JP2008174839A - Method of surface treating metallic article, and solution system - Google Patents

Method of surface treating metallic article, and solution system Download PDF

Info

Publication number
JP2008174839A
JP2008174839A JP2008006401A JP2008006401A JP2008174839A JP 2008174839 A JP2008174839 A JP 2008174839A JP 2008006401 A JP2008006401 A JP 2008006401A JP 2008006401 A JP2008006401 A JP 2008006401A JP 2008174839 A JP2008174839 A JP 2008174839A
Authority
JP
Japan
Prior art keywords
solution
volume
nitric acid
surface layer
metal part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008006401A
Other languages
Japanese (ja)
Inventor
Joseph Parkos
パーコス ジョセフ
Curtis H Riewe
エイチ.リュー カーティス
James O Hansen
オー.ハンセン ジェームス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JP2008174839A publication Critical patent/JP2008174839A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/106Other heavy metals refractory metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system and a method of chemically and uniformly removing a surface layer without requiring mechanical removal. <P>SOLUTION: A method of surface treating a metallic article includes the step of chemically removing a surface layer having titanium alloy α-phase precipitation to expose a core having titanium alloy β-phase. In one example, the chemical removal includes using a first solution having nitric acid and hydrofluoric acid, and a second solution having nitric acid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属部品の化学的処理方法に関し、更に詳細には、表面層を化学的に除去し、金属部品のコアを露出させる方法に関する。本発明は、米国空軍により認められた契約番号F33657−91−C−0007の下で米国政府支援によってなされた。従って、米国政府は、本発明に関して、所定の権利を有する。   The present invention relates to a method for chemically treating metal parts, and more particularly to a method for chemically removing a surface layer and exposing a core of a metal part. This invention was made with US government support under contract number F33657-91-C-0007 approved by the US Air Force. Accordingly, the United States government has certain rights with respect to the present invention.

金属部品は、未加工のワークピースから種々のステップによって製造される場合がある。一般に、1つまたは複数のステップでは、未加工のワークピースを加熱して、所望の形状に形成するか、又は未加工のワークピースを加熱して、所望の機械特性を得る。熱を使用する課題の1つは、加熱により、外観が損なわれるか又は次の製造ステップを妨害する望ましくない表面層がワークピースに形成される場合があることである。例えば、チタン合金から製造される部品を加熱することにより、部品の表面に優先的にα相の析出物が形成される場合がある。   Metal parts may be manufactured by various steps from a raw workpiece. In general, in one or more steps, the raw workpiece is heated to form the desired shape, or the raw workpiece is heated to obtain the desired mechanical properties. One of the challenges of using heat is that heating can create an undesirable surface layer on the workpiece that impairs the appearance or interferes with subsequent manufacturing steps. For example, by heating a part manufactured from a titanium alloy, α phase precipitates may be formed preferentially on the surface of the part.

解決法の一つとして、除去ステップにおいて、表面層を除去することが提案されている。しかしながら、化学処理による従来の除去ステップは、成功しなかった。この化学処理により、例えば、酸化物、2種金属合金(intermetallics)、又は他の不純物など、汚れ(スマット)が表面に生じ、その後、機械的に除去しなければならない。スマットを機械的に除去するには、大きな労力を必要とし、また除去が不完全となる場合があり、これによって、最終製品を廃棄しなければならない原因となる場合がある。更に、この化学処理により、粒間腐食(intergranular attack)が生じ、これにより最終製品の機械的完全性が低下する。   As one of the solutions, it has been proposed to remove the surface layer in the removal step. However, conventional removal steps by chemical treatment have not been successful. This chemical treatment causes smut, such as oxides, bimetallics, or other impurities, on the surface that must then be mechanically removed. Mechanical removal of the smut is labor intensive and may result in incomplete removal, which may cause the final product to be discarded. In addition, this chemical treatment causes intergranular attack, which reduces the mechanical integrity of the final product.

従って、機械的な除去を必要とせず、表面層を均一に化学的に除去を行う処理システム及び方法が必要とされる。本発明は、従来技術の短所及び欠点を回避しつつ、かかる要求に取り組むことにある。   Therefore, there is a need for a processing system and method that does not require mechanical removal, but uniformly removes the surface layer chemically. The present invention addresses this need while avoiding the disadvantages and drawbacks of the prior art.

