JP4270443B2 - β-type titanium alloy - Google Patents

β-type titanium alloy Download PDF

Info

Publication number
JP4270443B2
JP4270443B2 JP2003350359A JP2003350359A JP4270443B2 JP 4270443 B2 JP4270443 B2 JP 4270443B2 JP 2003350359 A JP2003350359 A JP 2003350359A JP 2003350359 A JP2003350359 A JP 2003350359A JP 4270443 B2 JP4270443 B2 JP 4270443B2
Authority
JP
Japan
Prior art keywords
modulus
young
alloy
titanium
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003350359A
Other languages
Japanese (ja)
Other versions
JP2005113227A (en
Inventor
尚志 前田
修治 花田
貞夫 渡辺
匡 鐙屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003350359A priority Critical patent/JP4270443B2/en
Publication of JP2005113227A publication Critical patent/JP2005113227A/en
Application granted granted Critical
Publication of JP4270443B2 publication Critical patent/JP4270443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は眼鏡フレーム等に用いる低ヤング率のβ型チタン合金に関する。 The present invention relates to a β-type titanium alloy having a low Young's modulus used for a spectacle frame or the like.

チタンおよびチタン合金は、耐食性にすぐれ、軽くて強度が高い、すなわち比強度が高く、しかもアレルギーを引き起こさないなど生体に対する適合性が良好である。このような点から、従来の耐食用機械部品や航空機部品のような用途に加えて、肌に直接触れる装身具や人工骨、インプラントなど医療用具にもその用途が拡大されつつある。これらの特性に加え、ヤング率(のび弾性率)が低いという特徴があり、これを生かして特に眼鏡フレームに多く用いられている。   Titanium and titanium alloys are excellent in corrosion resistance, light and high in strength, that is, high in specific strength, and have good compatibility with living bodies, such as not causing allergies. In this respect, in addition to conventional applications such as anticorrosion machine parts and aircraft parts, the use is expanding to medical devices such as accessories, artificial bones, and implants that directly touch the skin. In addition to these characteristics, there is a characteristic that the Young's modulus (extended elastic modulus) is low.

ヤング率が低ければ、たとえば、強度が同じで同じ断面形状を持っているとすると、同じ力が加わったときに、より大きくたわむことができる。したがって、顔の形状に沿って容易に変形し、そのときの接触面の加圧力が低下することになり、装着による圧迫感が大幅に軽減する。ヤング率が低いことは、バネ材において同じ変形に対して断面積を大きくできるので、へたりが低減される。また、ゴルフクラブヘッドのフェース部のように、たわみが大きい方が打球の飛距離が増すといった用途もある。   If the Young's modulus is low, for example, if the strength is the same and the cross-sectional shape is the same, the deflection can be greater when the same force is applied. Therefore, it easily deforms along the shape of the face, and the pressure applied to the contact surface at that time decreases, and the feeling of pressure due to wearing is greatly reduced. Since the Young's modulus is low, the cross-sectional area can be increased for the same deformation in the spring material, so that sag is reduced. In addition, there is an application in which the hitting distance increases as the deflection becomes larger, such as the face portion of a golf club head.

ヤング率は、鉄や鋼では205GPa前後であり、銅では130GPa程度、アルミニウムでは70GPa程度である。これに対しチタンの場合、純チタンやα合金では115GPa程度であるが、β合金では80GPa程度に低下する。   Young's modulus is about 205 GPa for iron and steel, about 130 GPa for copper, and about 70 GPa for aluminum. On the other hand, in the case of titanium, it is about 115 GPa for pure titanium and α alloy, but it is reduced to about 80 GPa for β alloy.

