1 to 6 mol% in total of 1 type or 2 types or more from B group consisting of Ge, Ga, In, Sn, Au, Ag, Pt, Pd, C consisting of C, B, O, N, H, Si The total content of the group is 0.01 to 0.5 mol%, and the total amount of Ta, Nb, Zr, Mo, B group and C group is 50 mol% or less, and the remainder is composed of Ti and inevitable impurities. It is a superelastic titanium alloy for living organisms.

請求項10記載の発明は、請求項1乃至請求項9記載のいずれかの生体用超弾性チタン合金を用いた医療用ガイドワイヤである。   A tenth aspect of the present invention is a medical guide wire using the living body superelastic titanium alloy according to any one of the first to ninth aspects.

請求項11記載の発明は、請求項1乃至請求項9記載のいずれかの生体用超弾性チタン合金を用いた歯列矯正ワイヤである。   An eleventh aspect of the present invention is an orthodontic wire using the living body superelastic titanium alloy according to any one of the first to ninth aspects.

請求項12記載の発明は、請求項1乃至請求項9記載のいずれかの生体用超弾性チタン合金を用いたステントである。   A twelfth aspect of the present invention is a stent using the bioelastic super-titanium alloy according to any one of the first to ninth aspects.

請求項13記載の発明は、請求項1乃至請求項9記載のいずれかの生体用超弾性チタン合金を用いた眼鏡部材である。   A thirteenth aspect of the present invention is a spectacle member using the biosuperelastic titanium alloy according to any one of the first to ninth aspects.

請求項14記載の発明は、請求項1乃至請求項9記載のいずれかの生体用超弾性チタン合金を用いた内視鏡アクチュエーターである。   A fourteenth aspect of the present invention is an endoscope actuator using the living body superelastic titanium alloy according to any one of the first to ninth aspects.

本発明は、TiにNb、Taを単独若しくは双方を含有し、次いでZr、Moの両者若しくは単独で含むチタン合金であって、更に必要に応じてAl、Ge、Ga、In、Sn、Au、Ag、Pt、Pd、C、B、O、N、H、Siから選択される元素を適量含むチタン合金であって、良好な超弾性特性の発現と優れた冷間加工性を有するものである。更に本発明の成分は良好な生体適合性を示す元素であること、及びNiを含まないことからアレルギーの懸念が少なく、医療機器などの生体用及び眼鏡フレームなどの肌と接触する生活用品への使用に好適なもので、工業上顕著な効果を奏するものである。   The present invention is a titanium alloy containing Nb and Ta alone or both in Ti, and then containing both or alone Zr and Mo, and further, if necessary, Al, Ge, Ga, In, Sn, Au, A titanium alloy containing an appropriate amount of an element selected from Ag, Pt, Pd, C, B, O, N, H, and Si, having excellent superelastic characteristics and excellent cold workability. . Furthermore, since the component of the present invention is an element exhibiting good biocompatibility and does not contain Ni, there is less concern about allergies, and it can be applied to living items such as medical devices and living items that come into contact with skin such as eyeglass frames. It is suitable for use and has an industrially significant effect.

先ず、本発明に係る合金の成分であるTa、Nb、Zr、Moは、Tiに含有されることで、チタン合金を熱弾性型マルテンサイト変態を起こすチタン合金とし、且つβ相安定化元素として、β相からα相への変態温度を低温側に下げる働きもする。このことは、室温においてマルテンサイト変態における母相であるβ相が安定であるチタン合金が得られることを示している。
更に、TaはTiに固溶することにより、固溶強化の役割を担い、すべり変形に対する臨界応力を高めて、すべり変形を起こしにくくして、良好な超弾性を具現化し、Zr、Taは組成の変動に対する変態温度の変動が小さく、従って、変態温度の制御がしやすく、安定した製造に寄与する。
First, Ta, Nb, Zr, and Mo, which are components of the alloy according to the present invention, are contained in Ti, thereby making the titanium alloy a titanium alloy that causes a thermoelastic martensitic transformation and a β-phase stabilizing element. Also, it functions to lower the transformation temperature from the β phase to the α phase to the low temperature side. This indicates that a titanium alloy in which the β phase which is the parent phase in the martensitic transformation is stable at room temperature can be obtained.
Furthermore, when Ta dissolves in Ti, it plays the role of solid solution strengthening, increases the critical stress against slip deformation, makes slip deformation less likely to occur, and realizes good superelasticity. Therefore, the transformation temperature is small and the transformation temperature is easily controlled, contributing to stable production.

ところで、Ta及びNbが、単独若しくは双方を含有する場合には、その含有量は、Nb量をx、Ta量をy(x、y共に、単位はmol%)とした場合に15mol%≦1.5x+y≦45mol%で表される範囲(図1に範囲を記載)におけるTa量及びNb量を含有するもので、前記範囲外では超弾性特性が発現しなくなるか、低下してしまうことから限定したものである。   By the way, when Ta and Nb contain one or both, the content is 15 mol% ≦ 1 when the Nb amount is x and the Ta amount is y (both x and y are in mol%). Including the amount of Ta and Nb in the range represented by .5x + y ≦ 45 mol% (the range is shown in FIG. 1), and the superelastic property is not exhibited or is reduced outside the range. It is a thing.

次に、Zr量を1〜20mol%と限定したのは、この範囲内では超弾性特性がより良好になるが、超えての含有は加工性を極度に低下せしめてしまうためである。特に、冷間加工性を重視する場合には、1〜10mol%が望ましい。
Mo量に関しても、その含有量を1〜6mol%としたのは、Zrの含有と同様に、この範囲内では超弾性特性がより良好になるが、超えての含有は加工性を極度に低下せしめてしまうためである。特に、冷間加工性を重視する場合には、1〜4mol%が望ましい。
Next, the reason why the amount of Zr is limited to 1 to 20 mol% is that the superelastic characteristics become better within this range, but if the content exceeds Zr, the workability is extremely lowered. In particular, when emphasizing cold workability, 1 to 10 mol% is desirable.
Regarding the amount of Mo, the content is set to 1 to 6 mol%, as in the case of Zr, the superelastic property becomes better within this range, but the content exceeding it extremely decreases the workability. This is because it causes them to stagnate. In particular, when emphasizing cold workability, 1 to 4 mol% is desirable.