金属部品を表面処理する方法では、例えば、チタン合金α相の析出物を有する表面層を化学的に除去し、チタン合金β相を有するコアを露出させるステップを含む。例えば、表面層は、チタン合金α相の体積含有率が高く、コアは、単一相のβチタンか、又はβチタンマトリックス中にα析出物を含む。   In the method of surface-treating a metal part, for example, a step of chemically removing a surface layer having a precipitate of a titanium alloy α phase and exposing a core having a titanium alloy β phase is included. For example, the surface layer has a high volume content of titanium alloy α phase and the core contains single phase β titanium or α precipitates in a β titanium matrix.

表面層の化学的除去に用いられる溶液システムは、例えば、硝酸及びフッ化水素酸を有する第1の溶液と、硝酸を有する第2の溶液と、を含む。第1の溶液は、チタンの薄層を化学的に除去するためのものである。第2の溶液は、スマットの形成を防ぐためのものである。   The solution system used for chemical removal of the surface layer includes, for example, a first solution having nitric acid and hydrofluoric acid and a second solution having nitric acid. The first solution is for chemically removing a thin layer of titanium. The second solution is for preventing smut formation.

一実施例として、第1の溶液は、約45〜50体積%、すなわち少なくとも42ボーメ度の硝酸(例えば、70重量%、または1.42g/ccの試薬等級の硝酸)と、約5.6〜12体積%、すなわち70%等級又は49%等級のフッ化水素酸と、残余の水と、を含む。この溶液は、スマットを形成しないか、又はスマットの形成を最小限に抑えつつ表面層を非選択的に除去する。第2の溶液は、約50〜60体積%、すなわち少なくとも42ボーメ度の硝酸と、残余の水と、を含む。この溶液は、表面と反応して、前から存在するスマットを除去し、最終の濯ぎにおいて、更なるスマットの形成を防ぐ。   As an example, the first solution is about 45-50% by volume, ie, at least 42 Baume nitric acid (eg, 70% by weight, or 1.42 g / cc reagent grade nitric acid), and about 5.6. ˜12% by volume, ie 70% or 49% grade hydrofluoric acid and the balance water. This solution does not form smut or removes the surface layer non-selectively while minimizing smut formation. The second solution comprises about 50-60% by volume, i.e. at least 42 Baume nitric acid, and the remaining water. This solution reacts with the surface to remove pre-existing smut and prevent further smut formation in the final rinse.

本発明の種々の特徴及び利点は、本願の好ましい実施の形態における以下の詳細な説明から当業者に明らかとなるであろう。詳細な説明に添付する図面を、以下に簡単に説明する。   Various features and advantages of the present invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment of the present application. The drawings that accompany the detailed description can be briefly described as follows.

図1は、例示として、金属ワークピース10、例えば、シート、スタンピング、鍛造、鋳造、又は他の種類の予め製造した部品における所定の部分を示している。例えば、ワークピース10を使用して、航空エンジンのノズルブラケット、及び航空機のノズルのハニカム構造、又は他の種類の部品を製造する。ワークピース10を、公知の方法、例えば真空熱処理法、熱間成形法、又は熱を利用する他の方法で予め加熱した。加熱により、ワークピース10のコア14にケーシング12(すなわち、表面層)が形成される。以下に説明されるように、ケーシング12を処理工程において化学的に均一に除去して、処理工程を経たワークピース10’のコア14を露出させる。   FIG. 1 illustrates, by way of example, certain portions of a metal workpiece 10, such as a sheet, stamping, forging, casting, or other type of prefabricated part. For example, the workpiece 10 is used to manufacture an aircraft engine nozzle bracket and aircraft nozzle honeycomb structure, or other types of parts. The workpiece 10 was preheated by a known method, such as a vacuum heat treatment method, a hot forming method, or other methods utilizing heat. The casing 12 (namely, surface layer) is formed in the core 14 of the workpiece 10 by heating. As will be described below, the casing 12 is chemically and uniformly removed in the processing step to expose the core 14 of the workpiece 10 'that has undergone the processing step.

