JP2004068146A - beta TYPE TITANIUM ALLOY AND METHOD FOR PRODUCING THE SAME - Google Patents
beta TYPE TITANIUM ALLOY AND METHOD FOR PRODUCING THE SAME Download PDFInfo
- Publication number
- JP2004068146A JP2004068146A JP2003158495A JP2003158495A JP2004068146A JP 2004068146 A JP2004068146 A JP 2004068146A JP 2003158495 A JP2003158495 A JP 2003158495A JP 2003158495 A JP2003158495 A JP 2003158495A JP 2004068146 A JP2004068146 A JP 2004068146A
- Authority
- JP
- Japan
- Prior art keywords
- less
- alloy
- mass
- titanium alloy
- pickling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
Description
【0001】
【発明が属する技術分野】
本発明は、溶体化された状態にて冷間加工の変形抵抗が低く、すぐれた変形能を有し、時効処理後は高強度となるβ型チタン合金およびその合金の製造方法に関する。
【0002】
【従来の技術】
チタン合金は、低密度で強度が高く、実用金属材料の中で高い比強度(強さ/密度)を持ち、しかも耐食性にすぐれていることから、航空機材料を始め、自動車部品用材料、医療機器材料、眼鏡用材料、ゴルフクラブ用材料、食器用材料などにもその用途が広がりつつある。それにともなって、チタン合金の性質のさらなる改善や価格の低減が、より強く要望されている。
【0003】
チタン合金は、その常温における金属組織を構成する相の結晶構造からα(稠密六方晶:hcp)型、β(体心立方晶:bcc)型、およびα+β型に大別される。工業用純チタンやAlなどを少量添加した合金はα型であり、高強度合金としてよく知られ航空機などに使用されるTi−6Al−4V合金はα+β型で、β型はα+β型よりさらにβ相を安定させる元素の含有量を増加した合金である。
【0004】
チタン合金は一般に冷間加工性が悪く、このために製造コストが高くなってしまう。冷間加工性が比較的良好な酸素含有量の低い純チタンでは、成形された部品の強度が不足し、高い比強度が要望される部品には適用困難である。一方、強度の高いチタン合金として最も代表的なTi−6Al−4Vは、強度は高いが常温での変形能がきわめて悪く、熱間加工か切削加工でしか目的とする形状に成形できず、製造コストが嵩む。
【0005】
上記のような事情から、体心立方晶の結晶構造を持つβ型のチタン合金が注目されている。β型の合金は、たとえば、Ti−3Al−8V−6Cr−4Mo−4Zr合金やTi−15V−3Cr−3Al−3Snである。これらのβ型合金は、溶体化処理を施しβ単相としたときの冷間加工における変形能が大きく、加工後時効処理をおこなってα相を析出させ、強度を高めることが可能で、精密部品用材料として好ましい特性を有している。
【0006】
しかしながら、これまで知られているβ型チタン合金は、変形能は良好であっても変形抵抗が高い。従って、たとえば冷間鍛造をおこなう場合に、ダイスやポンチなどの金型が少ない使用回数で割れたり欠けたりすることが多い。また、被加工材料製造のための冷間圧延ではロール摩耗が大きく、冷間伸線などの場合は焼き付きが生じやすい。
【0007】
このような問題を解決する発明として、特許文献1(特許第2669004号公報)にV:15〜25%、Al:2.5〜5%、Sn:0.5〜4%、酸素:0.12%以下、残部Tiおよび不純物の合金(以下、Ti−20V−4Al−1Sn合金と略称する)の発明が開示されている。この合金は、変形能は従来のβ型チタン合金とほぼ同等であるが、溶体化処理状態における強度が低くて変形抵抗が低いだけでなく、時効処理後の強度が高い。しかし、この発明の合金を作製し、種々の部品に成形してみると、β処理状態での変形能が、かならずしも安定してすぐれたものにならず、変形抵抗も不安定である。また、時効後の強度も変動が大きいという難点がある。
【0008】
【特許文献】
特許第2669004号公報
【0009】
【発明が解決しようとする課題】
本発明の第1の目的は、溶体化の状態で冷間加工性にすぐれ、しかも、時効処理後の強度が高いという特性が容易に、かつ安定して実現できるチタン合金を提供することにある。
【0010】
本発明の第2の目的は、上記のチタン合金を製造するに際して、そのH(水素)含有量を低減するための酸洗方法を提供することにある。
【0011】
【課題を解決するための手段】
β型チタン合金は チタンの高温相であるβ相を急冷して室温にまで持ち来した準安定β相の合金である。このβ相を安定化させるための合金元素としては、V、Mo、Nb、Ta、Cr、Fe、Mn、などがあるが、これらの中で、固溶による硬化が小さく、加工性への悪影響が少なく、時効により高強度が得られ、しかも相対的に安価な元素として、VとMoとがある。しかしMoは融点が高く偏析しやすいこと、およびMo添加によって熱間加工性や冷間加工の変形抵抗が高くなるなどの難点があるのでVを選び、時効処理時の強度上昇からAlを含有させ、固溶硬化の抑制を目的にAlの一部をSnに置き換えたのが、Ti−20V−4Al−1Sn合金である。
【0012】
この合金を数多く製造する過程で、冷間加工性と時効強化性がかならずしも安定して得られない、という問題のあることがわかり、本発明者はこの原因解明とその対処のため、種々の検討をおこなった。まず、主要組成のV、AlおよびSnについて、含有量の範囲の組み合わせを変えて加工性や時効性を調査した。しかし、これらの主要成分の変動は、含有量の範囲の限界近くになると多少その影響が現れる以外、とくには顕著な特性変化への影響は認められなかった。
【0013】
ところが、上述の調査の過程で、β型Ti−20V−4Al−1Sn合金に対し、O(酸素)、H、Fe、CおよびNの、一般的にチタンの不純物とされる元素の含有が、この合金の特性、すなわち冷間加工性と時効後の強度向上にとくに大きく影響していることが明らかになってきた。これらの不純物元素は、JIS−H−4600、JIS−H−4605あるいはJIS−H−4607などのチタンやチタン合金の規格でそれぞれの含有量が規制されている。しかし、その規制は本発明によって改良しようとするβ型Ti−20V−4Al−1Sn合金を対象とするものではない。
【0014】
上記の各元素の作用については次のようなことが知られている。
【0015】
Oは、α相安定化元素であり、多く含まれると溶体化処理によるβ相単相化を阻害するが、それよりも合金を硬化させ変形抵抗を大きくし、変形能も低下させる。Hはβ相安定化元素なので、α相析出による時効硬化を遅らせ、時効による強度向上を阻害する。Feはβ相安定化元素ではあるが、溶体化処理した合金の強度を高くし変形抵抗を増加させるので、多量の含有は好ましくない。Cは炭化物の析出物を形成し、変形抵抗および変形能をいずれも大きく低下させる。Nはβ相中に1%程度固溶するが、延性の大きな低下を引き起こし変形能を低下させる。
【0016】
しかしながら、β型Ti−20V−4Al−1Sn合金の場合、上記JIS規格に規制されている範囲内に不純物を規制しようとしても、その範囲内には容易に低減できない元素があること、また、規格内に限定しても、その量がこの合金の特性に大きく影響する元素のあること、がわかってきた。これは、JIS規格で規定されているチタン合金はα型またはα+β型の合金であるのに対し、Ti−20V−4Al−1Snはβ型合金であることによると考えられる。
【0017】
たとえば、β型合金は、α型合金やα+β型合金に比較してきわめて水素を吸収しやすい。とくに厚さが5mm以下の冷間圧延して製造する板の場合、良好な表面を得るために熱間圧延後脱スケールをおこなわなければならない。この脱スケール方法には機械的に表面を研削する方法もあるが、この方法は処理速度が遅く歩留まりが悪い。従って、弗酸や硝弗酸による酸洗をおこなうのが普通である。ところが、冷間圧延のため溶体化してβ型にしたTi−20V−4Al−1Sn合金の場合、酸洗中に上記のJIS規格で定められる限界量を大幅に超える水素が吸収されてしまう。酸洗条件を種々工夫してもその十分な低減は困難である。また上記合金は酸化スケールを増大させる成分を含むので、酸洗時間が長引くことにより水素吸収が多くなりがちである。