Al、Ge、Ga、In、SnからなるA群、若しくはAl、Ge、Ga、In、Sn
、Au、Ag、Pt、PdからなるB群は、1種または2種以上を含有することにより、
超弾性特性を安定して良好なものとするもので、Al、Ge、Ga、In、Snからなる
A群は、特にα相安定化元素としての作用が大きく、α相析出物による析出硬化による超
弾性特性の向上を図るもので、Inは冷間加工性を良くする働きもする。一方、Al、G
e、Ga、In、Sn、Au、Ag、Pt、PdからなるB群において、Au、Ag、P
t、Pdは熱処理時の共析反応からTi3Au、Ti2Ag、Ti3Pt、Ti4Pdな
どをそれぞれ析出させることで、析出硬化による超弾性特性の向上を図り、更に共析反応
による緻密化した組織を生成し、安定した超弾性特性を得ることができる。又、これらの
元素は生体適合性が高く、X線造影効果も高い。
A group consisting of Al, Ge, Ga, In, Sn, or Al, Ge, Ga, In, Sn
B group consisting of Au, Ag, Pt, and Pd contains one or more kinds,
The group A composed of Al, Ge, Ga, In, and Sn has a large effect as an α-phase stabilizing element, and is due to precipitation hardening by α-phase precipitates. thereby improving the superelastic properties, in will also serve to improve the cold workability. On the other hand, Al, G
In the B group consisting of e, Ga, In, Sn, Au, Ag, Pt, Pd, Au, Ag, P
t and Pd precipitate Ti3Au, Ti2Ag, Ti3Pt, Ti4Pd, etc. from the eutectoid reaction during the heat treatment, respectively, thereby improving the superelastic characteristics by precipitation hardening, and further generating a dense structure by the eutectoid reaction, Stable superelastic characteristics can be obtained. In addition, these elements are highly biocompatible and have a high X-ray contrast effect.

Al、Ge、Ga、In、SnからなるA群、Al、Ge、Ga、In、Sn、Au、Ag、Pt、PdからなるB群の合計を1〜10mol%と限定したのは、この範囲内では超弾性特性がより良好になるが、超えての含有は加工性を極度に低下せしめてしまうためである。特に、冷間加工性を重視する場合には、1〜6mol%が望ましい。   It is this range that the total of the group A consisting of Al, Ge, Ga, In, Sn and the group B consisting of Al, Ge, Ga, In, Sn, Au, Ag, Pt, Pd is limited to 1 to 10 mol%. This is because the superelastic property becomes better inside, but the content exceeding the limit causes the workability to be extremely lowered. In particular, when the cold workability is important, 1 to 6 mol% is desirable.

次に、チタン合金に含まれるC、B、O、N、H、Siは、チタン合金においては主に浸入型元素として働き、固溶硬化及び組織微細化により超弾性特性を向上させる働きを示すものである。
チタン合金に含まれるC、B、O、N、H、Siの合計を0.01〜1mol%と限定したのは、この範囲内では超弾性特性をより良好にせしめるが、超えて含む場合には冷間加工性や熱間加工性を大きく損なうためで、特に冷間加工性を重視する場合には0.01〜0.5mol%が望ましい。
Next, C, B, O, N, H, and Si contained in the titanium alloy mainly function as an intrusive element in the titanium alloy, and have a function of improving superelastic characteristics by solid solution hardening and structure refinement. Is.
The reason why the total amount of C, B, O, N, H, and Si contained in the titanium alloy is limited to 0.01 to 1 mol% is to make the superelastic property better within this range, Is because the cold workability and the hot workability are greatly impaired, and particularly when the cold workability is important, 0.01 to 0.5 mol% is desirable.

本発明に係るチタン合金は、生体用超弾性チタン合金として、良好な超弾性特性を有しつつ、アレルギーの発生が起き難く生体適合性が良いので、医療用ガイドワイヤ、歯列矯正用ワイヤ、ステント、内視鏡のアクチュエーターなどの生体用医療器具に使用でき、更に、眼鏡フレームや眼鏡のノーズパットアームなどのような素肌と接する用途にも利用できる。
以下、実施例を用いて本発明を詳細に説明する。
The titanium alloy according to the present invention is a super-elastic titanium alloy for living organisms and has good super-elastic characteristics, and is less likely to cause allergies and has good biocompatibility. Therefore, a medical guide wire, an orthodontic wire, It can be used for biomedical devices such as stents and endoscope actuators, and can also be used for contact with bare skin such as a spectacle frame or a nose pad arm of spectacles.
Hereinafter, the present invention will be described in detail using examples.

(実施例1)
表1に示す合金組成のTi−Nb−Zr−Mo合金鋳塊を非消耗タングステン電極型アルゴンアーク溶解炉を用いて作製した。この鋳塊に熱間加工を施し、次いで700℃、10分間保持の中間焼鈍及び冷間伸線加工を繰り返し行い、40%の仕上冷間加工率で仕上冷間伸線加工を行い、線径1.0mmの冷間加工材を得て供試材(冷間加工材)とした。供試材(冷間加工材)の一部は600℃、30分間の直線形状記憶熱処理を施して供試材(記憶材)として用いた。なお、40%の仕上冷間加工率で伸線できない線材については、20%の冷間加工率で仕上冷間伸線加工を行った。
この超弾性特性の評価は、供試材(記憶材)を用い、冷間加工性の評価には供試材(冷間加工材)を用い、その結果を表1に記した。
Example 1
Ti-Nb-Zr-Mo alloy ingots having the alloy compositions shown in Table 1 were produced using a non-consumable tungsten electrode type argon arc melting furnace. This ingot is subjected to hot working, then intermediate annealing at 700 ° C. for 10 minutes and cold wire drawing are repeated, and finish cold wire drawing is performed at a finish cold working rate of 40%. A cold-worked material having a thickness of 1.0 mm was obtained and used as a test material (cold-worked material). A part of the test material (cold work material) was subjected to a linear shape memory heat treatment at 600 ° C. for 30 minutes and used as the test material (memory material). In addition, about the wire which cannot be drawn with the finish cold work rate of 40%, the finish cold wire drawing was performed with the cold work rate of 20%.
The superelastic property was evaluated using a test material (memory material), and the cold workability was evaluated using a test material (cold work material). The results are shown in Table 1.