ワークピース10は、チタン合金から製造される。例えば、チタン合金は、約14〜16重量%のモリブデンと、約2.5〜3.5重量%のアルミニウムと、約2.4〜3.2重量%のニオブと、約0.15〜0.25重量%のケイ素と、残余のチタンと、を有する組成式を含む。また、組成式は、微量の他の元素を含む。例えば、組成式は、約0.4重量%の鉄と、約0.05重量%の炭素と、0.1重量%の銅と、0.11〜0.17重量%の酸素と、0.05重量%の窒素と、150ppmの水素と、50ppmのイットリウムと、をさらに含む。所定の例示において、微量の他の元素は、チタン合金の望ましい特性、例えば加工特性及び機械特性を得るために必須である。   The workpiece 10 is manufactured from a titanium alloy. For example, a titanium alloy can include about 14-16 wt.% Molybdenum, about 2.5-3.5 wt.% Aluminum, about 2.4-3.2 wt.% Niobium, and about 0.15-0. A compositional formula having 25 weight percent silicon and the balance titanium. Further, the composition formula includes a trace amount of other elements. For example, the composition formula may be about 0.4 wt.% Iron, about 0.05 wt.% Carbon, 0.1 wt.% Copper, 0.11-0.17 wt. It further comprises 05 wt% nitrogen, 150 ppm hydrogen, and 50 ppm yttrium. In certain instances, trace amounts of other elements are essential to obtain desirable properties of the titanium alloy, such as processing properties and mechanical properties.

上記の例示におけるチタン合金組成の場合、ケーシング12は、事前の加熱処理に起因するα相析出物を含み、コア14は、β相チタンを含む。例えば、ケーシング12は、チタン合金α相の体積含有率が高く、コア14は、β単一相のβチタンか、又はチタンマトリックス中にα相析出物を含む。ケーシング12が除去されない場合、ケーシング12におけるα相析出物は、ワークピース10から製造される部品の機械的完全性を損なうか、又はその後の製造ステップ、例えば成形又は溶接を妨害する場合がある。また、他のチタン合金組成が、α相のケーシングを形成する場合がある。   In the case of the titanium alloy composition in the above example, the casing 12 includes α-phase precipitates resulting from the prior heat treatment, and the core 14 includes β-phase titanium. For example, the casing 12 has a high volume content of titanium alloy α phase and the core 14 includes β single phase β titanium or α phase precipitates in a titanium matrix. If the casing 12 is not removed, alpha phase deposits in the casing 12 may impair the mechanical integrity of parts manufactured from the workpiece 10 or interfere with subsequent manufacturing steps such as forming or welding. Also, other titanium alloy compositions may form an α-phase casing.

ケーシング12は、硝酸及びフッ化水素酸を含む第1の溶液と、硝酸を含む第2の溶液と、を利用する処理工程において除去される。第1の溶液は、ケーシング12を化学的に除去して、コア14を露出させ、スマットは形成されないか、又は最小限に抑えられる。第1の溶液は、ケーシング12と反応して、既に形成されたスマットを除去し、第2の溶液は、水中での最終の濯ぎの前に、更なるスマットの形成を防ぐ。2種類の溶液を使用することにより、粒間腐食(intergranular attack)(すなわち、ワークピース10の金属のミクロ構造結晶粒の間での選択的な酸化)がなく、コア14にスマットが残留することなく、チタン合金に水素が殆ど拡散しないか、又は拡散することなく、ケーシング12を除去するという利点を有する。   The casing 12 is removed in a processing step that uses a first solution containing nitric acid and hydrofluoric acid and a second solution containing nitric acid. The first solution chemically removes the casing 12 to expose the core 14 and no smut is formed or minimized. The first solution reacts with the casing 12 to remove the smut that has already formed, and the second solution prevents further smut formation prior to the final rinse in water. By using two types of solutions, there is no intergranular attack (ie, selective oxidation between the metal microstructure grains of the workpiece 10) and smut remains in the core 14. In addition, there is an advantage that the casing 12 is removed with little or no diffusion of hydrogen into the titanium alloy.

第1のステップにおいて、処理工程は、例えば、第1の溶液を有する容器にワークピース10を浸漬することによって、ケーシング12を第1の溶液で湿潤させることを含む。第1のステップは、約75°F(約24°C)の温度条件下、例えば除去すべきケーシング12の厚さに応じて、約1分30秒間に亘って行われる。この記載を鑑みると、当業者であれば、上述の温度より高温又は低温を用いても良いことを認識するであろう。   In the first step, the processing step includes wetting the casing 12 with the first solution, for example by immersing the workpiece 10 in a container having the first solution. The first step is performed under a temperature condition of about 75 ° F. (about 24 ° C.), for example, for about 1 minute and 30 seconds, depending on the thickness of the casing 12 to be removed. In view of this description, those skilled in the art will recognize that higher or lower temperatures may be used than those described above.