【0018】
β型合金は、所用形状に加工後、時効処理をおこなって強度を向上させることができる。しかし、含有されている水素は、時効硬化を著しく阻害し、時効処理時間を長引かせたり、目的とする強度までの時効硬化を困難にする。その上、水素は、合金の延性を低下させて加工性を劣化させ、さらには靱性も大きく劣化させる。真空中で高温加熱することにより脱水素は可能であるが、長時間の処理を要し、その上、この処理中に時効も生じてしまうので実用化は困難である。
【0019】
脱スケールのための酸洗による水素の吸収は、このTi−20V−4Al−1Sn合金板の製造過程では避けがたい。そこで、後述の水素吸収を最小限に抑制する酸洗方法を採用するとともに、それでも不可避的に混入してくる酸洗後の水素含有量を前提として、その水素による時効速度の低下および加工性や靱性の低下を、他の不純物元素量を制御することにより補うことができるのではないかと考え、O,Fe、NおよびCの含有量の影響を調査した。その結果、これら各元素も水素量とともにそれぞれの含有量を規制することにより、安定してすぐれた特性のTi−20V−4Al−1Sn合金が得られることがわかった。これらの検討結果に基づき、さらに限界条件を明確にして本発明を完成させた。本発明の要旨は次の(1)から(3)までのチタン合金、ならびに(4)および(5)のチタン合金の製造方法にある。
【0020】
(1) 質量%にて、V:15〜25%、Al:2.5〜5%、Sn:0.5〜4%、O:0.20%以下、H:0.03%以下、Fe:0.40%以下、C:0.05%以下、N:0.02%以下で、残部はTiおよび不純物からなることを特徴とするβ型チタン合金。
【0021】
(2) 質量%にて、V:15〜25%、Al:2.5〜5%、Sn:0.5〜4%、O:0.12%以下、H:0.03%以下、Fe:0.15%以下、C:0.03%以下、N:0.02%以下で、残部はTiおよび不純物からなることを特徴とするβ型チタン合金。
【0022】
(3)質量%にて、V:15〜25%、Al:2.5〜5%、Sn:0.5〜4%、O:0.12%以下、H:0.03%以下、Fe:0.15%以下、C:0.03%以下、N:0.02%以下で、更にそれぞれ3%未満のZr、Mo、Nb、Ta、Cr、Mn、Ni、PdおよびSiの中から選んだ1種以上を含み、残部はTiおよび不純物からなることを特徴とするβ型チタン合金。
【0023】
(4)質量%にて、V:15〜25%、Al:2.5〜5%、Sn:0.5〜4%、O:0.20%以下、H:0.03%以下、Fe:0.40%以下、C:0.05%以下、N:0.02%以下で、残部はTiおよび不純物からなるβ型チタン合金を、まず3〜40質量%のHFを主成分とする水溶液で酸洗し、次いで3〜6質量%のHFと5〜20質量%のHNO3を含む水溶液で酸洗することを特徴とするβ型チタン合金の製造方法。
【0024】
(5)質量%にて、V:15〜25%、Al:2.5〜5%、Sn:0.5〜4%、O:0.20%以下、H:0.03%以下、Fe:0.40%以下、C:0.05%以下、N:0.02%以下で、更にそれぞれ3%未満のZr、Mo、Nb、Ta、Cr、Mn、Ni、PdおよびSiの中から選んだ1種以上を含み、残部はTiおよび不純物からなるβ型チタン合金を、まず3〜40質量%のHFを主成分とする水溶液で酸洗し、次いで3〜6質量%のHFと5〜20質量%のHNO3を含む水溶液で酸洗することを特徴とするβ型チタン合金の製造方法。
【0025】
【発明の実施の形態】
本発明のβ型チタン合金の成分元素の限定理由は次のとおりである。なお、各成分の含有量はいずれも質量%にて示す。
【0026】
V:15〜25%
Vはβ相を安定化し、室温にて合金の組織をβ単相にするための重要な元素である。15%未満の場合は、高温のβ相状態からの水冷など急冷による溶体化処理の際、マルテンサイト型組織が生じ、冷間加工性を大きく劣化させる。25%を超える場合は、β型合金の時効硬化性を悪くし、時効処理に要する時間が長くなり、さらに時効処理後も十分な強化が得られないことがある。その上、合金の冷間加工の変形抵抗が増大してくる。
【0027】
Al:2.5〜5%
β型合金は、最終的に時効処理して強化するが、その際に十分な強度上昇を得るためにAlを含有させる。また、時効処理にて合金を脆化させるω相の析出を抑制し、α相の析出を促進する効果もある。このような効果は、2.5%未満では不十分であり、5%を超えるとβ状態での硬さを増してしまい、冷間加工性を低下させる。したがって、2.5〜5%とする。
【0028】
Sn:0.5〜4%
Snは上記のAlと同様な作用があるが、Alほどβ状態での硬さを増さないので、Alを減らしSnで置き換えることにより、変形抵抗増大を抑制することができる。このようなSnの効果は、含有量が少なければ乏しくなるので含有量を0.5%以上とする。一方、Sn含有量が多くなると、やはりβ化した合金の硬さを増すので、4%までとする。
【0029】
O(酸素):0.20%以下
Oは合金の変形能を低下させ、強度の冷間加工を行った時に割れを発生させる原因となり、変形抵抗も大きくする。その量は少なければ少ないほどよいが、悪影響が目立たない限界量である0.20%以下とする。なお、0.12%以下とするのが一層望ましい。
【0030】
H:0.03%以下
Hは時効処理時のα相の析出を遅らせ、時効による強度上昇を低減させるばかりでなく、延性および靱性を劣化させるので、少なければ少ないほどよい。しかしながら、水素を吸収しやすいβ型のTi−20V−4Al−1Sn合金では、酸洗過程以外での吸収もあり、とくに薄板の場合、酸洗して脱スケールをおこなうことが必須なので、0.005%を下回る量に低減することは困難である。したがって、下限値はとくには定めないが、上限値はその影響が大きくない限界として、0.03%までとする。より望ましいのは0.01%以下である。
【0031】
水素含有量の時効硬化に及ぼす影響の調査例を以下に示す。
【0032】
合金組成がV:20.0%、Al:3.2%、Sn:1.0%、〇:0.11%、H:0.015%、Fe:0.10%、C:0.01%、N:0.01%、残部:Tiおよび不純物である厚さ5mmの熱間圧延板に溶体化処理を施し、スチールショットブラストの後、酸洗時間を変えることによって水素含有量を変え、450℃にて時効処理をおこなった。溶体化処理は、大気中で850℃、5分間加熱した後、水冷する処理である。
【0033】
時効時間による硬さ変化を調べた結果は図1のようになった。硬さHvは、試験荷重1kgfのビッカース硬さである。
【0034】
図1からわかるように、水素含有量が0.015%または0.025%の場合は、12時間の時効処理により目的とする硬さに到達し、飽和している。これに対し、20時間処理しても水素含有量が0.040%または0.065%の場合は、十分な硬さにならない。これらの合金の場合、水素含有量が0.015%または0.025%の合金で得られる硬さに到達するには、20時間をはるかに超える長時間の時効処理が必要になって、実用性に乏しい。なお、水素含有量が0.100%の場合は、図示のとおりほとんど硬くすることができない。
【0035】
上記の試験結果から、合金のHの含有量は、0.03%以下に抑えるのが望ましいことが分かる。
【0036】
Fe:0.40%以下
Feは水素と同様β相を安定化させて時効処理による硬化を遅延させ、その上変形抵抗を大きくするので、少なければ少ないほどよい。上記のように水素の含有は避けがたいことから、顕著な変形抵抗増加をもたらさない限界量として、多くても0.40%までとする。なお、さらに望ましいFe含有量は、0.15%以下である。
【0037】
C:0.05%以下
Cは延性、すなわち変形能を大きく低下させるので、少なければ少ないほどよい。顕著な変形能低下をもたらさない限界量として多くとも0.05%までとする。0.03%以下が一層望ましい。
【0038】
N:0.02%以下
Nは変形能を大きく低下させるので、少なければ少ないほどよい。顕著な変形能低下をもたらさない限界量として、0.02%までとする。
【0039】
上記のO、Fe、CおよびNの不純物元素は、原料のスポンジチタンに由来しているばかりでなく、その後の合金の溶製や高温加熱の過程でチタン合金中に取り込まれ、増加することはあっても、原料におけるその含有量以下には低減できない。したがって、原料としてこれら不純物の含有量の少ないスポンジチタンを選び、その上で、製造過程における汚染をできるだけ低減する必要がある。