ヤング率をより一層低下させたチタン合金に関しては、β型合金を対象にいくつかの発明が提案されている。たとえば特許文献1に開示された発明は、NbおよびTaを合計で20〜60質量%含有するヤング率が50〜60GPa程度のチタン合金であるが、そのなかのTaは6〜20%である。しかし、Taは密度が16.6g/cm3でチタンの3.7倍もあり、含有量を増すと重量が増し、軽いというチタンの特徴が失われてくる。 With respect to titanium alloys having a further reduced Young's modulus, several inventions have been proposed for β-type alloys. For example, the invention disclosed in Patent Document 1 is a titanium alloy containing Nb and Ta in a total amount of 20 to 60% by mass and having a Young's modulus of about 50 to 60 GPa, of which Ta is 6 to 20%. However, Ta has a density of 16.6 g / cm 3 and is 3.7 times that of titanium. When the content is increased, the weight increases and the characteristic of titanium, which is light, is lost.

特許文献2には、低ヤング率チタン合金として、Va族元素(V、NbおよびTa)を30〜60質量%含有するチタン合金の発明が開示されている。この場合、発明の効果を評価するのに「平均ヤング率」なる指標を用いているが、この指標は、引張試験の応力−ひずみ曲線において、0.2%耐力の1/2の応力が印加されたときの曲線の傾きであると定義している。一般に示されるヤング率は、比例限度内の変形範囲で計測する。これに対し、このように永久変形してしまう範囲までも含んで計測すると、同じ合金でも通常に測定されたヤング率より低い値になることが明らかである。したがって、この特許文献2の「平均ヤング率」の値は、一般のヤング率とは異なる計測方法にて求められた値であり、その値が低いことで判断しているのであれば、低ヤング率の合金が開発できたとは言い難い。   Patent Document 2 discloses an invention of a titanium alloy containing 30 to 60% by mass of a Va group element (V, Nb and Ta) as a low Young's modulus titanium alloy. In this case, an index of “average Young's modulus” is used to evaluate the effect of the invention, and this index is applied with a stress of 1/2 of 0.2% proof stress in the stress-strain curve of the tensile test. It is defined as the slope of the curve. The Young's modulus generally shown is measured in the deformation range within the proportional limit. On the other hand, it is clear that even if the range including the permanent deformation is measured, even the same alloy has a lower value than the normally measured Young's modulus. Therefore, the value of “average Young's modulus” in Patent Document 2 is a value obtained by a measurement method different from the general Young's modulus, and if it is determined that the value is low, the value of low Young ’s It is hard to say that a high-rate alloy has been developed.

また、特許文献3には、低ヤング率のチタン合金の組成を決定する方法の提案がなされており、計算値としてヤング率が50GPaを下回る組成が推測されているが、実際に作製された合金としては、60GPa程度のものしか示されていない。   Patent Document 3 proposes a method for determining the composition of a titanium alloy having a low Young's modulus, and it is estimated that the Young's modulus is less than 50 GPa as a calculated value. As shown, only about 60 GPa is shown.

特開平10−219375号公報Japanese Patent Laid-Open No. 10-219375 特開2002−332531号公報JP 2002-332531 A 特開2003−90787号公報JP 2003-90787 A 特開2001−329325号公報JP 2001-329325 A

本発明の目的は、ヤング率が低く冷間加工が容易で軽量であり、眼鏡フレームなどに好適なチタン合金を提供することにある。   An object of the present invention is to provide a titanium alloy that has a low Young's modulus, is easy to cold work and is lightweight, and is suitable for spectacle frames and the like.

チタン合金は、強度が高いにもかかわらずヤング率が低いという特徴があり、この特徴を生かした用途として、眼鏡フレームがある。本発明者らはこの眼鏡フレームに適したよりヤング率の低い、冷間加工性にすぐれたチタン合金をえるため種々検討を行った。冷間加工性は、細いフレームに加工するために重要な特性である。   Titanium alloys are characterized by low Young's modulus despite high strength, and there is a spectacle frame as an application that makes use of this feature. The present inventors conducted various studies to obtain a titanium alloy having a lower Young's modulus and excellent cold workability suitable for this spectacle frame. Cold workability is an important characteristic for processing into a thin frame.