第2のステップにおいて、例えば、第2の溶液を有する容器にワークピース10を浸漬することによって、ワークピース10を第2の溶液で湿潤させる。第2のステップは、例えば約55〜120°F(約13〜49°C)の温度条件下で約30秒間に亘って行われる。この記載を鑑みると、当業者であれば、上述の範囲より高温又は低温を用いても良いことを認識するであろう。   In the second step, the workpiece 10 is wetted with the second solution, for example, by immersing the workpiece 10 in a container having the second solution. The second step is performed, for example, under a temperature condition of about 55-120 ° F. (about 13-49 ° C.) for about 30 seconds. In view of this description, one skilled in the art will recognize that higher or lower temperatures may be used than the above range.

ワークピース10は、第1の溶液による湿潤ステップと第2の溶液による湿潤ステップとの間で、“湿潤”状態に保持される。例えば、濯ぎを行うことなく短時間で、ワークピース10を第1の溶液から第2の溶液に直接移動させる。これにより、機械的な除去を必要とするような残留スマットがコア14に付いて永久に結合することを防ぐ。第1の溶液と第2の溶液との間において、ワークピース10から第1の溶液を除去するために、滞留時間を短時間とすることができる。第2の溶液のステップの後、ワークピース10を水中にて濯ぐ。   The workpiece 10 is held in a “wet” state between the wetting step with the first solution and the wetting step with the second solution. For example, the workpiece 10 is directly moved from the first solution to the second solution in a short time without rinsing. This prevents residual smut that would require mechanical removal from sticking to the core 14 and becoming permanently bonded. In order to remove the first solution from the workpiece 10 between the first solution and the second solution, the residence time can be shortened. After the second solution step, the workpiece 10 is rinsed in water.

一実施例として、第1の溶液及び第2の溶液は、ケーシング12を均一に除去するために、予め決められた組成を含む。以下の溶液の例について、密度、比重、又は重量%に基づいて表記される酸の濃度に関連して説明する。なお、これらの表記に関するこれらの規則を、他の規則に換えても良いことを理解すべきである。   As an example, the first solution and the second solution include a predetermined composition to uniformly remove the casing 12. The following solution examples are described in relation to the acid concentration expressed on the basis of density, specific gravity, or weight percent. It should be understood that these rules regarding these notations may be replaced with other rules.

第1の溶液は、約45〜50体積%、すなわち少なくとも42ボーメ度の硝酸(例えば、70重量%、または1.42g/ccの試薬等級の硝酸)と、約5.6〜8.4体積%、すなわち約70%等級のフッ化水素酸と、残余の水と、を含む。本願の明細書で使用される“等級”なる用語は、酸の濃度であり、割合(%)は、“一般に認められた”研究用又は試薬用の酸性溶液における酸の重量%である。第2の溶液は、約50〜60体積%、すなわち少なくとも42ボーメ度の硝酸と、残余の水と、を含む。或いは、第1の溶液は、約45〜50体積%の硝酸と、約8〜12体積%、すなわち49%等級のフッ化水素酸と、残余の水と、を含む。割合(%)又は組成に関して本願の明細書で使用される“約”なる用語は、組成の割合において考え得る変更、例えば、当該分野で一般的に受け入れられている変更又は誤差である。上述した以外の他の同等の溶液の組成は、酸の純度に基づいて決定されても良いことを理解すべきである。   The first solution is about 45-50% by volume, i.e. at least 42 Baume nitric acid (e.g. 70% by weight, or 1.42 g / cc reagent grade nitric acid) and about 5.6-8.4 vol. %, That is, about 70% grade hydrofluoric acid and residual water. As used herein, the term “grade” is the concentration of acid, and the percentage is the weight percentage of acid in a “generally accepted” laboratory or reagent acidic solution. The second solution comprises about 50-60% by volume, i.e. at least 42 Baume nitric acid, and the remaining water. Alternatively, the first solution comprises about 45-50% by volume nitric acid, about 8-12% by volume, ie, 49% grade hydrofluoric acid, and the balance water. The term “about” as used herein in terms of percentage or composition is a possible change in composition percentage, eg, a change or error generally accepted in the art. It should be understood that other equivalent solution compositions other than those described above may be determined based on the purity of the acid.