【0040】
Zr、Mo、Nb、Ta、Cr、Mn、Ni、PdおよびSi
本発明合金は、V、AlおよびSnに加えて、本発明の作用効果を損なわない範囲で、それぞれ3%未満のZr、Mo、Nb、Ta、Cr、Mn、Ni、PdおよびSiの中から選ばれた1種以上を含有してもよい。これらの成分は、本発明合金の変形能その他の特性を損なわないで時効処理後の合金の強度向上に寄与する。それぞれの成分のより望ましい含有量は0.1〜1%である。
【0041】
溶体化処理してβ型合金としたときの平均結晶粒径は20〜130μmであることが望ましい。これは20μm未満では変形抵抗が大きくなって加工が困難となり、130μmより大きい場合、変形能が低下して加工したときに割れを発生しやすくなり、時効後にも強度不足を生じてくるからである。また、時効処理は通常の400〜500℃にておこなうが、β相の結晶粒径を上記範囲とすることによって、時効により析出してくるα相の粒径は好ましい範囲の0.02〜0.2μmとなり、強度、靱性ともすぐれたものとなる。
【0042】
上記の望ましい平均結晶粒径は、次に述べる製造条件を採用することによって得られる。
【0043】
本発明の合金または合金板は、所要組成に溶製した素材を鍛造して、これを熱間圧延後、冷間圧延し、それから溶体化処理をおこなって製造するが、冷間加工性すなわち変形能にすぐれ、かつ変形抵抗の低い上記平均結晶粒径のβ型合金とするためには、製造条件を次のようにするのが望ましい。
【0044】
熱間圧延の素材加熱温度は900〜1050℃とするのがよい。これは、900℃未満では熱間加工における変形抵抗が大きく、加工設備への負担が過剰になってしまうからであり、1050℃を超えると加熱中の酸化が激しくなって歩留まり低下を来すばかりでなく、結晶粒が粗大化し、加工後の合金特性にも影響を及ぼすからである。また、熱間加工中における温度も、変形加工と変形加工との待ち時間の間の温度低下や、加工熱による温度上昇があっても、βトランザス以上の750〜1050℃の範囲内にあることが望ましい。
【0045】
熱間加工後は、水冷などのように平均冷却速度が30℃/分以上の急冷がよい。これはゆっくりした冷却をおこなうと、α相が析出し硬化してしまい、圧延材の取り扱いが困難となり、コイルに巻き取った板では展開不能となってしまうおそれがあるからである。次の工程の冷間圧延や冷間抽伸などを実施するとき、十分な軟化を得るため、たとえば連続酸洗焼鈍装置(HAP)を通し、溶体化処理して脱スケールする。溶体化処理、すなわちβ化処理は750〜950℃に加熱後水冷するのが望ましい。この場合、750℃未満ではβ相一相とするには不十分な場合があり、950℃を超えると、結晶粒が粗大化してしまうおそれがあるからである。溶体化処理の加熱時間は十分に溶体化し、かつ無駄な加熱を避けるため1〜30分とするのがよい。
【0046】
平均結晶粒径が20μmよりも小さくなるのは、熱間加工の温度がβトランザス近傍またはそれより低温で、さらにHAPでの温度が750℃近傍になったときである。従って、このような条件は避けるのが望ましい。ただし、冷間加工性を多少犠牲にしても時効処理後の高い強度が必要な場合は、熱間加工温度をβトランザス以下とし、またHAPでの温度を750℃近傍として、平均結晶粒径を20μmより小さく、例えば10μmとしてもよい。
【0047】
脱スケールは、水素吸収がない点でコイルグラインダーなどによる研削が望ましいが、生産性が悪くコスト高となる。そこで、酸洗による脱スケールをおこなうが、できるだけ水素の混入がないように実施する必要がある。
【0048】
水素吸収を極力抑え、かつ十分な脱スケールだけでなくαケースの除去もでき、冷間圧延にて美麗な表面を持つ板を製造するため酸洗条件として、たとえば次のようにするのがよい。なお、αケースとはβチタン合金の表面に酸素が侵入してできる硬くて脆い酸素富化層である。
▲1▼酸洗に先立ち、ショットブラストを施す。
▲2▼20〜70℃、3〜40質量%のHFを主成分とする水溶液にて10分間以内で酸洗する。
▲3▼20〜70℃、3〜6質量%のHFと5〜20質量%のHNO3を含む弗硝酸水溶液にて20分間以内で酸洗する。
【0049】
▲1▼のショットブラストはおこなわなくてもよいが、軽度のショットブラストを施すと、酸洗時間を短くすることができる。酸化スケールにクラックが入るためである。
【0050】
上記▲2▼の水溶液は、主成分である3〜40質量%のHFの他に還元性を有し水素吸収を抑制する硝酸、過酸化水素等を含んでもよい。例えば、半導体製造工程で出る廃液(弗酸が主成分で酢酸等の副次的成分を含む)も使用できる。
【0051】
上記▲3▼の水溶液も、3〜6質量%のHFと5〜20質量%のHNO3の他に、還元性を有する過酸化水素等の副次的成分、酢酸等の不純物を含んでいてもよい。
【0052】
酸洗は、まず▲2▼の弗酸を主成分とする水溶液でおこなう。弗酸による酸洗は酸化スケールを除去するのに効果があるが、αケースの酸洗除去の際には特に水素吸収が多い。したがって、長くても10分以内のαケースを残存させる程度にとどめ、引き続いて次の▲3▼の酸洗をおこなう。酸化スケールの下にできた酸素富化層、即ち、αケースは、弗硝酸液により効率よく除去できる。弗硝酸液による酸洗は、硝酸の還元作用により、水素吸収が少ない利点があるが、酸化スケールが多い場合、除去に要する時間が長くなり、局所的に腐食が進行して表面が荒れるおそれがある。したがって、▲2▼の弗酸を主成分とする水溶液による酸洗の後、▲3▼の弗硝酸液による酸洗をおこなう。しかし、弗硝酸液でも長時間にわたると水素吸収が増加してくるので、20分以内とするのがよい。
【0053】
上記の酸洗において、温度を20〜70℃とするのは、20℃未満の温度ではスケールや酸素富化層除去に時間がかかりすぎ、70℃を超えると、表面荒れが甚だしくなり酸の蒸発も多くなるからである。HFの濃度は、▲2▼の溶液および▲3▼の溶液ともに3質量%未満では反応の速度が遅くなりすぎる。一方、▲2▼の溶液では40質量%を超えると反応が激しくなりすぎて、安全上、問題があり、また腐食量の調整が難しくなる。▲3▼の溶液では、6質量%を超えると酸洗後の表面荒れが甚だしくなる。また、▲3▼の溶液には5〜20質量%のHNO3を加えるが、これは水素吸収抑止の効果があるためで、5質量%未満ではその効果は十分でなく、20質量%を超えると効果が飽和して無駄になる。
【0054】
酸洗の浸漬時間は、長くなれば水素量が急激に増大するので、加熱時のスケールの発生をできるだけ抑止し、スケールが多い場合は、研削など機械的なスケール除去方法を併用するとよい。
【0055】
冷間加工は、加工後のβ処理にて結晶粒径を130μm以下とするため、加工率は30%以上(板では圧延伸び率が30%以上、条では減面率が30%以上)が望ましい。加工率は大きくてもかまわないが、加工硬化により加工できなくなることによって上限はおのずから限定される。
【0056】
冷間圧延後のβ相化は、焼鈍もかねて750〜900℃に加熱後空冷以上の冷却速度で冷却する溶体化処理によっておこなうのがよい。750〜900℃の加熱温度が望ましい理由は、前述の冷間加工前の溶体化処理における加熱温度範囲の場合と同じく、低すぎるとβ相化が不十分となり、高すぎると結晶粒が粗大化するからである。加熱時間も短すぎや長すぎは同様にβ相化不十分や結晶粒粗大化をもたらすので1〜30分とするのがよい。なお、この冷間圧延後の溶体化処理における加熱は、真空中または高純度のAr、He等の不活性ガス中が望ましい。表面が酸化する条件での加熱は、酸化被膜除去、即ち、脱スケールのため弗硝酸などによる酸洗が必要になり、その結果として合金中に水素が侵入し、水素含有量が限定値を超えてしまうからである。
【0057】
熱間圧延後は、通常、溶体化処理してから冷間圧延をおこなうが、冷間圧延状態で所用形状に加工し、その後時効処理をおこなってもよい。この場合、結晶粒が微細で、強度の高い部品とすることができる。
【0058】
本発明のβ型合金の、強化のための時効処理は400〜500℃とするのが好ましい。時効により微細なα相が析出し、それによって強化がおこなわれるが、400℃以下では時効硬化に長時間を必要とし、強化後の延性が極度に低下して靱性が劣化するからであり、500℃以上では粗大なα相粒となり強度が低下してしまうからである。
【0059】
【実施例】