チタンにはα型合金、α+β型合金およびβ型合金があるが、前述のようにβ型合金がヤング率は最も低い。また、β型合金は一般的に強度が高く、しかも冷間加工性にすぐれている特徴がある。そこで、β型合金を主対象に、よりヤング率を低くできる組成を調査した。その結果、これまでに知られているように、とくにNbおよびTaを添加してβ合金にすると、ヤング率が低下することがわかった。しかしヤング率をより低下させるには、Taの比率を増す必要があるが、Taの増加は合金の密度を増加させ、めがねフレームのような用途では重量が増すので好ましくない。またTaは高価な合金元素であるので、添加量の増加は製品価格を高くしてしまう。   Titanium includes α-type alloys, α + β-type alloys, and β-type alloys. As described above, β-type alloys have the lowest Young's modulus. Further, β-type alloys are generally characterized by high strength and excellent cold workability. Therefore, a composition that can lower the Young's modulus was investigated mainly for β-type alloys. As a result, as has been known, it has been found that the Young's modulus decreases particularly when Nb and Ta are added to form a β alloy. However, in order to further lower the Young's modulus, it is necessary to increase the Ta ratio. However, an increase in Ta is not preferable because it increases the density of the alloy and increases the weight in applications such as eyeglass frames. Further, since Ta is an expensive alloy element, an increase in the amount added increases the product price.

そこで、Taは使用せずに、よりヤング率を低下できる合金元素についてさらに調査をおこなったところ、Snの添加が有効であることがあきらかになってきた。Snは相変態にはほとんど影響せず、中性的元素として知られているが、Nb添加によるヤング率の低下をより一層大きくする効果がある。その上、冷間加工性を阻害することなく強度を上昇させる作用があり、しかもTaのように添加量を増すことによる密度の増加も少ない。   Therefore, further investigation was conducted on alloy elements that can lower Young's modulus without using Ta, and it has become clear that the addition of Sn is effective. Sn has little effect on the phase transformation and is known as a neutral element, but has the effect of further increasing the decrease in Young's modulus due to the addition of Nb. In addition, it has the effect of increasing the strength without impairing the cold workability, and the increase in density due to the increase in the amount added, such as Ta, is small.

TiにNbおよびSnを含有させた合金として、特許文献4に形状記憶効果を有する合金の発明が開示されている。形状記憶効果を発現させるには、高温で溶体化後急冷してマルテンサイト変態させ、マルテンサイト相を生じさせなければならない。ところが、マルテンサイト相が生じるとヤング率が高くなるので、低ヤング率とするためには、高温で溶体化し急冷後にマルテンサイト相が生じない組成とし、熱的に十分安定したβ相の合金にしておく必要がある。   As an alloy containing Nb and Sn in Ti, Patent Document 4 discloses an invention of an alloy having a shape memory effect. In order to develop the shape memory effect, it must be cooled at a high temperature and then rapidly cooled to cause martensitic transformation to produce a martensitic phase. However, since the Young's modulus increases when the martensite phase occurs, in order to achieve a low Young's modulus, a composition that does not generate a martensite phase after being melted at a high temperature and rapidly cooled to a thermally stable β-phase alloy is obtained. It is necessary to keep.

上述のような組成の検討は、高温からの急冷によるβ相化処理の後、ヤング率は60GPaを下回ること、そして冷間加工性としては、切削により成形した板状試験片にて圧下率70%の冷間圧延をおこない、耳割れ発生が実質的にないことを評価基準とし、合金元素含有量の効果を判断した。   Examination of the composition as described above shows that after β-phase treatment by rapid cooling from a high temperature, the Young's modulus is less than 60 GPa, and as cold workability, a plate-shaped test piece formed by cutting has a reduction rate of 70. % Was subjected to cold rolling, and the effect of the alloying element content was judged on the basis of evaluation that there was substantially no generation of ear cracks.

以上の検討結果に基づき、さらに限界条件を明らかにして本発明を完成させた。本発明の要旨は次のとおりである。   Based on the above examination results, the present invention was completed by further clarifying the limit conditions. The gist of the present invention is as follows.

(1) Nbを13〜28atom%、Snを0.1〜10atom%含有し、残部がTiおよび不純物からなり、ヤング率が60GPa未満であることを特徴とするβ型チタン合金。 (1) Nb The 13~28Atom%, the Sn contained 0.1~10Atom%, remainder Ri is Do Ti and impurities, Young's modulus you and less than 60 GPa beta-type titanium alloy.

本発明のチタン合金は、耐食性にすぐれ、比強度が高いチタンの特性を有しているだけでなく、ヤング率が60GPa未満と低く、その上重くないという特徴がある。このような特徴は眼鏡のフレームに用いれば好適であり、低ヤング率という特徴から、へたりのないバネあるいはゴルフクラブヘッドのフェース部などにも効果的に用いることが可能である。

The titanium alloy of the present invention is not only excellent in corrosion resistance and has the characteristics of titanium having a high specific strength, but also has a characteristic that the Young's modulus is as low as less than 60 GPa and it is not heavy. Such a feature is suitable for use in a frame of spectacles, and can be effectively used for a spring having no sag or a face portion of a golf club head because of its low Young's modulus.

本発明の低ヤング率β型チタン合金は、Nbを13〜28atom%、Snを0.1〜10atom%含有し残部がTiおよび不純物である組成とする。また、本発明のチタン合金はβ相単相であることとするが、これはマルテンサイト相が現れたり、α相が残存したりするとヤング率が低下しなくなるためである。   The low Young's modulus β-type titanium alloy of the present invention has a composition containing 13 to 28 atom% Nb and 0.1 to 10 atom% Sn and the balance being Ti and impurities. The titanium alloy of the present invention is a β-phase single phase because the Young's modulus does not decrease when the martensite phase appears or the α-phase remains.

Nbはチタンに含有させると、β相を安定させる作用があり、高温のβ相からの冷却により常温でもβ相単相である合金にすることができる。また、このβ相の安定化と共に、ヤング率をより大きく低下させる効果がある。   When Nb is contained in titanium, it has an action of stabilizing the β phase, and can be made into an alloy that is a β phase single phase even at room temperature by cooling from the high temperature β phase. In addition, the β phase is stabilized and the Young's modulus is greatly reduced.

このNbの含有量は13〜28atom%とする。13atom%以上とするのは、13atom%未満の場合、安定してβ相が得られなくなり、α+β合金になったり、溶体化後の急冷でマルテンサイト変態し形状記憶効果を持つようになったりして、ヤング率が低下しなくなる。しかし多すぎる含有では、冷間加工性が低下したり、ヤング率が高くなったりするので、28atom%以下とするのがよい。より好ましいのは16〜28atom%である。   The Nb content is 13 to 28 atom%. If it is less than 13atom%, the β phase cannot be obtained stably and it becomes an α + β alloy, or it becomes martensitic by rapid cooling after solution treatment and has a shape memory effect. Thus, the Young's modulus does not decrease. However, if the content is too large, the cold workability is lowered and the Young's modulus is increased. More preferred is 16 to 28 atom%.

Snは、Nbと共に含有させることにより、ヤング率のより一層の低下をもたらすばかりでなく、冷間加工性を劣化させずに強度を向上させる効果がある。Snの含有量は0.1〜10atom%とするが、0.1atom%未満では添加による改良効果が現れない。しかし、過剰の含有はヤング率を上昇させ、冷間加工性を劣化させるので、多くても10atom%までとするのがよい。その効果が十分に発揮されるより好ましい含有量は、3〜10atom%である。   When Sn is contained together with Nb, it not only causes a further decrease in Young's modulus, but also has an effect of improving strength without deteriorating cold workability. The Sn content is 0.1 to 10 atom%, but if it is less than 0.1 atom%, the improvement effect by addition does not appear. However, excessive content raises the Young's modulus and degrades the cold workability, so it should be at most 10 atom%. A more preferable content at which the effect is sufficiently exhibited is 3 to 10 atom%.

これらの合金の製造は、チタン合金にて通常用いられる非消耗電極式または消耗電極式の真空またはアルゴンアーク溶解法、電子ビーム溶解法、プラズマ溶解法等を用いておこなえばよい。得られた鋳塊は、熱間鍛造、熱間圧延、冷間圧延等の一般的に用いられる方法で、所要形状に成形加工する。加工後、ひずみ除去、溶体化あるいは均質化を目的に、β変態点以上に加熱し、放冷あるいは衝風や噴霧などにて急冷すれば安定したβ合金が得られる。   These alloys may be manufactured using a non-consumable electrode type or consumable electrode type vacuum or argon arc melting method, an electron beam melting method, a plasma melting method or the like that is usually used for titanium alloys. The obtained ingot is formed into a required shape by a generally used method such as hot forging, hot rolling, or cold rolling. After processing, for the purpose of strain removal, solution formation or homogenization, a stable β alloy can be obtained by heating above the β transformation point and quenching by cooling or blast or spraying.

純度99.5質量%以上のスポンジチタンを原料とし、表1に示す組成に配合し1ヶ約200gの小形鋳片を溶製した。この厚さ12mmの鋳片を1100℃に加熱し、6mm厚さまで圧延率50%の熱間圧延を施し、1000℃1時間保持後放冷する溶体化熱処理をおこなった後、幅10mm、長さ60mmの板状試験片を採取し、共振法によりヤング率を測定した。また、熱処理後の板から機械加工により、厚さ5mm、幅100mmの板状試験片を採取し、70%の冷間圧延をおこなって圧延後の耳割れ発生から、冷間加工性を評価した。これらの結果を表1に合わせて示す。   Sponge titanium having a purity of 99.5% by mass or more was used as a raw material, blended with the composition shown in Table 1, and a small slab of about 200 g was melted. This 12mm-thick slab is heated to 1100 ° C, hot-rolled to a thickness of 6mm, with a rolling rate of 50%, subjected to a solution heat treatment that is allowed to cool after holding at 1000 ° C for 1 hour, and then 10mm in width and length A 60 mm plate-shaped test piece was collected, and Young's modulus was measured by a resonance method. In addition, a plate-like test piece having a thickness of 5 mm and a width of 100 mm was collected from the heat-treated plate by machining and subjected to 70% cold rolling, and the cold workability was evaluated from the occurrence of ear cracks after rolling. . These results are also shown in Table 1.

Figure 0004270443
Figure 0004270443

表1の結果からあきらかなように、Nbの含有量およびSnの含有量が本発明にて定める範囲にある場合は、いずれもヤング率が60GPaを下回っており、良好な冷間加工性を示していることがわかる。しかし、試番1のようにNbが低い場合は、β相でなくマルテンサイト相(α”)が現れており、ヤング率は高く冷間加工性もよくない。またNb含有量が高過ぎると試番24に見られるように、ヤング率が高くなっている。   As is clear from the results in Table 1, when the Nb content and the Sn content are in the range defined by the present invention, the Young's modulus is less than 60 GPa, indicating good cold workability. You can see that However, when Nb is low as in Test No. 1, not the β phase but the martensite phase (α ″) appears, the Young's modulus is high and the cold workability is not good. If the Nb content is too high, As seen in trial number 24, the Young's modulus is high.

Snを含有しない場合、試番18および23に見られるように、Nbを多く含有させてもヤング率は十分低下しない。しかし、試番8および15のようにSnの多すぎる含有は、ヤング率の低下には効果がなくなる。
When Sn is not contained, the Young's modulus does not sufficiently decrease even if Nb is contained in a large amount, as seen in samples 18 and 23. However, the inclusion of too much Sn as in Test Nos. 8 and 15 is ineffective in lowering the Young's modulus.