2つのステップで第1の溶液と第2の溶液とを使用すると、粒間腐食なしに、又は殆ど粒間腐食せず、コア14にスマットが残留しないか、又は殆ど残留することなく、チタン合金に水素が殆ど拡散しないか、又は拡散することなく、ケーシング12を除去するという利点を有する。例えば、単一のステップでケーシング12を除去するために、開示されたものよりアグレッシブ性の高い溶液(例えば、より強い酸を使用するか、又は高い体積%の酸)を使用すると、除去が不均一となり、粒間腐食が生じ、水素の拡散を促進する場合がある。逆に、ケーシング12を除去するために、よりアグレッシブ性の低い溶液(例えば、より弱い酸を使用するか、又は低い体積%の酸)を使用すると、ケーシング12の除去は不完全となる場合がある。2つのステップ及び2種類の溶液を利用する本発明の処理工程は、ケーシング12を第1のステップで制御された工程で除去し、第2のステップでスマットの更なる形成を防ぐことによって、上記のような短所を回避する。   Using the first solution and the second solution in two steps allows the titanium alloy to have no or little intergranular corrosion and little or no residual smut in the core 14. This has the advantage of removing the casing 12 with little or no diffusion of hydrogen. For example, using a more aggressive solution than disclosed (e.g., using a stronger acid or higher volume percent acid) to remove the casing 12 in a single step would not result in removal. It becomes uniform, intergranular corrosion occurs, and hydrogen diffusion may be promoted. Conversely, if a less aggressive solution (eg, using a weaker acid or a lower volume% acid) is used to remove the casing 12, the removal of the casing 12 may be incomplete. is there. The process of the present invention utilizing two steps and two types of solutions eliminates the casing 12 in a controlled process in the first step and prevents further formation of smut in the second step. Avoid the disadvantages.

本発明の好ましい実施の形態が開示されたものの、当業者であれば、所定の変更が、本発明の範囲内にあることを認識するであろう。したがって、以下の請求の範囲は、本発明の範囲及び内容を決定することを目的とされるべきである。   Although preferred embodiments of the present invention have been disclosed, those skilled in the art will recognize that certain modifications are within the scope of the present invention. Accordingly, the following claims are intended to determine the scope and content of this invention.

ケーシングを化学的に除去しコアを露出させる場合の、ケーシング及びコアを有するワークピースの所定の部分を示す。Figure 3 shows a predetermined portion of a workpiece having a casing and a core when the casing is chemically removed to expose the core.

Claims (14)