表1および表2に示す組成のチタン合金を、水冷銅るつぼ消耗電極式真空アーク溶解炉(VAR)により溶製して直径140mmのインゴットとした。これらのインゴットを1000℃に加熱し熱間鍛造して厚さ50mm、幅150mmの熱間圧延素材とした。この素材を950℃に加熱し、熱間圧延して800℃で圧延を終了し、直ちに水スプレイ冷却にて平均冷却速度200℃/分で300℃まで冷却し、その後は放冷した。この熱間圧延板に「880℃にて10分間加熱後水冷」の溶体化処理を施した。
【0060】
溶体化処理後、ショットブラストを施した後、HF:4質量%、30℃の弗酸水溶液に4分間浸漬し、ついでHNO3:10質量%、HF:4質量%、温度30℃の弗硝酸に10分浸漬してスケールおよび酸素富化層を除去し、さらに両表面を研削した後、80%の冷間圧延をおこなって3mm厚とした。
【0061】
表中の水素量は、冷間圧延後に試料を採取し分析して得た値である。この冷間圧延の際の耳割れの発生状況から、溶体化したβ型合金の変形能を判定した。なお試験番号20、21および30においては、HF:4質量%、30℃の弗酸に浸漬する時間を約15分として水素量を増加させた。
【0062】
【表1】
【0063】
【表2】
【0064】
冷間圧延後、真空中で850℃にて5分間加熱して、水冷する焼鈍および溶体化処理を施し、得られた板からJIS13号Bの引張試験片を採取して、引張強さを測定した。この引張強さの大小から、加工時の変形抵抗が推測できる。
【0065】
さらに、冷間圧延にて大きな耳割れを生じなかった板を用い、475℃にて20時間加熱の時効処理をおこない、時効後の板からJIS13号Bの引張試験片を採取し、引張強さおよび伸びを測定した。これらの測定結果も表1および表2に併せて示す。
【0066】
表1および表2の結果から明らかなように、試験番号1〜24は、いずれもその主要組成がTi−20V−4Al−1Sn合金に合致するものであるが、試験番号20〜33の材料に比較して、試験番号1〜19の材料は冷間加工性にすぐれ、かつ時効後の強さおよび伸びがすぐれていることがわかる。これは、従来管理されていなかったH、Fe、CおよびNの含有量を限定することによってもたらされた効果であり、これらの元素の含有量を低く抑えることの重要性が明らかである。
【0067】
【発明の効果】
本発明によれば、現在用いられているβ型のTi−20V−4Al−1Sn合金は、より変形抵抗が小さくかつ変形能のすぐれた合金となる。これにより、冷間圧延、および冷間伸線など冷間加工におけるロールやダイスの寿命延長、冷間鍛造時の金型寿命の延長など、高強度のチタン合金製部品の製造コスト低減に大きく寄与することができる。
【0068】
本発明のチタン合金は、自動車の動弁部品、宇宙航空機用部品等の産業機器用のみならず、例えば、めがねフレームのような日用品、ゴルフクラブヘッド等の運動器具の材料として好適である。
【0069】
本発明の製造方法によれば、安定した品質のチタン合金の冷間圧延材を製造することができる。
【図面の簡単な説明】
【図1】チタン合金の時効による硬さの変化に及ぼす水素含有量の影響を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a β-type titanium alloy having low deformation resistance in cold working in a solution state, excellent deformability, and high strength after aging treatment, and a method for producing the alloy.
[0002]
[Prior art]
Titanium alloys have low density and high strength, have high specific strength (strength / density) among practical metal materials, and are excellent in corrosion resistance. Therefore, titanium alloys, materials for automobile parts, materials for medical equipment and medical equipment Its use is expanding to materials, eyeglass materials, golf club materials, tableware materials and the like. Accordingly, there is a strong demand for further improvement of properties and reduction in price of titanium alloys.
[0003]
Titanium alloys are roughly classified into α (dense hexagonal: hcp) type, β (body-centered cubic: bcc) type, and α + β type from the crystal structure of the phase constituting the metal structure at normal temperature. Alloys containing a small amount of pure titanium or Al for industrial use are α-type, Ti-6Al-4V alloys, which are well known as high-strength alloys and used in aircraft, are α + β-type, and β-type is β-type more than α + β-type. An alloy with an increased content of phase stabilizing elements.
[0004]
Titanium alloys generally have poor cold workability, which increases production costs. Pure titanium, which has relatively good cold workability and low oxygen content, has insufficient strength of a molded part, and is difficult to apply to a part requiring a high specific strength. On the other hand, Ti-6Al-4V, which is the most representative titanium alloy having high strength, has high strength but extremely poor deformability at room temperature, and can be formed into a target shape only by hot working or cutting. Cost increases.
[0005]
Under such circumstances, attention has been paid to β-type titanium alloys having a body-centered cubic crystal structure. The β-type alloy is, for example, a Ti-3Al-8V-6Cr-4Mo-4Zr alloy or Ti-15V-3Cr-3Al-3Sn. These β-type alloys have a large deformability in cold working when subjected to a solution treatment to form a β single phase, and after aging, precipitating and precipitating the α phase, it is possible to increase the strength, It has the desirable properties as a component material.