超弾性特性の評価は、供試材(記憶材)をJIS H7103に基き、室温で4%の伸びを加えた後に除荷する引張試験を行い、その残留伸びを測定した。   The evaluation of superelastic properties was carried out by performing a tensile test in which the test material (memory material) was unloaded after adding 4% elongation at room temperature based on JIS H7103, and the residual elongation was measured.

冷間加工性の評価は、供試材(冷間加工材)に700℃、10分保持の焼鈍を与えて、焼鈍材を作製し、この焼鈍材を破断して冷間伸線加工ができなくなるまで冷間伸線加工を続け、その最大加工率で評価した。最大加工率が40%以上の場合は冷間加工性が良好であるとして「○」で示し、最大加工率が20%を超えて40%未満の場合は冷間加工性がやや劣るとして「△」とし、それ以下の場合を「×」とした。   The cold workability can be evaluated by subjecting the specimen (cold work material) to annealing at 700 ° C. for 10 minutes, producing an annealed material, and breaking the annealed material for cold wire drawing. The cold drawing was continued until it disappeared, and the maximum processing rate was evaluated. When the maximum processing rate is 40% or more, it is indicated by “◯” that the cold workability is good, and when the maximum processing rate is more than 20% and less than 40%, the cold workability is slightly inferior. “,” And the case below that is “x”.

Figure 0004302604
Figure 0004302604

表1からも明らかなように、本発明例No.1からNo.15では1.5%以下の小さい残留伸びを示す超弾性特性が得られ、特にZr量が10mol%以下、Mo量が4mol5以下と少ない本発明例No.1、2、4、5、7、8、13、14では冷間加工性にも優れていた。
対して、Zr量又はMo量の多い比較例No.204、No.203では冷間加工性が劣り、供試材を作製できなかった。Nb量の少ない比較例No.200、Nb量の多い比較例No.201、No.202では、いずれも良好な超弾性特性が得られず形状が回復しなかった。
図2に本発明例No.8、図3に比較例No.200の応力−伸び曲線を示す。
縦軸は引張応力(MPa)、横軸は伸び(%)を示し、本発明例No.7では0.9%の残留伸び、比較例No.200では1.8%の残留伸びがそれぞれの図2、図3中に矢印で示されている。
As is clear from Table 1, Example No. of the present invention. 1 to No. No. 15, a superelastic characteristic showing a small residual elongation of 1.5% or less is obtained. 1, 2, 4, 5, 7, 8, 13, and 14 were excellent in cold workability.
On the other hand, Comparative Example No. with a large amount of Zr or Mo. 204, no. In 203, the cold workability was inferior, and the sample material could not be prepared. Comparative Example No. with a small amount of Nb 200, comparative example No. with a large amount of Nb. 201, no. In 202, no good superelastic property was obtained, and the shape did not recover.
In FIG. 8, FIG. A stress-elongation curve of 200 is shown.
The vertical axis indicates tensile stress (MPa), and the horizontal axis indicates elongation (%). 7 has a residual elongation of 0.9%. For 200, the residual elongation of 1.8% is indicated by arrows in FIGS.

(実施例2)
表2に示す合金組成のTi−Ta−Zr−Mo合金の供試材を実施例1と同じ方法により作製し、超弾性特性及び冷間加工性を同じく実施例1で示した評価方法で行い、その結果を表2に記した。
(Example 2)
Test materials of Ti—Ta—Zr—Mo alloys having the alloy compositions shown in Table 2 were prepared by the same method as in Example 1, and superelastic properties and cold workability were similarly evaluated by the evaluation method shown in Example 1. The results are shown in Table 2.

Figure 0004302604
Figure 0004302604

表2からも明らかなように、本発明例No.16からNo.29では超弾性特性が良好で、冷間加工性も良好であった。特にZr量が10mol%以下、Mo量が4mol%以下の本発明例No.16、17、19、20、22、23、28、29では、冷間加工性に優れていた。
対して、Ta量の少ない比較例No.206では、大きな残留伸びを示し満足な超弾性特性が得られず形状回復しなかった。Ta量を多く含む比較例No.207、No.208、及びTa、Zr、Moの総量が60mol%を超える比較例No.205では超弾性特性、冷間加工性共に劣っている。Zr量又はMo量の多い比較例No.210、No.209では、冷間加工性が悪く、供試材を作製できなかった。
As is apparent from Table 2, Example No. of the present invention. 16 to No. No. 29 had good superelastic characteristics and good cold workability. Especially this invention example No. whose Zr amount is 10 mol% or less and Mo amount is 4 mol% or less. In 16, 17, 19, 20, 22, 23, 28, and 29, the cold workability was excellent.
On the other hand, Comparative Example No. with a small amount of Ta. No. 206 showed a large residual elongation and did not obtain satisfactory superelastic properties and did not recover its shape. Comparative Example No. containing a large amount of Ta 207, no. 208 and Comparative Example No. in which the total amount of Ta, Zr and Mo exceeds 60 mol%. No. 205 is inferior in both superelastic characteristics and cold workability. Comparative Example No. with a large amount of Zr or Mo 210, no. In No. 209, the cold workability was poor and the sample material could not be produced.

(実施例3)
表3に示す合金組成のTi−Nb−Ta−Zr−Mo合金の供試材を実施例1と同じ方法により作製し、超弾性特性及び冷間加工性を同じく実施例1で示した評価方法で行い、その結果を表3に記した。
(Example 3)
A test material of a Ti—Nb—Ta—Zr—Mo alloy having the alloy composition shown in Table 3 was produced by the same method as in Example 1, and the superelastic characteristics and cold workability were evaluated in the same manner as in Example 1. The results are shown in Table 3.

Figure 0004302604
Figure 0004302604

表3からも明らかなように、本発明例No.30からNo.43では超弾性特性が良好で、冷間加工性も優れている。
対して、Nb量とTa量の合計が15mol%より少ない比較例No.211、その合計が45mol%より多い比較例No.212では、残留ひずみが大きくなっているのがわかる。Mo量やZr量が多すぎる比較例No.213、No.214では、冷間加工性が悪く試料が作製できず、超弾性特性の評価ができなかった。
As is apparent from Table 3, Example No. of the present invention. 30 to No. No. 43 has good superelastic properties and excellent cold workability.
On the other hand, Comparative Example No. in which the total amount of Nb and Ta is less than 15 mol%. 211, comparative example No. whose total is more than 45 mol%. In 212, it can be seen that the residual strain is increased. Comparative Example No. with too much Mo and Zr. 213, no. In 214, the cold workability was poor and a sample could not be prepared, and the superelastic characteristics could not be evaluated.

(実施例4)
表4に示す合金組成のTi−Nb−Zr−Al合金の供試材を実施例1と同じ方法により作製し、超弾性特性及び冷間加工性を同じく実施例1で示した評価方法で行い、その結果を表4に記した。
(Example 4)
Test materials of Ti—Nb—Zr—Al alloys having the alloy compositions shown in Table 4 were prepared by the same method as in Example 1, and superelastic properties and cold workability were similarly evaluated by the evaluation method shown in Example 1. The results are shown in Table 4.

Figure 0004302604
Figure 0004302604

表4からも明らかなように、本発明例のNo.44からNo.61では超弾性特性が良好で形状が回復した。
対して、Nb量が少なすぎる比較例No.215、Nb量が多すぎる比較例No.216、No.217では超弾性特性が大きく低下した。Al量、Zr量の多すぎる比較例No.218、No.219では、冷間加工性が悪く試料が作製できず、超弾性特性の評価ができなかった。
As is clear from Table 4, No. of the present invention example. 44 to No. In 61, the superelastic property was good and the shape recovered.
On the other hand, the comparative example No. 215, Comparative Example No. 216, no. In 217, the superelastic characteristics were greatly reduced. Comparative Example No. with too much Al and Zr. 218, no. In 219, the cold workability was poor and a sample could not be prepared, and the superelastic characteristics could not be evaluated.

(実施例5)
表5に示す合金組成のTi−Nb−Zr−Mo−Sn合金の供試材を実施例1と同じ方法により作製し、超弾性特性及び冷間加工性を同じく実施例1で示した評価方法で行い、その結果を表5に記した。
(Example 5)
A test material of a Ti—Nb—Zr—Mo—Sn alloy having the alloy composition shown in Table 5 was produced by the same method as in Example 1, and the superelastic properties and cold workability were evaluated in the same manner as in Example 1. The results are shown in Table 5.

Figure 0004302604
Figure 0004302604

表5からも明らかなように、本発明例のNo.62からNo.79では超弾性特性が良好で形状が回復した。
対して、Nb量が少なすぎる比較例No.221、Nb量が多すぎる比較例No.222、No.223では超弾性特性が大きく低下した。Sn量、Mo量、Zr量の多すぎる比較例No.220、No.224、No.225、No.226では、冷間加工性が悪く試料が作製できず、超弾性特性の評価ができなかった。
As is clear from Table 5, No. of the present invention example. 62 to No. In 79, the superelastic characteristics were good and the shape recovered.
On the other hand, the comparative example No. 221, comparative example no. 222, no. In the case of H.223, the superelastic property was greatly deteriorated. Comparative Example No. with too much Sn, Mo and Zr. 220, no. 224, no. 225, no. In 226, the cold workability was poor and a sample could not be produced, and the superelastic characteristics could not be evaluated.

(実施例6)
表6に示す合金組成のTi−Nb−Ta−Zr−Al合金の供試材を実施例1と同じ方法により作製し、超弾性特性及び冷間加工性を同じく実施例1で示した評価方法で行い、その結果を表6に記した。
(Example 6)
A test material of a Ti—Nb—Ta—Zr—Al alloy having the alloy composition shown in Table 6 was produced by the same method as in Example 1, and the superelastic properties and cold workability were evaluated in the same manner as in Example 1. The results are shown in Table 6.

Figure 0004302604
Figure 0004302604

表6からも明らかなように、本発明例のNo.80からNo.94では超弾性特性が良好で形状が回復した。
対して、Nb量とTa量の合計が少なすぎる比較例No.227、Nb量とTa量が多すぎる比較例No.228では超弾性特性が大きく低下した。Al量、Zr量の多すぎる比較例No.229、No.230では、冷間加工性が悪く試料が作製できず、超弾性特性の評価ができなかった。
As is apparent from Table 6, No. of the present invention example. 80 to No. In 94, the superelastic characteristics were good and the shape recovered.
On the other hand, the total of Nb amount and Ta amount is too small. Comparative Example No. 227, Nb amount and Ta amount are too large. In 228, the superelastic property was greatly reduced. Comparative Example No. with too much Al and Zr. 229, no. In No. 230, the cold workability was poor and a sample could not be prepared, and the superelastic characteristics could not be evaluated.

(実施例7)
表7に示す合金組成のTi−Nb−Mo−Au合金の供試材を実施例1と同じ方法により作製し、超弾性特性及び冷間加工性を同じく実施例1で示した評価方法で行い、その結果を表7に記した。
(Example 7)
Test materials of Ti—Nb—Mo—Au alloys having the alloy compositions shown in Table 7 were prepared by the same method as in Example 1, and superelastic properties and cold workability were similarly evaluated by the evaluation method shown in Example 1. The results are shown in Table 7.

Figure 0004302604
Figure 0004302604

表7からも明らかなように、本発明例のNo.95からNo.112では超弾性特性が良好で形状が回復した。
対して、Nb量が少なすぎる比較例No.231、Nb量が多すぎる比較例No.232では超弾性特性が大きく低下した。Au量、Mo量の多すぎる比較例No.233、No.234では、冷間加工性が悪く試料が作製できず、超弾性特性の評価ができなかった。
As is apparent from Table 7, No. of the present invention example. 95 to No. In 112, the superelastic characteristics were good and the shape recovered.
On the other hand, the comparative example No. 231, Comparative Example No. In 232, the superelastic characteristics were greatly reduced. Comparative Example No. with too much Au and Mo. 233, no. In 234, the cold workability was poor and a sample could not be produced, and the superelastic characteristics could not be evaluated.

(実施例8)
表8に示す合金組成のTi−Nb−Mo−Al−Au合金の供試材を実施例1と同じ方法により作製し、超弾性特性及び冷間加工性を同じく実施例1で示した評価方法で行い、その結果を表8に記した。
(Example 8)
A test material of a Ti—Nb—Mo—Al—Au alloy having the alloy composition shown in Table 8 was produced by the same method as in Example 1, and the superelastic characteristics and the cold workability were evaluated in the same manner as in Example 1. The results are shown in Table 8.

Figure 0004302604
Figure 0004302604

表8からも明らかなように、本発明例のNo.113からNo.134では超弾性特性が良好で形状が回復した。
対して、Nb量が少なすぎる比較例No.235、Nb量が多すぎる比較例No.236では超弾性特性が大きく低下した。Au量、Al量、Mo量の多すぎる比較例No.237、No.239、No.240、及びAl量とAu量の合計が多い比較例No.238では、冷間加工性が悪く試料が作製できず、超弾性特性の評価ができなかった。
As is apparent from Table 8, No. of the present invention example. 113 to No. In 134, the superelastic characteristics were good and the shape recovered.
On the other hand, the comparative example No. 235, Comparative Example No. In 236, the superelastic characteristics were greatly reduced. Comparative Example No. with too much Au, Al and Mo. 237, no. 239, no. 240, and Comparative Example No. with a large sum of Al and Au. In 238, the cold workability was poor and a sample could not be prepared, and the superelastic characteristics could not be evaluated.

(実施例9)
表9に示す合金組成のTi−Nb−Mo−C合金の供試材を実施例1と同じ方法により作製し、超弾性特性及び冷間加工性を同じく実施例1で示した評価方法で行い、その結果を表9に記した。
Example 9
Test materials of Ti—Nb—Mo—C alloys having the alloy compositions shown in Table 9 were prepared by the same method as in Example 1, and superelastic properties and cold workability were similarly evaluated by the evaluation method shown in Example 1. The results are shown in Table 9.

Figure 0004302604
Figure 0004302604

表9からも明らかなように、本発明例のNo.135からNo.155では超弾性特性が良好で形状が回復した。
対して、Nb量が少なすぎる比較例No.241、Nb量が多すぎる比較例No.242では超弾性特性が大きく低下した。Mo量の多すぎる比較例No.244やC量の多すぎる比較例No.243では、冷間加工性が悪く試料が作製できず、超弾性特性の評価ができなかった。
As is clear from Table 9, No. of the present invention example. 135 to No. At 155, the superelastic characteristics were good and the shape recovered.
On the other hand, the comparative example No. 241, comparative example no. At 242 the superelastic properties were greatly reduced. Comparative Example No. with too much Mo amount Comparative Example No. 244 or too much C amount In No. 243, the cold workability was poor and a sample could not be produced, and the superelastic characteristics could not be evaluated.

(実施例10)
表10に示す合金組成のTi−Nb−Mo−Al−B合金の供試材を実施例1と同じ方法により作製し、超弾性特性及び冷間加工性を同じく実施例1で示した評価方法で行い、その結果を表10に記した。
(Example 10)
A test material of Ti—Nb—Mo—Al—B alloy having the alloy composition shown in Table 10 was produced by the same method as in Example 1, and the superelastic properties and cold workability were evaluated in the same manner as in Example 1. The results are shown in Table 10.

Figure 0004302604
Figure 0004302604

表10からも明らかなように、本発明例のNo.156からNo.177では超弾性特性が良好で形状が回復した。
対して、Nb量が少なすぎる比較例No.245、Nb量が多すぎる比較例No.246では超弾性特性が大きく低下した。Al量、Mo量の多すぎる比較例No.248、No.249及びB量の多い比較例No.247では、冷間加工性が悪く試料が作製できず、超弾性特性の評価ができなかった。
As is clear from Table 10, No. of the present invention example. 156 to No. In 177, the superelastic characteristics were good and the shape recovered.
On the other hand, the comparative example No. Comparative Example No. 245, Nb amount is too large. In H.246, the superelastic property was greatly deteriorated. Comparative Example No. with too much Al and Mo. 248, no. 249 and Comparative Example No. with a large amount of B In No. 247, the cold workability was poor and a sample could not be produced, and the superelastic characteristics could not be evaluated.

(実施例11)
非消耗タングステン電極型アルゴンアーク溶解炉を用いて作製したTi−15mol%Nb−2mol%Zr−3mol%Mo合金鋳塊に熱間加工を施し、次いで700℃、10分間保持の中間焼鈍及び冷間伸線加工を繰り返し行い、40%の仕上冷間加工率で仕上冷間伸線加工して線径0.5mmの冷間加工材を得た。この冷間加工材に600℃、30分間の直線形状記憶熱処理を施し、医療用ガイドワイヤ線材、歯列矯正ワイヤ線材、直線アクチュエーター線材を作製し、実施例1で用いた方法で測定した超弾性特性を表11に記した。なお、医療用ガイドワイヤ用線材に関しては、図4の方法によりトルク伝達性を測定し、併せて表11に記した。
Example 11
A Ti-15mol% Nb-2mol% Zr-3mol% Mo alloy ingot produced using a non-consumable tungsten electrode type argon arc melting furnace is hot-worked, and then subjected to intermediate annealing and cold holding at 700 ° C. for 10 minutes. The wire drawing was repeated, and the finish cold drawing was performed at a finish cold working rate of 40% to obtain a cold worked material having a wire diameter of 0.5 mm. This cold-worked material was subjected to a linear shape memory heat treatment at 600 ° C. for 30 minutes to produce a medical guide wire, an orthodontic wire, and a linear actuator wire, and the superelasticity measured by the method used in Example 1 The characteristics are shown in Table 11. For the medical guide wire, the torque transmission was measured by the method shown in FIG.

トルク伝達性は、パイプ中の線材の一端に所定条件の捻りを付与した時の他端の追従角度で、具体的には図4に示す直径127mmのループ状にしたポリエチレンチューブ5(内径3mm、外径4mm)に通した供試材1の一端を90°ねじった時の他端の追従角度を測定して求めた。追従角度が85°以上の場合を「◎」、85°〜80°の場合を「○」、80°〜75°の場合を「△」とし、75°未満を「×」で評価した。
図4において、6aは駆動側ロータリーエンコーダー、6bは追従側ロータリーエンコーダー、7は駆動部を表す。
Torque transmission is the following angle at the other end when a predetermined twist is applied to one end of the wire rod in the pipe, specifically, a polyethylene tube 5 (inner diameter 3 mm, The following angle of the other end when the one end of the specimen 1 passed through the outer diameter of 4 mm) was twisted by 90 ° was measured. The case where the following angle was 85 ° or more was evaluated as “◎”, the case where 85 ° to 80 ° was “◯”, the case where 80 ° to 75 ° was “Δ”, and less than 75 ° was evaluated as “x”.
In FIG. 4, 6a represents a drive-side rotary encoder, 6b represents a follow-up rotary encoder, and 7 represents a drive unit.

(実施例12)
Ti−10mol%Nb−15.0mol%Ta−1.0mol%Zr−4.0mol%Mo合金を実施例11と同様の方法により直線形状記憶処理を施した線径2.0mmの眼鏡フレーム用線材を作製し、その超弾性特性を実施例1と同様の方法で測定し、その結果を表11に併せて記した。
Example 12
A wire rod for a spectacle frame having a wire diameter of 2.0 mm obtained by subjecting a Ti-10 mol% Nb-15.0 mol% Ta-1.0 mol% Zr-4.0 mol% Mo alloy to a linear shape memory treatment in the same manner as in Example 11. The superelastic properties were measured by the same method as in Example 1, and the results are also shown in Table 11.

Figure 0004302604
Figure 0004302604

表11から判るように、本発明に係るTi合金は、医療用ガイドワイヤ、歯列矯正ワイヤ、直線アクチュエーター、眼鏡フレーム、眼鏡ノーズパッドアームなどの優れた超弾性特性を要求する用途に使用するのに充分な超弾性特性並びに冷間加工性を備えている。   As can be seen from Table 11, the Ti alloy according to the present invention is used for applications requiring excellent superelastic properties such as medical guide wires, orthodontic wires, linear actuators, spectacle frames, spectacle nose pad arms, and the like. It has sufficient superelastic characteristics and cold workability.

(実施例13)
実施例11及び実施例12で作製した医療用ガイドワイヤ線材、歯列矯正ワイヤ線材、眼鏡フレーム用線材を用い、それぞれ医療用ガイドワイヤ及び歯列矯正ワイヤ、眼鏡フレームを作製して試験したところ、従来製品のものと遜色なく使用することができた。
(Example 13)
When the medical guidewire wire, orthodontic wire wire, and spectacle frame wire prepared in Example 11 and Example 12 were used, and the medical guidewire, orthodontic wire, and spectacle frame were prepared and tested, It was able to be used in the same way as the conventional product.

Ta量とNb量の関係を示す説明図である。It is explanatory drawing which shows the relationship between Ta amount and Nb amount. 本発明例No.8合金の室温状態における応力−伸び曲線である。Invention Example No. It is a stress-elongation curve in the room temperature state of 8 alloys. 比較例No.200合金の室温状態における応力−伸び曲線である。Comparative Example No. It is a stress-elongation curve in the room temperature state of 200 alloy. トルク伝達性の測定方法の説明図である。It is explanatory drawing of the measuring method of torque transmissibility.

符号の説明Explanation of symbols

1 供試材
2 ステンレス鋼製丸棒
5 ポリエチレンチューブ
6a 駆動側ロータリーエンゴーダー
6b 追従側ロータリーエンコーダー
7 駆動部


DESCRIPTION OF SYMBOLS 1 Specimen 2 Stainless steel round bar 5 Polyethylene tube 6a Drive side rotary encoder 6b Tracking side rotary encoder 7 Drive part


Claims (14)

チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、更にZrを1〜20mol%、Moを1〜6mol%含有し、Ta、Nb、Zr及びMoの総量が60mol%以下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金。 Contains one or two of Ta and Nb, which are β-phase stabilizing elements of titanium, within a range indicated by 15 mol% ≦ 1.5x + y ≦ 45 mol% (x represents Nb content, y represents Ta content) Furthermore, it contains 1 to 20 mol% of Zr and 1 to 6 mol% of Mo, the total amount of Ta, Nb, Zr and Mo is 60 mol% or less, and consists of the remainder Ti and inevitable impurities, Elastic titanium alloy. チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、更にZrを1〜10mol%、Moを1〜4mol%含有し、Ta、Nb、Zr及びMoの総量が50mol%以下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金。 Contains one or two of Ta and Nb, which are β-phase stabilizing elements of titanium, within a range indicated by 15 mol% ≦ 1.5x + y ≦ 45 mol% (x represents Nb content, y represents Ta content) Furthermore, it contains 1 to 10 mol% of Zr and 1 to 4 mol% of Mo, the total amount of Ta, Nb, Zr and Mo is 50 mol% or less, and consists of the remainder Ti and inevitable impurities. Elastic titanium alloy. チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、次いでZrを1〜20mol%、Moを1〜6mol%含有し、Al、Ge、Ga、In、SnからなるA群より1種または2種以上を合計で1〜10mol%含有し、更にTa、Nb、Zr、MoおよびA群の総量が60mol%以下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金。 Contains one or two of Ta and Nb, which are β-phase stabilizing elements of titanium, within a range indicated by 15 mol% ≦ 1.5x + y ≦ 45 mol% (x represents Nb content, y represents Ta content) Then, Zr is contained in an amount of 1 to 20 mol%, Mo is contained in an amount of 1 to 6 mol%, 1 type or 2 or more types are contained in total from Group A consisting of Al, Ge, Ga, In, and Sn, A superelastic titanium alloy for living bodies, characterized in that the total amount of Ta, Nb, Zr, Mo and A group is 60 mol% or less, and the balance is Ti and inevitable impurities. チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、次いでZrを1〜10mol%、Moを1〜4mol%含有し、Al、Ge、Ga、In、SnからなるA群より1種または2種以上を合計で1〜6mol%含有し、更にTa、Nb、Zr、MoおよびA群の総量が50mol%以下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金。 Contains one or two of Ta and Nb, which are β-phase stabilizing elements of titanium, within a range indicated by 15 mol% ≦ 1.5x + y ≦ 45 mol% (x represents Nb content, y represents Ta content) Then, 1 to 10 mol% of Zr, 1 to 4 mol% of Mo, 1 type or 2 types or more from group A consisting of Al, Ge, Ga, In, and Sn are contained in total, and further 1 to 6 mol% A superelastic titanium alloy for living bodies, characterized in that the total amount of Ta, Nb, Zr, Mo and A group is 50 mol% or less, and the balance is Ti and inevitable impurities. チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+
y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、
次いでZr、Moの1種または2種を、Zrが1〜20mol%、Moが1〜6mol%
の範囲内において合計で1〜26mol%含有し、Al、Ge、Ga、In、Au、Ag
、Pt、PdからなるB群より1種または2種以上を合計で1〜10mol%含有し、更
にTa、Nb、Zr、MoおよびB群の総量が60mol%以下で、残部Tiと不可避不
純物とからなることを特徴とする生体用超弾性チタン合金。
One or two of Ta and Nb, which are β-phase stabilizing elements of titanium, are added at 15 mol% ≦ 1.5x +
y ≦ 45 mol% (x represents Nb content, y represents Ta content)
Next, one or two of Zr and Mo, Zr is 1 to 20 mol%, Mo is 1 to 6 mol%
In the range of 1 to 26 mol% in total, Al, Ge, Ga, In , Au, Ag
1 to 2 mol in total from Group B consisting of Pt, Pt, and Pd, and the total amount of Ta, Nb, Zr, Mo, and Group B is 60 mol% or less, with the remainder Ti and inevitable impurities A superelastic titanium alloy for living body, characterized by comprising:
チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+
y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、
次いでZr、Moの1種または2種を、Zrが1〜10mol%、Moが1〜4mol%
の範囲内において合計で1〜14mol%含有し、Al、Ge、Ga、In、Au、Ag
、Pt、PdからなるB群より1種または2種以上を合計で1〜6mol%含有し、更に
Ta、Nb、Zr、MoおよびB群の総量が50mol%以下で、残部Tiと不可避不純
物とからなることを特徴とする生体用超弾性チタン合金。
One or two of Ta and Nb, which are β-phase stabilizing elements of titanium, are added at 15 mol% ≦ 1.5x +
y ≦ 45 mol% (x represents Nb content, y represents Ta content)
Next, one or two of Zr and Mo, Zr 1 to 10 mol%, Mo 1 to 4 mol%
In the range of 1 to 14 mol% in total, Al, Ge, Ga, In , Au, Ag
1 to 2 mol% in total from Group B consisting of Pt, Pt, Pt, Pd, and the total amount of Ta, Nb, Zr, Mo and B groups is 50 mol% or less, with the remainder Ti and inevitable impurities A superelastic titanium alloy for living body, characterized by comprising:
チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、次いでZr、Moの1種または2種を、Zrが1〜20mol%、Moが1〜6mol%の範囲内において合計で1〜26mol%含有し、C、B、O、N、H、SiからなるC群を合計で0.01〜1.0mol%含有し、更にTa、Nb、Zr、MoおよびC群の総量が60mol%以下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金。 Contains one or two of Ta and Nb, which are β-phase stabilizing elements of titanium, within a range indicated by 15 mol% ≦ 1.5x + y ≦ 45 mol% (x represents Nb content, y represents Ta content) Then, one or two of Zr and Mo are contained in a total amount of 1 to 26 mol% in the range of 1 to 20 mol% of Zr and 1 to 6 mol% of Zr, and C, B, O, N, H, A total of 0.01 to 1.0 mol% of C group consisting of Si, and further, the total amount of Ta, Nb, Zr, Mo and C group is 60 mol% or less, and is composed of the balance Ti and inevitable impurities. Superelastic titanium alloy for living body. チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、次いでZr、Moの1種または2種を、Zrが1〜20mol%、Moが1〜6mol%の範囲内において合計で1〜26mol%含有し、Al、Ge、Ga、In、Sn、Au、Ag、Pt、PdからなるB群より1種または2種以上を合計で1〜10mol%含有し、C、B、O、N、H、SiからなるC群を合計で0.01〜1.0mol%含有し、更にTa、Nb、Zr、Mo、B群およびC群の総量が60mol%以下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金。 Contains one or two of Ta and Nb, which are β-phase stabilizing elements of titanium, within a range indicated by 15 mol% ≦ 1.5x + y ≦ 45 mol% (x represents Nb content, y represents Ta content) Then, one or two kinds of Zr and Mo are contained in a range of 1 to 20 mol% Zr and 1 to 6 mol% in total, and 1 to 26 mol% in total, and Al, Ge, Ga, In, Sn, 1 to 10 mol% in total of 1 type or 2 types or more from B group consisting of Au, Ag, Pt, Pd, and 0.01 to about C group consisting of C, B, O, N, H, Si A bioelastic super-titanium alloy containing 1.0 mol%, further comprising a total amount of Ta, Nb, Zr, Mo, B group and C group of 60 mol% or less and comprising the remainder Ti and inevitable impurities. チタンのβ相安定化元素であるTa、Nbの1種又は2種を、15mol%≦1.5x+y≦45mol%(xはNb含有量、yはTa含有量を表す)で示される範囲で含有し、次いでZr、Moの1種または2種を、Zrが1〜10mol%、Moが1〜4mol%の範囲内において合計で1〜14mol%含有し、Al、Ge、Ga、In、Sn、Au、Ag、Pt、PdからなるB群より1種または2種以上を合計で1〜6mol%含有し、C、B、O、N、H、SiからなるC群を合計で0.01〜0.5mol%含有し、更にTa、Nb、Zr、Mo、B群およびC群の総量が50mol%以下で、残部Tiと不可避不純物とからなることを特徴とする生体用超弾性チタン合金。 Contains one or two of Ta and Nb, which are β-phase stabilizing elements of titanium, within a range indicated by 15 mol% ≦ 1.5x + y ≦ 45 mol% (x represents Nb content, y represents Ta content) Then, one or two kinds of Zr and Mo are contained in a total of 1 to 14 mol% within the range of 1 to 10 mol% Zr and 1 to 4 mol%, and Al, Ge, Ga, In, Sn, 1 to 6 mol% in total of 1 type or 2 types or more from B group consisting of Au, Ag, Pt, Pd, and 0.01 to about C group consisting of C, B, O, N, H, Si A bioelastic super-titanium alloy containing 0.5 mol%, further comprising a total amount of Ta, Nb, Zr, Mo, B group and C group of 50 mol% or less and comprising the remainder Ti and inevitable impurities. 請求項1乃至請求項9記載のいずれかの生体用超弾性チタン合金を用いた医療用ガイドワイヤ。 A medical guide wire using the bioelastic super-titanium alloy according to any one of claims 1 to 9. 請求項1乃至請求項9記載のいずれかの生体用超弾性チタン合金を用いた歯列矯正ワイヤ。 An orthodontic wire using the superelastic titanium alloy for living body according to any one of claims 1 to 9. 請求項1乃至請求項9記載のいずれかの生体用超弾性チタン合金を用いたステント。 A stent using the living body superelastic titanium alloy according to any one of claims 1 to 9. 請求項1乃至請求項9記載のいずれかの生体用超弾性チタン合金を用いた眼鏡部材。 A spectacle member using the superelastic titanium alloy for living body according to any one of claims 1 to 9. 請求項1乃至請求項9記載のいずれかの生体用超弾性チタン合金を用いた内視鏡アクチュエーター。
An endoscope actuator using the bioelastic super-titanium alloy according to any one of claims 1 to 9.
JP2004279094A 2004-09-27 2004-09-27 Superelastic titanium alloy for living body Active JP4302604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279094A JP4302604B2 (en) 2004-09-27 2004-09-27 Superelastic titanium alloy for living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004279094A JP4302604B2 (en) 2004-09-27 2004-09-27 Superelastic titanium alloy for living body

Publications (2)

Publication Number Publication Date
JP2006089825A JP2006089825A (en) 2006-04-06
JP4302604B2 true JP4302604B2 (en) 2009-07-29

Family

ID=36231078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279094A Active JP4302604B2 (en) 2004-09-27 2004-09-27 Superelastic titanium alloy for living body

Country Status (1)

Country Link
JP (1) JP4302604B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035269A1 (en) 2011-09-05 2013-03-14 国立大学法人 筑波大学 Super elastic zirconium alloy for biological use, medical instrument and glasses
US9752214B2 (en) 2011-01-31 2017-09-05 Nippon Piston Ring Co., Ltd. Titanium alloy

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132409A1 (en) * 2005-06-10 2006-12-14 Charmant Co., Ltd. Structural member for eyeglass, eyeglass frame comprising the structural member, and processes for production of the structural member and the eyeglass frame
JP5224569B2 (en) * 2005-06-10 2013-07-03 株式会社シャルマン Spectacle member, spectacle frame including the same, and manufacturing method thereof
JP2008032183A (en) * 2006-07-31 2008-02-14 Shuichi Miyazaki Piston ring
JP2009052092A (en) * 2007-08-27 2009-03-12 J Make:Kk Titanium-germanium alloy, its manufacturing method, personal ornament, daily necessities made of metal, and medical member made of metal
KR100959197B1 (en) 2008-05-28 2010-05-24 한국기계연구원 Titanium alloy with excellent bio-compatibility, low elastic modulus and high strength
EP2297370B1 (en) * 2008-05-28 2013-12-04 Korea Institute Of Machinery & Materials Beta-based titanium alloy with low elastic modulus
JP5272533B2 (en) * 2008-06-18 2013-08-28 大同特殊鋼株式会社 β-type titanium alloy
JP5272532B2 (en) * 2008-06-18 2013-08-28 大同特殊鋼株式会社 β-type titanium alloy
FR2982618B1 (en) * 2011-11-10 2014-08-01 Institut Nat Des Sciences Appliquees De Rennes Insa De Rennes METHOD FOR MANUFACTURING TITANIUM ALLOY FOR BIOMEDICAL DEVICES
JP6005119B2 (en) 2014-10-23 2016-10-12 国立大学法人東京工業大学 Super elastic alloy
FR3064281B1 (en) 2017-03-24 2022-11-11 Univ De Lorraine METASTABLE BETA TITANIUM ALLOY, CLOCK SPRING BASED ON SUCH AN ALLOY AND METHOD FOR MANUFACTURING IT
WO2018220797A1 (en) 2017-06-01 2018-12-06 オリンパス株式会社 Flexible tube insertion assistance device and flexible tube insertion device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3799474B2 (en) * 1999-06-11 2006-07-19 株式会社豊田中央研究所 Titanium alloy bolt
JP4547797B2 (en) * 2000-12-19 2010-09-22 大同特殊鋼株式会社 Biomedical Ti alloy and method for producing the same
JP2004083951A (en) * 2002-08-23 2004-03-18 Toyota Central Res & Dev Lab Inc Low thermal expansion alloy, low thermal expansion member and method for producing the same
JP4270443B2 (en) * 2003-10-09 2009-06-03 住友金属工業株式会社 β-type titanium alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752214B2 (en) 2011-01-31 2017-09-05 Nippon Piston Ring Co., Ltd. Titanium alloy
WO2013035269A1 (en) 2011-09-05 2013-03-14 国立大学法人 筑波大学 Super elastic zirconium alloy for biological use, medical instrument and glasses

Also Published As

Publication number Publication date
JP2006089825A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP3884316B2 (en) Superelastic titanium alloy for living body
JP4302604B2 (en) Superelastic titanium alloy for living body
US20090010796A1 (en) Long fatigue life nitinol
JP2007520630A (en) Beta titanium composition and method for producing the same
JP4015080B2 (en) Superelastic titanium alloy for living body
JP2005530929A (en) Beta titanium compounds and their production
WO2006007434A1 (en) β TITANIUM COMPOSITIONS AND METHODS OF MANUFACTURE THEREOF
EP2754724B1 (en) Super elastic zirconium alloy for biological use, medical instrument and glass frames
JP2009024223A (en) Dental wire, and method for producing the same
JP2006089826A (en) Superelastic titanium alloy for living body
JP4128975B2 (en) Superelastic titanium alloy for living body
JP5107661B2 (en) Ti-based alloy
JP6206872B2 (en) Super elastic alloy
US6419358B1 (en) Pseudoelastic β titanium eyeglass components
JP4212945B2 (en) Functional medical device and manufacturing method thereof
JP5224569B2 (en) Spectacle member, spectacle frame including the same, and manufacturing method thereof
JP2004197112A (en) Method of producing biological superelastic titanium alloy
JP3933623B2 (en) Method for producing superelastic titanium alloy for living body and titanium alloy for superelasticity
JP2005192894A (en) Medical care wire for living body and manufacturing method therefor
JP2005105404A6 (en) Method for producing superelastic titanium alloy for living body and titanium alloy for superelasticity
JPH0441639A (en) Ti-ni-c shape memory alloy and its manufacture
JP2005105388A6 (en) Method for producing superelastic titanium alloy for living body and titanium alloy for superelasticity
JP2005105388A (en) Method of producing superelastic titanium alloy for living body, and titanium alloy for superelasticity
JP2016017226A (en) Super-elastic element
JP2012045080A (en) Orthodontic wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4302604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250