チタン合金α相の析出物を有する表面層を化学的に除去し、チタン合金β相を有するコアを露出させることを特徴とする金属部品の表面処理方法。   A surface treatment method for a metal part, characterized in that a surface layer having precipitates of a titanium alloy α phase is chemically removed to expose a core having a titanium alloy β phase. 硝酸及びフッ化水素酸を有する第1の溶液と、硝酸を有する第2の溶液と、を使用して前記表面層を化学的に除去することを特徴とする請求項1に記載の金属部品の表面処理方法。   The metal part according to claim 1, wherein the surface layer is chemically removed using a first solution having nitric acid and hydrofluoric acid and a second solution having nitric acid. Surface treatment method. 硝酸の濃度とフッ化水素酸の濃度とが等しくない溶液を使用して前記表面層を化学的に除去することを特徴とする請求項1に記載の金属部品の表面処理方法。   The surface treatment method for a metal part according to claim 1, wherein the surface layer is chemically removed using a solution in which the concentration of nitric acid and the concentration of hydrofluoric acid are not equal. 第1のステップで、前記表面層に第1の溶液を湿潤させ、前記表面層の少なくとも一部分を除去し、前記コアを露出させるステップと、次に、第2のステップで、残りの表面層及び前記コアに第2の溶液を湿潤させるステップと、前記第1のステップと前記第2のステップとの間で、前記表面層及び前記コアの湿潤状態を保持するステップと、を含むことを特徴とする請求項1に記載の金属部品の表面処理方法。   In a first step, wetting the surface layer with a first solution, removing at least a portion of the surface layer and exposing the core; and then in a second step, the remaining surface layer and And wetting the core with a second solution; and maintaining the wet state of the surface layer and the core between the first step and the second step. The surface treatment method for a metal part according to claim 1. 前記第1のステップを約75°F(約24°C)の温度条件下で行い、前記第2のステップを約55〜120°F(約13〜49°C)の温度条件下で行うことを特徴とする請求項4に記載の金属部品の表面処理方法。   Performing the first step under a temperature condition of about 75 ° F. (about 24 ° C.) and performing the second step under a temperature condition of about 55-120 ° F. (about 13-49 ° C.); The surface treatment method for a metal part according to claim 4. 前記第1の溶液は、約45〜50体積%、すなわち少なくとも42ボーメ度の硝酸と、約5.6〜12体積%、すなわち70%等級又は49%等級のフッ化水素酸と、残余の水と、を含み、前記第2の溶液は、約50〜60体積%、すなわち少なくとも42ボーメ度の硝酸と、残余の水と、を含むことを特徴とする請求項4に記載の金属部品の表面処理方法。   The first solution comprises about 45-50% by volume, ie at least 42 Baume nitric acid, about 5.6-12% by volume, ie 70% or 49% grade hydrofluoric acid, and the remaining water. 5. The surface of a metal part according to claim 4, wherein the second solution comprises about 50-60% by volume, i.e. at least 42 Baume nitric acid, and residual water. Processing method. 約45〜50体積%で、すなわち少なくとも42ボーメ度の硝酸と、約8〜12体積%、すなわち49%等級のフッ化水素酸と、残余の水と、を有する第1の溶液を前記表面層に湿潤させることを特徴とする請求項1に記載の金属部品の表面処理方法。   A first solution comprising about 45-50% by volume, i.e. at least 42 Baume nitric acid, about 8-12% by volume, i.e. 49% grade hydrofluoric acid, and the remaining water; The surface treatment method for a metal part according to claim 1, wherein the surface is wetted. 約45〜50体積%、すなわち少なくとも42ボーメ度の硝酸と、約5.6〜8.4体積%、すなわち約70%等級のフッ化水素酸と、残余の水と、を有する第1の溶液を前記表面層に湿潤させることを特徴とする請求項1に記載の金属部品の表面処理方法。   A first solution having about 45-50% by volume, i.e., at least 42 Baume nitric acid, about 5.6-8.4% by volume, i.e. about 70% grade hydrofluoric acid, and residual water. The surface treatment method for a metal part according to claim 1, wherein the surface layer is wetted. 約14〜16重量%のモリブデンと、約2.5〜3.5重量%のアルミニウムと、約2.4〜3.2重量%のニオブと、約0.15〜0.25重量%のケイ素と、残余のチタンと、を含む組成式を有するチタン合金から前記表面層及び前記コアを形成することを特徴とする請求項1に記載の金属部品の表面処理方法。   About 14-16 wt.% Molybdenum, about 2.5-3.5 wt.% Aluminum, about 2.4-3.2 wt.% Niobium, and about 0.15-0.25 wt.% Silicon The surface treatment method for a metal part according to claim 1, wherein the surface layer and the core are formed from a titanium alloy having a composition formula including the remaining titanium. 前記チタン合金β相の水素脆化及び粒間腐食なしに前記表面層を均一に除去することを特徴とする請求項2に記載の金属部品の表面処理方法。   The surface treatment method of a metal part according to claim 2, wherein the surface layer is uniformly removed without hydrogen embrittlement and intergranular corrosion of the titanium alloy β phase. チタン合金α相の析出物を有する表面層の化学的除去し、金属部品におけるチタン合金β相を有するコアを露出させる溶液システムにおいて、
硝酸及びフッ化水素酸を含む第1の溶液と、
硝酸を含む第2の溶液と、を含み、
前記第1の溶液及び前記第2の溶液が協働して、スマットを形成せずに、前記表面層を除去して、前記コアを露出させることを特徴とする溶液システム。
In a solution system that chemically removes a surface layer having a precipitate of titanium alloy α phase and exposes a core having a titanium alloy β phase in a metal part
A first solution comprising nitric acid and hydrofluoric acid;
A second solution containing nitric acid,
The solution system, wherein the first solution and the second solution cooperate to remove the surface layer and expose the core without forming a smut.
前記第1の溶液は、約45〜50体積%、すなわち少なくとも42ボーメ度の硝酸と、約8〜12体積%、すなわち約49%等級のフッ化水素酸と、残余の水と、を含むことを特徴とする請求項11に記載の溶液システム。   Said first solution comprises about 45-50% by volume, ie at least 42 Baume nitric acid, about 8-12% by volume, ie about 49% grade hydrofluoric acid, and the remaining water. The solution system according to claim 11. 前記第1の溶液は、約45〜50体積%、すなわち少なくとも42ボーメ度の硝酸と、約5.6〜8.4体積%、すなわち約70%等級のフッ化水素酸と、残余の水と、を含むことを特徴とする請求項11に記載の溶液システム。   The first solution comprises about 45-50% by volume, ie at least 42 Baume nitric acid, about 5.6-8.4% by volume, ie about 70% grade hydrofluoric acid, and the remaining water. The solution system according to claim 11, comprising: 前記第2の溶液は、約50〜60体積%、すなわち少なくとも42ボーメ度の硝酸と、残余の水と、を含むことを特徴とする請求項11に記載の溶液システム。   12. The solution system of claim 11, wherein the second solution comprises about 50-60% by volume, i.e., at least 42 Baume nitric acid, and residual water.
JP2008006401A 2007-01-17 2008-01-16 Method of surface treating metallic article, and solution system Pending JP2008174839A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/654,410 US20080169270A1 (en) 2007-01-17 2007-01-17 Method of removing a case layer from a metal alloy