[0006]
However, conventionally known β-type titanium alloys have high deformation resistance even though they have good deformability. Therefore, for example, when cold forging is performed, a die such as a die or a punch is often cracked or chipped with a small number of uses. Further, in cold rolling for manufacturing a material to be processed, roll wear is large, and in the case of cold drawing, seizure is likely to occur.
[0007]
As an invention for solving such a problem, Patent Document 1 (Japanese Patent No. 2669004) discloses that V: 15 to 25%, Al: 2.5 to 5%, Sn: 0.5 to 4%, and oxygen: 0. The invention of an alloy of 12% or less and a balance of Ti and impurities (hereinafter abbreviated as Ti-20V-4Al-1Sn alloy) is disclosed. This alloy has substantially the same deformability as a conventional β-type titanium alloy, but has low strength in a solution treatment state and low deformation resistance, as well as high strength after aging treatment. However, when the alloy of the present invention is produced and molded into various parts, the deformability in the β-treated state is not always stable and excellent, and the deformation resistance is unstable. In addition, there is a disadvantage that the strength after aging varies greatly.
[0008]
[Patent Document]
Japanese Patent No. 2669004
[0009]
[Problems to be solved by the invention]
A first object of the present invention is to provide a titanium alloy that is excellent in cold workability in a solutionized state and that can easily and stably realize characteristics of high strength after aging treatment. .
[0010]
A second object of the present invention is to provide a pickling method for reducing the H (hydrogen) content in producing the above titanium alloy.
[0011]
[Means for Solving the Problems]
β-type titanium alloy is a metastable β-phase alloy that rapidly cools the high-temperature β-phase of titanium and brings it to room temperature. Alloying elements for stabilizing the β phase include V, Mo, Nb, Ta, Cr, Fe, Mn, etc. Among them, hardening due to solid solution is small, and adversely affects workability. V and Mo are relatively inexpensive elements that provide high strength by aging and are relatively inexpensive. However, Mo has a disadvantage that it has a high melting point and is easily segregated, and the addition of Mo increases the hot workability and the deformation resistance of cold working. Therefore, V is selected, and Al is contained from the increase in strength during aging treatment. The Ti-20V-4Al-1Sn alloy replaces part of Al with Sn for the purpose of suppressing solid solution hardening.
[0012]
In the process of producing a large number of these alloys, it was found that there was a problem that cold workability and aging strengthening were not always obtained stably, and the present inventors conducted various studies to elucidate the cause and deal with it. Was performed. First, with respect to V, Al and Sn of the main compositions, the workability and the aging effect were investigated by changing the combination of the content ranges. However, the fluctuation of these main components had no effect on the characteristic change, except that the effect appeared somewhat near the limit of the content range.
[0013]
However, in the course of the above-mentioned investigation, the content of elements generally regarded as titanium impurities, such as O (oxygen), H, Fe, C, and N, in the β-type Ti-20V-4Al-1Sn alloy, It has become clear that the properties of the alloy, that is, the cold workability and the strength after aging, are particularly greatly affected. The content of each of these impurity elements is regulated by standards of titanium and titanium alloys such as JIS-H-4600, JIS-H-4605 or JIS-H-4607. However, the regulation is not intended for β-type Ti-20V-4Al-1Sn alloys to be improved by the present invention.
[0014]
The following is known about the action of each of the above elements.
[0015]
O is an α-phase stabilizing element. When O is contained in a large amount, it hinders β-phase single-phase formation by solution treatment, but hardens the alloy to increase the deformation resistance and lower the deformability. Since H is a β-phase stabilizing element, it delays age hardening due to α-phase precipitation and hinders strength improvement due to aging. Although Fe is a β-phase stabilizing element, a large amount is not preferable because it increases the strength of the solution-treated alloy and increases the deformation resistance. C forms precipitates of carbides, and greatly reduces both deformation resistance and deformability. N forms a solid solution of about 1% in the β phase, but causes a large decrease in ductility and lowers the deformability.
[0016]
However, in the case of β-type Ti-20V-4Al-1Sn alloy, even if an attempt is made to control impurities within the range regulated by the JIS standard, there are elements that cannot be easily reduced within the range. It has been found that there are elements whose amounts greatly affect the properties of this alloy even if it is limited to the following. This is presumably because the titanium alloy specified by the JIS standard is an α-type or α + β-type alloy, whereas Ti-20V-4Al-1Sn is a β-type alloy.
[0017]
For example, a β-type alloy is much easier to absorb hydrogen than an α-type alloy and an α + β-type alloy. In particular, in the case of a plate manufactured by cold rolling having a thickness of 5 mm or less, descaling must be performed after hot rolling in order to obtain a good surface. This descaling method includes a method of mechanically grinding the surface, but this method has a low processing speed and a low yield. Therefore, it is common to perform pickling with hydrofluoric acid or nitric hydrofluoric acid. However, in the case of a Ti-20V-4Al-1Sn alloy which has been turned into a solution by cold rolling to form β-form, hydrogen which greatly exceeds the limit amount defined by the above JIS standard is absorbed during pickling. It is difficult to sufficiently reduce the pickling conditions even if various methods are devised. In addition, since the above-mentioned alloy contains a component that increases the oxide scale, hydrogen absorption tends to increase due to prolonged pickling time.
[0018]
After processing into a desired shape, the β-type alloy can be subjected to an aging treatment to improve the strength. However, the contained hydrogen significantly inhibits age hardening, prolongs the aging treatment time, and makes it difficult to age harden to the desired strength. In addition, hydrogen lowers the ductility of the alloy, thereby deteriorating the workability, and further significantly lowers the toughness. Dehydrogenation is possible by heating at a high temperature in a vacuum, but it requires a long time treatment, and furthermore, aging occurs during this treatment, so that practical use is difficult.
[0019]
The absorption of hydrogen by pickling for descaling is inevitable in the production process of this Ti-20V-4Al-1Sn alloy plate. Therefore, while adopting the pickling method for minimizing the hydrogen absorption described below, assuming the hydrogen content after pickling still inevitably mixed in, the reduction of the aging speed due to the hydrogen and the workability and We considered that the decrease in toughness could be compensated by controlling the amount of other impurity elements, and investigated the effects of the contents of O, Fe, N, and C. As a result, it was found that a Ti-20V-4Al-1Sn alloy having stable and excellent characteristics can be obtained by regulating the content of each of these elements together with the amount of hydrogen. Based on the results of these studies, the present invention was completed by further clarifying the limit conditions. The gist of the present invention resides in the following titanium alloys (1) to (3) and the titanium alloy production methods (4) and (5).
[0020]
(1) In mass%, V: 15 to 25%, Al: 2.5 to 5%, Sn: 0.5 to 4%, O: 0.20% or less, H: 0.03% or less, Fe : 0.40% or less, C: 0.05% or less, N: 0.02% or less, the balance being Ti and impurities, β-type titanium alloy characterized by the above-mentioned.
[0021]
(2) In mass%, V: 15 to 25%, Al: 2.5 to 5%, Sn: 0.5 to 4%, O: 0.12% or less, H: 0.03% or less, Fe: : 0.15% or less, C: 0.03% or less, N: 0.02% or less, with the balance being Ti and impurities, β-type titanium alloy.
[0022]
(3) In mass%, V: 15 to 25%, Al: 2.5 to 5%, Sn: 0.5 to 4%, O: 0.12% or less, H: 0.03% or less, Fe : 0.15% or less, C: 0.03% or less, N: 0.02% or less, and among each 3% or less of Zr, Mo, Nb, Ta, Cr, Mn, Ni, Pd and Si. A β-type titanium alloy containing one or more selected elements, with the balance being Ti and impurities.