Claims (1)

Nbを13〜28atom%、Snを0.1〜10atom%含有し、残部がTiおよび不純物からなり、ヤング率が60GPa未満であることを特徴とするβ型チタン合金。   A β-type titanium alloy characterized by containing 13 to 28 atom% of Nb and 0.1 to 10 atom% of Sn, the balance being Ti and impurities, and Young's modulus being less than 60 GPa.
JP2003350359A 2003-10-09 2003-10-09 β-type titanium alloy Expired - Lifetime JP4270443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003350359A JP4270443B2 (en) 2003-10-09 2003-10-09 β-type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003350359A JP4270443B2 (en) 2003-10-09 2003-10-09 β-type titanium alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008297686A Division JP5143704B2 (en) 2008-11-21 2008-11-21 Low Young's modulus β-type titanium alloy

Publications (2)

Publication Number Publication Date
JP2005113227A JP2005113227A (en) 2005-04-28
JP4270443B2 true JP4270443B2 (en) 2009-06-03

Family

ID=34541938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350359A Expired - Lifetime JP4270443B2 (en) 2003-10-09 2003-10-09 β-type titanium alloy

Country Status (1)

Country Link
JP (1) JP4270443B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4302604B2 (en) * 2004-09-27 2009-07-29 株式会社古河テクノマテリアル Superelastic titanium alloy for living body
US7670445B2 (en) 2006-01-18 2010-03-02 Nissan Motor Co., Ltd. Titanium alloy of low Young's modulus
JP4714875B2 (en) * 2006-03-27 2011-06-29 瑞穂医科工業株式会社 Implant for in-vivo implantation and method for producing the same
JP5272533B2 (en) * 2008-06-18 2013-08-28 大同特殊鋼株式会社 β-type titanium alloy
JP5272532B2 (en) * 2008-06-18 2013-08-28 大同特殊鋼株式会社 β-type titanium alloy
JP5671674B2 (en) * 2009-09-11 2015-02-18 独立行政法人国立高等専門学校機構 Manufacturing method of titanium damping alloy
CN112662914A (en) * 2020-12-08 2021-04-16 燕山大学 Low-elastic-modulus high-plasticity titanium alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JP2005113227A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP5005889B2 (en) High strength low Young's modulus titanium alloy and its manufacturing method
US20040052676A1 (en) beta titanium compositions and methods of manufacture thereof
EP1706517A2 (en) B titanium compositions and methods of manufacture thereof
JP2004183058A (en) Titanium alloy, and golf club
JP5201202B2 (en) Titanium alloy for golf club face
JP2010275606A (en) Titanium alloy
CN103060609B (en) Near-beta titanium alloy with low elastic modulus and high strength and preparation method of near-beta titanium alloy
JP4270443B2 (en) β-type titanium alloy
JP2006183100A (en) High-strength titanium alloy having excellent cold workability
WO2013125038A1 (en) Titanium alloy for use in golf-club face
WO2013125039A1 (en) Titanium alloy for use in golf-club face
US20040241037A1 (en) Beta titanium compositions and methods of manufacture thereof
JP4581425B2 (en) β-type titanium alloy and parts made of β-type titanium alloy
JP5143704B2 (en) Low Young's modulus β-type titanium alloy
JP2006034414A (en) Spike for shoe
US6419358B1 (en) Pseudoelastic β titanium eyeglass components
JP4263987B2 (en) High-strength β-type titanium alloy
US20070044868A1 (en) Ti-based shape memory alloy article
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP4528109B2 (en) Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same
JP2014224301A (en) Titanium alloy having high strength and high young's modulus and excellent in fatigue characteristic and impact toughness
JP2004183079A (en) Titanium alloy and method for manufacturing titanium alloy material
JP3977956B2 (en) High strength β-type Ti alloy with excellent cold workability
JP2004068146A (en) beta TYPE TITANIUM ALLOY AND METHOD FOR PRODUCING THE SAME
JP5119488B2 (en) Titanium alloy for golf club face

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4270443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term