Publications (1)

Publication Number Publication Date
JP2008174839A true JP2008174839A (en) 2008-07-31

Family

ID=39272109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006401A Pending JP2008174839A (en) 2007-01-17 2008-01-16 Method of surface treating metallic article, and solution system

Country Status (3)

Country Link
US (1) US20080169270A1 (en)
EP (1) EP1947217B1 (en)
JP (1) JP2008174839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101389020B1 (en) 2011-09-05 2014-04-25 한국기계연구원 METHOD OF ETCHING A Ti-Nb-X BASED TITANIUM ALLOY

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005049249B4 (en) * 2005-10-14 2018-03-29 MTU Aero Engines AG Process for stripping a gas turbine component
US8240999B2 (en) * 2009-03-31 2012-08-14 United Technologies Corporation Internally supported airfoil and method for internally supporting a hollow airfoil during manufacturing
JP2013234358A (en) * 2012-05-09 2013-11-21 Mitsubishi Heavy Ind Ltd Method of removing work-affected layer
CN102747375A (en) * 2012-06-15 2012-10-24 兰州理工大学 Paint remover for internal and external surface paint films of aluminum pop can and use method
US10687956B2 (en) 2014-06-17 2020-06-23 Titan Spine, Inc. Corpectomy implants with roughened bioactive lateral surfaces
US9845728B2 (en) 2015-10-15 2017-12-19 Rohr, Inc. Forming a nacelle inlet for a turbine engine propulsion system
TWI726940B (en) 2015-11-20 2021-05-11 美商泰坦脊柱股份有限公司 Processes for additively manufacturing orthopedic implants
WO2017087944A1 (en) 2015-11-20 2017-05-26 Titan Spine, Llc Processes for additively manufacturing orthopedic implants
AU2017305136A1 (en) 2016-08-03 2019-02-07 Titan Spine, Inc. Titanium implant surfaces free from alpha case and with enhanced osteoinduction
US11433990B2 (en) 2018-07-09 2022-09-06 Rohr, Inc. Active laminar flow control system with composite panel
FR3087794B1 (en) 2018-10-26 2020-10-30 Safran Aircraft Engines CHEMICAL MATIFICATION PROCESS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134672A (en) * 1994-11-02 1996-05-28 Daido Steel Co Ltd Production of titanium alloy hoop
JP2001089883A (en) * 1999-09-22 2001-04-03 Daido Steel Co Ltd Method for producing titanium or titanium alloy product
JP2004068146A (en) * 2002-06-11 2004-03-04 Sumitomo Metal Ind Ltd beta TYPE TITANIUM ALLOY AND METHOD FOR PRODUCING THE SAME