[0023]
(4) In mass%, V: 15 to 25%, Al: 2.5 to 5%, Sn: 0.5 to 4%, O: 0.20% or less, H: 0.03% or less, Fe : 0.40% or less, C: 0.05% or less, N: 0.02% or less, with the balance being a β-type titanium alloy comprising Ti and impurities, first containing 3 to 40% by mass of HF as a main component Pickling with aqueous solution, then 3-6% by weight HF and 5-20% by weight HNO 3 A method for producing a β-type titanium alloy, comprising pickling with an aqueous solution containing
[0024]
(5) In mass%, V: 15 to 25%, Al: 2.5 to 5%, Sn: 0.5 to 4%, O: 0.20% or less, H: 0.03% or less, Fe : 0.40% or less, C: 0.05% or less, N: 0.02% or less, and among Zr, Mo, Nb, Ta, Cr, Mn, Ni, Pd and Si each less than 3%. A β-type titanium alloy containing one or more selected elements, with the balance being Ti and impurities, is first pickled with an aqueous solution mainly containing 3 to 40% by mass of HF, and then 3 to 6% by mass of HF and 5% by mass. ~ 20% by mass of HNO 3 A method for producing a β-type titanium alloy, comprising pickling with an aqueous solution containing
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
The reasons for limiting the constituent elements of the β-type titanium alloy of the present invention are as follows. In addition, the content of each component is shown by mass%.
[0026]
V: 15 to 25%
V is an important element for stabilizing the β phase and changing the structure of the alloy to a β single phase at room temperature. When the content is less than 15%, a martensitic structure is generated during solution treatment by rapid cooling such as water cooling from a high-temperature β-phase state, and the cold workability is greatly deteriorated. If the content exceeds 25%, the age hardening property of the β-type alloy is deteriorated, the time required for the aging treatment is lengthened, and sufficient strengthening may not be obtained even after the aging treatment. In addition, the deformation resistance of the cold working of the alloy increases.
[0027]
Al: 2.5 to 5%
The β-type alloy is finally strengthened by aging treatment, in which case Al is contained in order to obtain a sufficient strength increase. In addition, there is also an effect of suppressing the precipitation of the ω phase that embrittles the alloy by the aging treatment and promoting the precipitation of the α phase. If the effect is less than 2.5%, the effect is insufficient, and if it exceeds 5%, the hardness in the β state increases, and the cold workability is reduced. Therefore, it is set to 2.5 to 5%.
[0028]
Sn: 0.5-4%
Sn has the same function as Al described above, but does not increase the hardness in the β state as much as Al. Therefore, by reducing Al and replacing it with Sn, an increase in deformation resistance can be suppressed. Such an effect of Sn becomes poor when the content is small, so the content is made 0.5% or more. On the other hand, when the Sn content increases, the hardness of the β-formed alloy also increases.
[0029]
O (oxygen): 0.20% or less
O lowers the deformability of the alloy, causes cracking when performing cold working with high strength, and increases the deformation resistance. The smaller the amount, the better, but it is set to 0.20% or less, which is a limit amount at which adverse effects are not conspicuous. It is more desirable that the content be 0.12% or less.
[0030]
H: 0.03% or less
H retards the precipitation of the α phase during the aging treatment and not only reduces the increase in strength due to aging, but also deteriorates ductility and toughness. However, in the case of a β-type Ti-20V-4Al-1Sn alloy which easily absorbs hydrogen, there is also absorption in a process other than the pickling process. Particularly in the case of a thin plate, it is essential to perform pickling and descaling. It is difficult to reduce the amount to less than 005%. Therefore, the lower limit is not particularly defined, but the upper limit is set to 0.03% as a limit at which the effect is not large. More preferably, it is 0.01% or less.
[0031]
An investigation example of the effect of the hydrogen content on age hardening is shown below.
[0032]
Alloy composition: V: 20.0%, Al: 3.2%, Sn: 1.0%, 〇: 0.11%, H: 0.015%, Fe: 0.10%, C: 0.01 %, N: 0.01%, balance: Ti and a 5 mm thick hot-rolled plate as an impurity are subjected to a solution treatment, and after a steel shot blast, the hydrogen content is changed by changing the pickling time, Aging treatment was performed at 450 ° C. The solution treatment is a treatment of heating at 850 ° C. for 5 minutes in the air and then cooling with water.
[0033]
The result of examining the change in hardness due to the aging time was as shown in FIG. The hardness Hv is a Vickers hardness at a test load of 1 kgf.
[0034]
As can be seen from FIG. 1, when the hydrogen content is 0.015% or 0.025%, the target hardness is reached by aging treatment for 12 hours, and the hardness is saturated. On the other hand, if the hydrogen content is 0.040% or 0.065% even after the treatment for 20 hours, the hardness will not be sufficient. In the case of these alloys, a long aging treatment far exceeding 20 hours is required to reach the hardness obtained with alloys having a hydrogen content of 0.015% or 0.025%. Poor sex. When the hydrogen content is 0.100%, it cannot be hardened almost as shown.
[0035]
From the above test results, it is understood that the content of H in the alloy is desirably suppressed to 0.03% or less.
[0036]
Fe: 0.40% or less
Fe stabilizes the β phase similarly to hydrogen, delays hardening by aging treatment, and further increases the deformation resistance. Since the inclusion of hydrogen is unavoidable as described above, the limit amount that does not cause a significant increase in deformation resistance is set to at most 0.40%. Note that a more desirable Fe content is 0.15% or less.
[0037]
C: 0.05% or less
C greatly reduces ductility, that is, deformability, so the smaller the better, the better. The limit amount that does not cause a significant decrease in deformability is at most 0.05%. 0.03% or less is more desirable.
[0038]
N: 0.02% or less
N greatly reduces the deformability, so the smaller the better, the better. The limit amount that does not cause a significant decrease in deformability is up to 0.02%.
[0039]
The above-described impurity elements of O, Fe, C and N are not only derived from the raw material sponge titanium, but also taken into the titanium alloy in the course of the subsequent melting and high-temperature heating of the alloy, and are not increased. Even if it does, it cannot be reduced below its content in the raw material. Therefore, it is necessary to select titanium sponge having a small content of these impurities as a raw material, and further reduce contamination in the production process as much as possible.
[0040]
Zr, Mo, Nb, Ta, Cr, Mn, Ni, Pd and Si
The alloy of the present invention includes, in addition to V, Al and Sn, Zr, Mo, Nb, Ta, Cr, Mn, Ni, Pd and Si each having a content of less than 3% as long as the effects of the present invention are not impaired. One or more selected materials may be contained. These components contribute to the improvement of the strength of the alloy after aging treatment without impairing the deformability and other properties of the alloy of the present invention. A more desirable content of each component is 0.1 to 1%.
[0041]
The average crystal grain size when the solution treatment is performed to form a β-type alloy is desirably 20 to 130 μm. This is because, if it is less than 20 μm, the deformation resistance becomes large and processing becomes difficult, and if it is more than 130 μm, the deformability is reduced and cracks are liable to occur when processed, resulting in insufficient strength even after aging. . The aging treatment is usually performed at 400 to 500 ° C., but by setting the crystal grain size of the β phase in the above range, the grain size of the α phase precipitated by aging is preferably in the range of 0.02 to 0 °. .2 μm, resulting in excellent strength and toughness.
[0042]
The above desirable average crystal grain size can be obtained by employing the following manufacturing conditions.
[0043]
The alloy or alloy plate of the present invention is manufactured by forging a material ingot to a required composition, hot rolling, cold rolling, and then performing a solution treatment. In order to obtain a β-type alloy having the above-mentioned average crystal grain size which is excellent in performance and low in deformation resistance, it is desirable to make the production conditions as follows.