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562013A (en) * 1967-10-23 1971-02-09 Diversey Corp Process of deoxidizing titanium and its alloys
US3666580A (en) * 1969-03-20 1972-05-30 Armco Steel Corp Chemical milling method and bath
US3753815A (en) * 1971-09-22 1973-08-21 Armco Steel Corp Method and bath for treating titanium
US3944496A (en) * 1973-04-30 1976-03-16 Coggins Dolphus L Composition for chemical milling refractory metals
US5217569A (en) * 1991-01-07 1993-06-08 United Technologies Corporation Chemical milling solution for reduced hydrogen absorption
US6267831B1 (en) * 1998-05-06 2001-07-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method of making a titanium or titanium alloy strip having a decorative surface appearance
US6843928B2 (en) * 2001-10-12 2005-01-18 General Electric Company Method for removing metal cladding from airfoil substrate
KR20050005506A (en) * 2002-06-11 2005-01-13 스미토모 긴조쿠 고교 가부시키가이샤 β- TYPE TITANIUM ALLOY AND PROCESS FOR PRODUCING THE SAME
DE102005055303A1 (en) * 2005-11-21 2007-05-24 Mtu Aero Engines Gmbh Multi-stage surface etching process to manufacture high-temperature metal titanium components for gas turbine engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134672A (en) * 1994-11-02 1996-05-28 Daido Steel Co Ltd Production of titanium alloy hoop
JP2001089883A (en) * 1999-09-22 2001-04-03 Daido Steel Co Ltd Method for producing titanium or titanium alloy product
JP2004068146A (en) * 2002-06-11 2004-03-04 Sumitomo Metal Ind Ltd beta TYPE TITANIUM ALLOY AND METHOD FOR PRODUCING THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101389020B1 (en) 2011-09-05 2014-04-25 한국기계연구원 METHOD OF ETCHING A Ti-Nb-X BASED TITANIUM ALLOY

Also Published As

Publication number Publication date
US20080169270A1 (en) 2008-07-17
EP1947217A1 (en) 2008-07-23
EP1947217B1 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP2008174839A (en) Method of surface treating metallic article, and solution system
WO2000009773A9 (en) Selective case hardening processes at low temperature
JP2007118083A (en) Method for removing casting core
JP2007138934A (en) Coating substrate forming method and stripping method
KR20060063782A (en) Method for treating semiconductor processing components and components formed thereby
JPS63169391A (en) Metal member for semiconductor producing device
CN114525510B (en) Corrosive liquid, preparation method of corrosive liquid and corrosion process of Inconel625 nickel alloy
US5916377A (en) Packed bed carburization of tantalum and tantalum alloy
JPH0465376A (en) Si impregnated sic product coated by cvd and production thereof
JP5396113B2 (en) Method for removing oxidized scale of copper alloy material
JP3869079B2 (en) Manufacturing method of shape memory alloy
WO2003083157A1 (en) NITRIDED Mo ALLOY WORKED MATERIAL HAVING HIGH CORROSION RESISTANCE, HIGH STRENGTH AND HIGH TOUGHNESS AND METHOD FOR PRODUCTION THEREOF
JP2005336551A (en) Fe-CONTAINING TITANIUM MATERIAL WITH EXCELLENT CORROSION RESISTANCE, AND ITS MANUFACTURING METHOD
TWI726558B (en) Two-stage method for removing metal layer
KR101539010B1 (en) Method for etching of super alloy and the super alloy thereby
JP3020873B2 (en) Materials for equipment using organic amine-based drugs
JP2009095872A (en) Casting method
JP5012384B2 (en) Surface treatment method
JP2951541B2 (en) Manufacturing method of external corrosion resistant cast iron pipe
JP2005240052A (en) Ni BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE WORKABILITY, IN WHICH ELUTION AMOUNT OF METAL ION IS REMARKABLY REDUCED, AND HAVING EXCELLENT CORROSION RESISTANCE
JPH0533156A (en) Surface treatment of stainless steel member
JPS596182B2 (en) Manufacturing method of highly active denitrification catalyst
CN117468004A (en) Surface treatment method for hardened nickel-base alloy
US20200048774A1 (en) Alloy surface activation by immersion in aqueous acid solution
US20090060828A1 (en) Fluorine Extraction Process For Fluoro-Refractory Coatings And Articles Manufactured According To Said Process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308