[0044]
The material heating temperature of the hot rolling is preferably set to 900 to 1050C. This is because if the temperature is lower than 900 ° C., the deformation resistance in hot working is large, and the load on the processing equipment becomes excessive. If the temperature exceeds 1050 ° C., the oxidation during heating becomes severe, and the yield only decreases. In addition, the crystal grains are coarsened, which affects the alloy properties after processing. In addition, the temperature during hot working should be within the range of 750 to 1050 ° C., which is equal to or higher than β transus, even if there is a temperature drop during the waiting time between deformation processing and deformation processing, or a temperature rise due to processing heat. Is desirable.
[0045]
After hot working, rapid cooling with an average cooling rate of 30 ° C./min or more, such as water cooling, is preferred. This is because, when the cooling is performed slowly, the α phase precipitates and hardens, which makes it difficult to handle the rolled material, and the rolled plate may not be developed. When performing cold rolling, cold drawing or the like in the next step, in order to obtain sufficient softening, for example, the solution is subjected to a solution treatment through a continuous pickling annealing apparatus (HAP) and descaling is performed. In the solution treatment, that is, the β treatment, it is desirable to heat to 750 to 950 ° C. and then water-cool. In this case, if the temperature is lower than 750 ° C., it may be insufficient to form a single β phase, and if it exceeds 950 ° C., crystal grains may be coarsened. The heating time of the solution treatment is preferably set to 1 to 30 minutes in order to sufficiently form a solution and avoid unnecessary heating.
[0046]
The average crystal grain size becomes smaller than 20 μm when the hot working temperature is close to β transus or lower, and the temperature at HAP is close to 750 ° C. Therefore, it is desirable to avoid such conditions. However, when high strength after aging treatment is required even if the cold workability is somewhat sacrificed, the hot working temperature is set to β transus or less, the temperature at HAP is set to around 750 ° C., and the average crystal grain size is reduced. It may be smaller than 20 μm, for example, 10 μm.
[0047]
For descaling, grinding with a coil grinder or the like is desirable because there is no absorption of hydrogen, but productivity is poor and cost is high. Therefore, descaling by pickling is performed, but it is necessary to carry out as little hydrogen contamination as possible.
[0048]
Hydrogen absorption is suppressed as much as possible, and not only sufficient descaling but also removal of the α case can be performed, and pickling conditions for producing a plate having a beautiful surface by cold rolling are preferably as follows, for example, as follows. . The α case is a hard and brittle oxygen-enriched layer formed by the penetration of oxygen into the surface of the β titanium alloy.
(1) Prior to pickling, a shot blast is applied.
{Circle over (2)} Pickling is performed within 10 minutes with an aqueous solution containing 20 to 70 ° C. and 3 to 40% by mass of HF as a main component.
{Circle around (3)} 20 to 70 ° C., 3 to 6% by mass of HF and 5 to 20% by mass of HNO 3 Pickling with a hydrofluoric acid aqueous solution containing
[0049]
The shot blast of (1) does not need to be performed, but the pickling time can be shortened by applying light shot blast. This is because cracks enter the oxide scale.
[0050]
The aqueous solution of the above (2) may contain nitric acid, hydrogen peroxide or the like, which has a reducing property and suppresses hydrogen absorption, in addition to 3 to 40% by mass of HF as a main component. For example, a waste liquid from a semiconductor manufacturing process (hydrofluoric acid as a main component and secondary components such as acetic acid) can be used.
[0051]
The aqueous solution of the above (3) is also composed of 3 to 6% by mass of HF and 5 to 20% by mass of HNO. 3 In addition, it may contain secondary components having a reducing property such as hydrogen peroxide and impurities such as acetic acid.
[0052]
The pickling is first performed with the aqueous solution containing hydrofluoric acid as a main component in (2). Pickling with hydrofluoric acid is effective in removing oxide scale, but when pickling and removing the α case, hydrogen absorption is particularly large. Therefore, the acid case is kept to the extent that the α case remains within 10 minutes at the longest, and then the next (3) pickling is performed. The oxygen-enriched layer formed under the oxide scale, that is, the α case, can be efficiently removed by the nitric acid solution. Pickling with a hydrofluoric acid solution has the advantage of reducing hydrogen absorption due to the reducing action of nitric acid. is there. Therefore, after (2) pickling with an aqueous solution mainly containing hydrofluoric acid, (3) pickling with a hydrofluoric acid solution is performed. However, even with a hydrofluoric acid solution, hydrogen absorption increases over a long period of time.
[0053]
In the above pickling, the temperature is set to 20 to 70 ° C. When the temperature is lower than 20 ° C., it takes too much time to remove the scale and the oxygen-enriched layer, and when the temperature exceeds 70 ° C., the surface becomes extremely rough and the acid evaporates. Is also increased. If the concentration of HF is less than 3% by mass in both the solution (2) and the solution (3), the reaction rate becomes too slow. On the other hand, in the case of the solution (2), if the content exceeds 40% by mass, the reaction becomes too violent, causing a problem in safety and making it difficult to adjust the amount of corrosion. In the case of the solution (3), if it exceeds 6% by mass, the surface roughness after pickling becomes excessive. The solution of (3) contains 5 to 20% by mass of HNO. 3 However, this is because hydrogen absorption is suppressed. If the amount is less than 5% by mass, the effect is not sufficient. If the amount exceeds 20% by mass, the effect is saturated and is wasted.
[0054]
If the immersion time of the pickling becomes longer, the amount of hydrogen increases rapidly, so that the generation of scale during heating is suppressed as much as possible. If the scale is large, a mechanical scale removing method such as grinding may be used together.
[0055]
In cold working, since the grain size is reduced to 130 μm or less by β treatment after working, the working rate is 30% or more (rolling elongation rate is 30% or more for a sheet, and the area reduction rate is 30% or more for a strip). desirable. The processing rate may be large, but the upper limit is naturally limited by the inability to process due to work hardening.
[0056]
The β phase formation after cold rolling is preferably carried out by a solution treatment in which the material is heated to 750 to 900 ° C. and then cooled at a cooling rate equal to or higher than air cooling, also during annealing. The reason why the heating temperature of 750 to 900 ° C. is desirable is that, as in the case of the above-mentioned heating temperature range in the solution treatment before cold working, if it is too low, β phase formation becomes insufficient, and if it is too high, crystal grains become coarse. Because you do. If the heating time is too short or too long, similarly, the β phase is insufficiently formed and the crystal grains are coarsened. Therefore, the heating time is preferably set to 1 to 30 minutes. The heating in the solution treatment after the cold rolling is desirably performed in a vacuum or in an inert gas such as high-purity Ar or He. Heating under conditions where the surface is oxidized requires removal of the oxide film, that is, pickling with hydrofluoric acid or the like for descaling. As a result, hydrogen enters the alloy and the hydrogen content exceeds the specified value. It is because.
[0057]
After hot rolling, cold rolling is usually performed after a solution treatment, but it may be processed into a desired shape in a cold rolled state and then subjected to aging treatment. In this case, a component having fine crystal grains and high strength can be obtained.
[0058]
The aging treatment for strengthening of the β-type alloy of the present invention is preferably performed at 400 to 500 ° C. This is because a fine α phase precipitates due to aging and thereby strengthening is performed. However, at 400 ° C. or less, a long time is required for age hardening, ductility after strengthening is extremely reduced, and toughness is deteriorated. If the temperature is higher than 0 ° C., coarse α-phase grains are formed and the strength is reduced.
[0059]
【Example】
A titanium alloy having a composition shown in Tables 1 and 2 was melted by a water-cooled copper crucible consumable electrode type vacuum arc melting furnace (VAR) to obtain an ingot having a diameter of 140 mm. These ingots were heated to 1000 ° C. and hot forged to obtain a hot-rolled material having a thickness of 50 mm and a width of 150 mm. This material was heated to 950 ° C., hot-rolled, finished rolling at 800 ° C., immediately cooled to 300 ° C. at an average cooling rate of 200 ° C./min by water spray cooling, and then allowed to cool. This hot rolled sheet was subjected to a solution treatment of “heating at 880 ° C. for 10 minutes and then water cooling”.
[0060]
After the solution treatment, shot blasting, immersion in a 4% by mass HF aqueous solution of hydrofluoric acid at 30 ° C. for 4 minutes, followed by HNO 3 : 10% by mass, HF: 4% by mass, immersed in hydrofluoric acid at a temperature of 30 ° C for 10 minutes to remove the scale and the oxygen-enriched layer, further grind both surfaces, and then perform 80% cold rolling. The thickness was 3 mm.
[0061]
The hydrogen content in the table is a value obtained by collecting and analyzing a sample after cold rolling. The deformability of the solution-formed β-type alloy was determined from the occurrence of edge cracks during the cold rolling. In Test Nos. 20, 21 and 30, the amount of hydrogen was increased by immersing in HF: 4% by mass and hydrofluoric acid at 30 ° C. for about 15 minutes.
[0062]
[Table 1]
[0063]
[Table 2]
[0064]
After cold rolling, it is heated at 850 ° C. for 5 minutes in a vacuum, subjected to water-cooled annealing and solution treatment, and a tensile test piece of JIS No. 13B is collected from the obtained plate to measure the tensile strength. did. From the magnitude of the tensile strength, the deformation resistance during processing can be estimated.
[0065]
Further, using a plate that did not cause large ear cracks by cold rolling, aging treatment was performed at 475 ° C. for 20 hours, and a tensile test piece of JIS No. 13B was collected from the aged plate to obtain a tensile strength. And elongation were measured. These measurement results are also shown in Tables 1 and 2.
[0066]
As is clear from the results of Tables 1 and 2, Test Nos. 1 to 24 all have the main composition that matches the Ti-20V-4Al-1Sn alloy, but the test Nos. In comparison, it can be seen that the materials of Test Nos. 1 to 19 have excellent cold workability, and have excellent strength and elongation after aging. This is an effect brought about by limiting the contents of H, Fe, C and N, which has not been managed conventionally, and it is clear that the importance of keeping the contents of these elements low is obvious.
[0067]
【The invention's effect】
According to the present invention, the currently used β-type Ti-20V-4Al-1Sn alloy is an alloy having smaller deformation resistance and excellent deformability. This greatly contributes to the reduction of manufacturing costs for high-strength titanium alloy parts, such as extending the life of rolls and dies in cold rolling such as cold rolling and cold drawing, and extending the life of dies during cold forging. can do.
[0068]
The titanium alloy of the present invention is suitable not only for industrial equipment such as valve train parts for automobiles and parts for space aircraft, but also as materials for daily necessities such as eyeglass frames and sports equipment such as golf club heads.
[0069]
ADVANTAGE OF THE INVENTION According to the manufacturing method of this invention, the cold rolled material of a stable quality titanium alloy can be manufactured.
[Brief description of the drawings]
FIG. 1 is a diagram showing the effect of hydrogen content on a change in hardness due to aging of a titanium alloy.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003158495A JP4371201B2 (en) | 2002-06-11 | 2003-06-03 | β-type titanium alloy and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002169441 | 2002-06-11 | ||
JP2003158495A JP4371201B2 (en) | 2002-06-11 | 2003-06-03 | β-type titanium alloy and method for producing the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004068146A true JP2004068146A (en) | 2004-03-04 |
JP2004068146A5 JP2004068146A5 (en) | 2005-08-04 |
JP4371201B2 JP4371201B2 (en) | 2009-11-25 |
Family
ID=32032199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003158495A Expired - Lifetime JP4371201B2 (en) | 2002-06-11 | 2003-06-03 | β-type titanium alloy and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4371201B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008075173A (en) * | 2006-01-18 | 2008-04-03 | Nissan Motor Co Ltd | Titanium alloy having low young's modulus |
JP2008174839A (en) * | 2007-01-17 | 2008-07-31 | United Technol Corp <Utc> | Method of surface treating metallic article, and solution system |
WO2012082004A1 (en) * | 2010-12-13 | 2012-06-21 | Учреждение Российской Академии Наук Институт Катализа Им. Г.К.Борескова Сибирского Отделения Ран | Contact solution, method and apparatus for cleaning the surface of metal alloys |
JP2015025167A (en) * | 2013-07-25 | 2015-02-05 | 大同特殊鋼株式会社 | β TYPE TITANIUM ALLOY |
RU2614356C1 (en) * | 2016-04-13 | 2017-03-24 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Titanium-based alloy and product made from it |
-
2003
- 2003-06-03 JP JP2003158495A patent/JP4371201B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008075173A (en) * | 2006-01-18 | 2008-04-03 | Nissan Motor Co Ltd | Titanium alloy having low young's modulus |
JP2008174839A (en) * | 2007-01-17 | 2008-07-31 | United Technol Corp <Utc> | Method of surface treating metallic article, and solution system |
WO2012082004A1 (en) * | 2010-12-13 | 2012-06-21 | Учреждение Российской Академии Наук Институт Катализа Им. Г.К.Борескова Сибирского Отделения Ран | Contact solution, method and apparatus for cleaning the surface of metal alloys |
JP2015025167A (en) * | 2013-07-25 | 2015-02-05 | 大同特殊鋼株式会社 | β TYPE TITANIUM ALLOY |
RU2614356C1 (en) * | 2016-04-13 | 2017-03-24 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Titanium-based alloy and product made from it |
Also Published As
Publication number | Publication date |
---|---|
JP4371201B2 (en) | 2009-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2003104506A1 (en) | β-TYPE TITANIUM ALLOY AND PROCESS FOR PRODUCING THE SAME | |
EP2078760B1 (en) | Beta titanium alloy | |
JP5287062B2 (en) | Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts | |
US10913242B2 (en) | Titanium material for hot rolling | |
EP2615186A1 (en) | Titanium material | |
JP5005889B2 (en) | High strength low Young's modulus titanium alloy and its manufacturing method | |
CN112626372B (en) | Titanium alloy sheet material and method for producing same | |
JP2002241841A (en) | Method for producing strip made of iron-nickel alloy | |
JP5201202B2 (en) | Titanium alloy for golf club face | |
TW202223116A (en) | Method for manufacturing austenitic stainless steel strip | |
WO2013125039A1 (en) | Titanium alloy for use in golf-club face | |
JP4371201B2 (en) | β-type titanium alloy and method for producing the same | |
JP2005076098A (en) | HIGH-STRENGTH alpha-beta TITANIUM ALLOY | |
JP5408525B2 (en) | Titanium alloy, titanium alloy member, and titanium alloy member manufacturing method | |
JP2006034414A (en) | Spike for shoe | |
JP4715048B2 (en) | Titanium alloy fastener material and manufacturing method thereof | |
JP2008106317A (en) | beta-TYPE TITANIUM ALLOY | |
JP2024518681A (en) | Materials for manufacturing high strength fasteners and methods for manufacturing same | |
JP3353618B2 (en) | High strength titanium alloy | |
JP2004183079A (en) | Titanium alloy and method for manufacturing titanium alloy material | |
JP6623950B2 (en) | Titanium plate excellent in balance between proof stress and ductility and method for producing the same | |
JP3297010B2 (en) | Manufacturing method of nearβ type titanium alloy coil | |
JP3843021B2 (en) | Method for producing thick-walled Al-Mg alloy rolled sheet tempered material excellent in bending workability | |
JP4632239B2 (en) | Beta titanium alloy material for cold working | |
JP4783214B2 (en) | Titanium alloys and press-molded parts with excellent press workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041227 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050620 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080703 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080703 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090812 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4371201 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090825 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130911 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130911 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130911 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |