JP5396113B2 - Method for removing oxidized scale of copper alloy material - Google Patents
Method for removing oxidized scale of copper alloy material Download PDFInfo
- Publication number
- JP5396113B2 JP5396113B2 JP2009060988A JP2009060988A JP5396113B2 JP 5396113 B2 JP5396113 B2 JP 5396113B2 JP 2009060988 A JP2009060988 A JP 2009060988A JP 2009060988 A JP2009060988 A JP 2009060988A JP 5396113 B2 JP5396113 B2 JP 5396113B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- alloy material
- oxide scale
- mass
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 66
- 239000000956 alloy Substances 0.000 title claims description 64
- 238000000034 method Methods 0.000 title claims description 19
- 239000000126 substance Substances 0.000 claims description 71
- 239000000243 solution Substances 0.000 claims description 48
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 46
- 239000003153 chemical reaction reagent Substances 0.000 claims description 19
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 14
- 239000010949 copper Substances 0.000 claims description 12
- 239000003513 alkali Substances 0.000 claims description 11
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 claims description 10
- 229960003330 pentetic acid Drugs 0.000 claims description 10
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 229910021529 ammonia Inorganic materials 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 238000005498 polishing Methods 0.000 description 31
- 239000000463 material Substances 0.000 description 16
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 239000002585 base Substances 0.000 description 10
- 229910001069 Ti alloy Inorganic materials 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 229910017945 Cu—Ti Inorganic materials 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 238000002845 discoloration Methods 0.000 description 7
- 238000004090 dissolution Methods 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 238000000137 annealing Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Substances [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 238000005097 cold rolling Methods 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910001923 silver oxide Inorganic materials 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000008155 medical solution Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Description
本発明は、銅合金材の酸化スケールの除去方法に関し、特に、Cu−Ti合金などの銅合金の条材や板材などの銅合金材の表面に形成された酸化スケールを除去する方法に関する。 The present invention relates to a method for removing oxide scale from a copper alloy material, and more particularly, to a method for removing oxide scale formed on the surface of a copper alloy material such as a strip material or a plate material of a copper alloy such as a Cu-Ti alloy.
Cu−Ti合金のような銅合金の条材や板材などの銅合金材の一般的な製造プロセスでは、銅合金の鋳塊を溶体化処理した後に、冷間圧延を行い、時効処理を行って、銅合金材を製造している。この製造プロセスでは、溶体化処理を行うことによって銅合金材の表面に緻密な酸化皮膜が形成されるので、次工程の冷間圧延において圧延ロールを傷めたり、銅合金材の表面に酸化スケール(酸化生成物)として形成された酸化皮膜が圧延ロールによって押さえ込まれて、銅合金材の表面に不均一な凹凸を生じるなど、製造上好ましくない問題を生じる。 In a general manufacturing process of a copper alloy material such as a strip material or a plate material of a copper alloy such as a Cu-Ti alloy, after ingot treatment of a copper alloy ingot, cold rolling and aging treatment are performed. Manufactures copper alloy materials. In this manufacturing process, a dense oxide film is formed on the surface of the copper alloy material by solution treatment, so that the roll is damaged in the cold rolling of the next step, or the oxide scale ( An oxide film formed as an oxidation product) is pressed by a rolling roll, resulting in unfavorable manufacturing problems such as uneven unevenness on the surface of the copper alloy material.
そのため、溶体化処理を行った後に、化学研磨を行うことによって、銅合金材の表面の酸化皮膜を完全に除去する必要がある。特に、Cu−Ti合金の酸化膜は、Tiを高濃度で含有し、酸に対して非常に安定であるため、化学研磨を行う際には、弗酸または硫酸に過酸化水素を混合した溶液など、極めて腐食力の高い化学研磨液を用いる必要がある。 Therefore, it is necessary to completely remove the oxide film on the surface of the copper alloy material by performing chemical polishing after the solution treatment. In particular, since the oxide film of Cu-Ti alloy contains Ti at a high concentration and is very stable against acid, a solution in which hydrogen peroxide is mixed with hydrofluoric acid or sulfuric acid when performing chemical polishing. For example, it is necessary to use a chemical polishing liquid having extremely high corrosive power.
しかし、このような極めて腐食力の高い化学研磨液を用いると、酸化皮膜だけでなく、銅合金材の未酸化部分も腐食されて、化学研磨を行った後の銅合金材の表面に不均一な凹凸や変色が生じるおそれがあり、また、腐食が均一に進行せず、酸化皮膜が局部的に残留するおそれもある。 However, using such a highly corrosive chemical polishing liquid, not only the oxide film but also the unoxidized portion of the copper alloy material is corroded, and the surface of the copper alloy material after chemical polishing is uneven. May cause unevenness and discoloration, and corrosion may not progress uniformly, and the oxide film may remain locally.
このような表面の凹凸、変色または残留酸化皮膜を除去するため、化学研磨を行った後に、バフなどを用いて機械研磨を行うことが知られている(例えば、特許文献1参照)。また、溶体化処理を行った後、化学研磨を行う前に、酸化皮膜にクラックを入れて化学研磨液の浸透を促進させることも知られている(例えば、特許文献2参照)。 In order to remove such surface irregularities, discoloration, or residual oxide film, it is known to perform mechanical polishing using a buff after chemical polishing (see, for example, Patent Document 1). In addition, it is also known that after the solution treatment and before chemical polishing, a crack is made in the oxide film to promote the penetration of the chemical polishing liquid (for example, see Patent Document 2).
しかし、特許文献1および2の方法では、化学研磨装置の前後にバフロールなどを備えた機械研磨装置を設ける必要があるため、生産設備が煩雑になる。また、過度の研磨を行うと、銅合金材の表面の肌荒れが生じたり、バフロールの交換などのコストが増加するという問題がある。そのため、銅合金材の表面に緻密で安定な酸化皮膜が形成されても、銅合金材の表面の肌荒れが生じることなく且つ銅合金材を腐食することなく、酸化スケールを低コストで除去することができる方法が求められている。 However, in the methods of Patent Documents 1 and 2, since it is necessary to provide a mechanical polishing apparatus equipped with a baffle or the like before and after the chemical polishing apparatus, production facilities become complicated. Moreover, when it grind | polises excessively, there exists a problem that the skin roughening of the surface of a copper alloy material arises, or costs, such as replacement | exchange of a baffle, increase. Therefore, even if a dense and stable oxide film is formed on the surface of the copper alloy material, the oxide scale can be removed at low cost without causing the surface of the copper alloy material to become rough and without corroding the copper alloy material. There is a need for a way to do this.
また、化学研磨液に用いる弗酸または硫酸に過酸化水素を混合した溶液は、腐食力が高いため、生産設備、廃液処理設備、廃液処理設備などのコストが高くなって、製品の製造コストが高くなり、また、高温で処理する必要があり、処理中に弗化水素などの有毒ガスが発生するなど、安全管理や取扱いが難しいという問題がある。 In addition, a solution in which hydrogen peroxide is mixed with hydrofluoric acid or sulfuric acid used for chemical polishing liquid has high corrosive power, which increases the cost of production equipment, waste liquid treatment equipment, waste liquid treatment equipment, etc. In addition, there is a problem that safety management and handling are difficult, for example, it is necessary to perform the treatment at a high temperature and a toxic gas such as hydrogen fluoride is generated during the treatment.
したがって、本発明は、このような従来の問題点に鑑み、銅合金材の表面に緻密な酸化皮膜が酸化スケールとして形成されている場合に、安価且つ容易に酸化スケールを除去することができる、銅合金材の酸化スケールの除去方法を提供することを目的とする。 Therefore, in view of such conventional problems, the present invention can easily and inexpensively remove the oxide scale when a dense oxide film is formed as an oxide scale on the surface of the copper alloy material. It aims at providing the removal method of the oxide scale of a copper alloy material.
本発明者らは、上記課題を解決するために鋭意研究した結果、銅合金材の表面に酸化スケールとして形成された酸化皮膜を選択的に除去し且つ銅合金材を腐食し難い薬液として、キレート試薬と過酸化水素を含む薬液を使用して、酸化スケールを除去することによって、安価且つ容易に酸化スケールを除去することができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have selectively removed an oxide film formed as an oxide scale on the surface of a copper alloy material, and as a chemical solution that hardly corrodes the copper alloy material, It has been found that the oxide scale can be removed easily and inexpensively by removing the oxide scale using a chemical solution containing a reagent and hydrogen peroxide, and the present invention has been completed.
すなわち、本発明による銅合金材の酸化スケールの除去方法は、銅合金材の表面に形成された酸化スケールを、キレート試薬と過酸化水素を含む薬液によって除去することを特徴とする。この銅合金材の酸化スケールの除去方法において、銅合金材が、1〜5質量%のTiを含む銅合金からなるのが好ましい。また、キレート試薬が、ジエチレントリアミン五酢酸(DTPA)、エチレンジアミン四酢酸(EDTA)およびこれらの塩からなる群から選ばれる一種以上の化合物からなるのが好ましい。また、薬液がアルカリを含んでもよい。この場合、アルカリが、アンモニアおよびアルカリ金属水酸化物からなる群から選ばれる一種以上の化合物からなるのが好ましい。また、酸化スケールが表面に形成された銅合金材を薬液に浸漬することによって、酸化スケールを除去してもよいし、酸化スケールが表面に形成された銅合金材に薬液を噴霧することによって、酸化スケールを除去してもよい。また、熱処理により銅合金材の表面に形成された酸化スケールを除去することができる。 That is, the method for removing oxidized scale of a copper alloy material according to the present invention is characterized in that the oxidized scale formed on the surface of the copper alloy material is removed with a chemical solution containing a chelating reagent and hydrogen peroxide. In this method of removing the oxide scale of the copper alloy material, the copper alloy material is preferably made of a copper alloy containing 1 to 5% by mass of Ti. The chelating reagent is preferably composed of one or more compounds selected from the group consisting of diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), and salts thereof. Moreover, a chemical | medical solution may contain an alkali. In this case, the alkali is preferably composed of one or more compounds selected from the group consisting of ammonia and alkali metal hydroxides. Moreover, the oxide scale may be removed by immersing the copper alloy material having the oxide scale formed on the surface thereof in the chemical solution, or by spraying the chemical solution on the copper alloy material having the oxide scale formed on the surface, The oxide scale may be removed. Moreover, the oxide scale formed on the surface of the copper alloy material by the heat treatment can be removed.
本発明によれば、銅合金材の表面に緻密な酸化皮膜が酸化スケールとして形成されている場合に、安価且つ容易に酸化スケールを除去することができる。 According to the present invention, when a dense oxide film is formed as an oxide scale on the surface of a copper alloy material, the oxide scale can be easily and inexpensively removed.
本発明による銅合金材の酸化スケールの除去方法の実施の形態では、熱処理などにより銅合金材の表面に酸化スケールとして形成された酸化皮膜を選択的に除去し且つ銅合金材を腐食し難い薬液として、キレート試薬と過酸化水素を含む薬液、あるいはキレート試薬と過酸化水素とアルカリを含む薬液を使用して、酸化スケールを除去する。 In the embodiment of the method for removing oxide scale of a copper alloy material according to the present invention, a chemical solution that selectively removes an oxide film formed as an oxide scale on the surface of the copper alloy material by heat treatment or the like and hardly corrodes the copper alloy material. As described above, the oxide scale is removed using a chemical solution containing a chelating reagent and hydrogen peroxide, or a chemical solution containing a chelating reagent, hydrogen peroxide and an alkali.
熱処理により表面に酸化皮膜が形成された銅合金材としては、バッチ式焼鈍炉や連続焼鈍炉などの焼鈍炉によって加熱された銅合金材を使用することができ、1〜5質量%、好ましくは1.5〜4質量%のTiを含むCu−Ti合金の条材または板材のような銅合金材を使用することができる。 As a copper alloy material having an oxide film formed on the surface by heat treatment, a copper alloy material heated by an annealing furnace such as a batch annealing furnace or a continuous annealing furnace can be used, and 1 to 5% by mass, preferably A copper alloy material such as a strip or plate of a Cu-Ti alloy containing 1.5 to 4% by mass of Ti can be used.
Cu−Ti合金材では、加熱温度が高いほど、表面の酸化皮膜へのTiの拡散が進んで、酸化皮膜中のTiの濃度が高くなるが、Cuと比べてTiの溶解速度が圧倒的に大きい薬液として、キレート試薬と過酸化水素を含む薬液、あるいはキレート試薬と過酸化水素とアルカリを含む薬液を使用しているので、酸化皮膜中のTiの濃度が高いほど、酸化スケールの溶解速度が増加するため、熱処理温度は高い方が好ましい。工業的利用に好ましい熱処理温度は700〜1000℃程度である。 In the Cu-Ti alloy material, the higher the heating temperature, the more the Ti diffuses into the oxide film on the surface, and the Ti concentration in the oxide film increases, but the dissolution rate of Ti is overwhelming compared to Cu. As a large chemical solution, a chemical solution containing a chelating reagent and hydrogen peroxide, or a chemical solution containing a chelating reagent, hydrogen peroxide, and an alkali is used. Therefore, the higher the Ti concentration in the oxide film, the higher the dissolution rate of the oxide scale. In order to increase, it is preferable that the heat treatment temperature is higher. A preferable heat treatment temperature for industrial use is about 700 to 1000 ° C.
Cu−Ti合金材は、例えば、所定の組成のCu−Ti合金材料を溶解して鋳造した後に、熱間圧延、700〜1000℃程度の熱処理(溶体化処理)、冷間圧延、時効処理(熱処理焼鈍)、低温焼鈍などを行うことによって製造されている。本発明による銅合金材の酸化スケールの除去方法の実施の形態は、高温で処理する必要がある溶体化処理によって生成した強固な酸化膜に適用するのが好ましい。このような高温で処理されたCu−Ti合金材では、表面の酸化皮膜中のTiの濃度が高いので、本発明による銅合金材の酸化スケールの除去方法の実施の形態では、Cuと比べてTiの溶解速度が圧倒的に大きい薬液を使用することにより、薬液へのCuの溶解量を少なくして、変色もなく、表面の酸化皮膜を迅速に薬液に溶解させて除去することができる。そのため、後工程の冷間圧延において使用するロールを保護することができる。 The Cu—Ti alloy material is prepared by, for example, melting and casting a Cu—Ti alloy material having a predetermined composition, followed by hot rolling, heat treatment (solution treatment) at about 700 to 1000 ° C., cold rolling, aging treatment ( It is manufactured by performing heat treatment annealing), low temperature annealing and the like. The embodiment of the method for removing the oxide scale of the copper alloy material according to the present invention is preferably applied to a strong oxide film generated by a solution treatment that needs to be processed at a high temperature. In the Cu-Ti alloy material treated at such a high temperature, the concentration of Ti in the oxide film on the surface is high. Therefore, in the embodiment of the method for removing the oxide scale of the copper alloy material according to the present invention, compared with Cu. By using a chemical solution with an overwhelmingly high dissolution rate of Ti, the amount of Cu dissolved in the chemical solution can be reduced, and the surface oxide film can be quickly dissolved in the chemical solution and removed without discoloration. Therefore, it is possible to protect the roll used in the subsequent cold rolling.
また、銅合金材の表面に形成された酸化皮膜を化学研磨により除去する薬液として、キレート試薬と過酸化水素を含む薬液、あるいはキレート試薬と過酸化水素とアルカリを含む薬液を使用している。これらの薬液は、室温で十分な酸化皮膜の溶解度を有し、温度制御が容易であるが、酸化皮膜の溶解速度を高めるために、溶解反応が激しくならない程度に薬液の温度を高くしてもよい。工業的に好ましい効率的な薬液の温度は、50℃以下、好ましくは40℃以下であるが、常温でも十分に酸化皮膜が溶解する。また、これらの薬液は、銅合金材へのダメージも小さいため、弗化水素などの混酸を用いた場合と異なり、化学研磨後に機械研磨を行う必要がない。 Further, as a chemical solution for removing the oxide film formed on the surface of the copper alloy material by chemical polishing, a chemical solution containing a chelating reagent and hydrogen peroxide, or a chemical solution containing a chelating reagent, hydrogen peroxide and an alkali is used. These chemical solutions have sufficient oxide film solubility at room temperature and are easy to control the temperature, but in order to increase the dissolution rate of the oxide film, even if the temperature of the chemical solution is increased to such an extent that the dissolution reaction does not become intense. Good. The industrially preferable temperature of the chemical solution is 50 ° C. or less, preferably 40 ° C. or less, but the oxide film is sufficiently dissolved even at room temperature. In addition, since these chemical solutions cause little damage to the copper alloy material, unlike the case where a mixed acid such as hydrogen fluoride is used, it is not necessary to perform mechanical polishing after chemical polishing.
また、薬液中のキレート試薬と過酸化水素の濃度、あるいはキレート試薬と過酸化水素とアルカリの濃度が低いと、酸化皮膜の溶解速度や溶解度が低下するため、表面の酸化スケールが溶け残り易くなる。そのため、化学研磨時間を長くしたり、薬液の量を増やすなどの対応が必要になるが、このような対応は、工業的利用には好ましくない。一方、キレート試薬の濃度が高過ぎると、キレート試薬の溶け残りが生じ、過酸化水素とアルカリの濃度が高過ぎると、薬液の突沸が起こり易くなる。したがって、工業的利用に好ましい薬液中のキレート試薬の量は、1〜10質量%、好ましくは2〜8質量%、過酸化水素の量は、5〜30質量%、好ましくは8〜20質量%、アルカリとしてアンモニアを使用する場合のその量は1〜5質量%、好ましくは1〜3質量%である。 In addition, if the concentration of chelating reagent and hydrogen peroxide in the chemical solution, or the concentration of chelating reagent, hydrogen peroxide and alkali is low, the dissolution rate and solubility of the oxide film will decrease, and the surface oxide scale will remain undissolved. . Therefore, measures such as increasing the chemical polishing time or increasing the amount of the chemical solution are necessary, but such measures are not preferable for industrial use. On the other hand, when the concentration of the chelating reagent is too high, the undissolved portion of the chelating reagent occurs, and when the concentration of hydrogen peroxide and alkali is too high, the chemical solution is likely to bump. Therefore, the amount of the chelating reagent in the chemical solution preferable for industrial use is 1 to 10% by mass, preferably 2 to 8% by mass, and the amount of hydrogen peroxide is 5 to 30% by mass, preferably 8 to 20% by mass. When ammonia is used as the alkali, the amount is 1 to 5% by mass, preferably 1 to 3% by mass.
キレート試薬としては、ジエチレントリアミン五酢酸(DTPA)、エチレンジアミン四酢酸(EDTA)およびこれらの塩からなる群から選ばれる一種以上の化合物を使用するのが好ましいが、銅合金材への影響がより小さいキレート試薬として、DTPAを使用するのが特に好ましい。また、アルカリとしては、アンモニアおよびアルカリ金属水酸化物(例えばNaOH)からなる群から選ばれる一種以上の化合物を使用するのが好ましい。 As the chelating reagent, it is preferable to use one or more compounds selected from the group consisting of diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), and salts thereof, but the chelating agent has less influence on the copper alloy material. It is particularly preferred to use DTPA as a reagent. Further, as the alkali, it is preferable to use one or more compounds selected from the group consisting of ammonia and an alkali metal hydroxide (for example, NaOH).
なお、酸化スケールが表面に形成された銅合金材を薬液に浸漬することによって、酸化スケールを除去してもよいし、酸化スケールが表面に形成された銅合金材に薬液を噴霧することによって、酸化スケールを除去してもよい。 In addition, the oxide scale may be removed by immersing the copper alloy material with the oxide scale formed on the surface in the chemical solution, or by spraying the chemical solution on the copper alloy material with the oxide scale formed on the surface, The oxide scale may be removed.
以下、本発明による銅合金材の酸化スケールの除去方法の実施例について詳細に説明する。 Hereinafter, examples of the method for removing the oxide scale of the copper alloy material according to the present invention will be described in detail.
[実施例1〜4]
まず、連続焼鈍炉によってCu−3%Ti合金(3質量%のTiを含み、残部がCuからなる銅合金)の圧延材を900℃で加熱して溶体化処理し、厚さ0.2mmのCu−3%Ti合金の短冊状の板材を試験片として用意した。この溶体化処理後の試験片の表面には、黒銀色の酸化皮膜が形成されていた。
[Examples 1 to 4]
First, a rolled material of a Cu-3% Ti alloy (a copper alloy containing 3% by mass of Ti and the balance being Cu) is heated at 900 ° C. in a continuous annealing furnace, and a solution treatment is performed. A strip-shaped plate material of Cu-3% Ti alloy was prepared as a test piece. A black-silver oxide film was formed on the surface of the test piece after the solution treatment.
次に、この試験片をDTPA・4Naと過酸化水素と水の混合水溶液からなる薬液中に38℃で浸漬して、化学研磨により表面の酸化スケール(酸化生成物)を除去した。なお、化学研磨による表面の酸化皮膜の溶解速度は、DTPA・4Naおよび過酸化水素の濃度の影響を受けるので、表1に示すように、混合水溶液中のDTPA・4Naおよび過酸化水素の濃度を、実施例1では1.5質量%と7質量%、実施例2では2.5質量%と7質量%、実施例3では1.5質量%と15質量%、実施例4では2.5質量%と15質量%と変えて、試験片を薬液中に60秒間浸漬した後の化学研磨による表面の酸化皮膜の減肉厚、酸化皮膜の除去および母材の変色を評価するとともに、試験片を薬液中に180秒間浸漬した後の化学研磨による表面の酸化皮膜の減肉厚、酸化皮膜の除去、母材の変色および表面粗さを評価した。 Next, this test piece was immersed in a chemical solution composed of a mixed aqueous solution of DTPA · 4Na, hydrogen peroxide and water at 38 ° C., and the surface oxide scale (oxidation product) was removed by chemical polishing. Since the dissolution rate of the oxide film on the surface by chemical polishing is affected by the concentrations of DTPA · 4Na and hydrogen peroxide, as shown in Table 1, the concentrations of DTPA · 4Na and hydrogen peroxide in the mixed aqueous solution are In Example 1, 1.5 mass% and 7 mass%, in Example 2, 2.5 mass% and 7 mass%, in Example 3, 1.5 mass% and 15 mass%, and in Example 4, 2.5 mass% and 7 mass%. In addition to evaluating the reduction in thickness of the oxide film on the surface, removal of the oxide film, and discoloration of the base material by chemical polishing after the test piece was immersed in a chemical solution for 60 seconds by changing the mass% and 15 mass%, the test piece The thickness of the oxide film on the surface, the removal of the oxide film, the discoloration of the base material, and the surface roughness were evaluated by chemical polishing after the substrate was immersed in a chemical solution for 180 seconds.
なお、酸化皮膜の減肉厚は、化学研磨前後の重量変化を電子天秤で計測して、試験片の比重と表面積から減肉厚に換算して求めた。また、酸化皮膜の除去の評価は、目視による検査で表面の黒銀色の酸化皮膜がなくなって銅合金材の銅色が完全に露出しているか否かと、半田濡れ試験による半田濡れ面積が半田に浸漬した面積の60%以上であるか否かによって行った。また、母材の変色の評価は、目視による検査で銅合金材の表面が黒色に変色しているか否かによって行った。さらに、表面粗さの評価は、表面粗さ計を使用して、試験片の圧延方向および板厚方向に対して垂直な方向について、JIS B0601に従って、試験片の表面の算術平均粗さRaを求めることによって行った。ここで、算術平均粗さRaとは、粗さ曲線からその平均線の方向に基準長さLだけ抜き取り、この抜き取り部分の平均線の方向にX軸、縦倍率の方向にY軸を取って、粗さ曲線を表したときに、数1よって求められる値Ra(μm)をいう。これらの結果を表1に示す。 The thickness reduction of the oxide film was determined by measuring the weight change before and after chemical polishing with an electronic balance and converting the specific gravity and surface area of the test piece into the thickness reduction. In addition, the evaluation of the removal of the oxide film is based on whether the black silver oxide film on the surface disappears by visual inspection and the copper color of the copper alloy material is completely exposed, and the solder wetting area in the solder wetting test is It was carried out depending on whether it was 60% or more of the immersed area. Further, the evaluation of the discoloration of the base material was performed based on whether or not the surface of the copper alloy material was discolored to black by visual inspection. Furthermore, the evaluation of the surface roughness is carried out by using the surface roughness meter to calculate the arithmetic average roughness Ra of the surface of the test piece in accordance with JIS B0601 in the direction perpendicular to the rolling direction and the plate thickness direction of the test piece. Done by asking. Here, the arithmetic average roughness Ra means that the reference length L is extracted from the roughness curve in the direction of the average line, the X-axis is taken in the direction of the average line of the extracted portion, and the Y-axis is taken in the direction of the vertical magnification. When the roughness curve is expressed, it means the value Ra (μm) obtained by Equation 1. These results are shown in Table 1.
なお、表1(および後で示す表2と表3)において、酸化膜除去の欄では、表面の黒銀色の酸化皮膜がなくなって銅合金材の銅色が完全に露出し且つ半田濡れ面積が半田に浸漬した面積の60%以上であった場合を○とし、酸化皮膜が残っていた場合を×と表示している。また、母材変色の欄では、銅合金材の表面が黒色に変色していた場合をNG、変色していなかった場合をOKと表示している。さらに、算術平均粗さRaが0.15μm以下の場合に、不均一な凹凸がなく、平滑な表面粗さが得られていると判断することができる。 In Table 1 (and Tables 2 and 3 to be described later), in the column of oxide film removal, the black silver oxide film on the surface disappears, the copper color of the copper alloy material is completely exposed, and the solder wetting area is The case where it is 60% or more of the area immersed in the solder is indicated by ◯, and the case where the oxide film remains is indicated by ×. In the matrix color change column, the case where the surface of the copper alloy material is changed to black is indicated as NG, and the case where the surface is not changed is indicated as OK. Furthermore, when arithmetic average roughness Ra is 0.15 micrometer or less, it can be judged that there is no uneven unevenness and smooth surface roughness is obtained.
表1に示すように、試験片を薬液中に60秒間浸漬した後では、酸化皮膜の除去が十分でない場合(実施例1〜3)があったが、試験片を薬液中に180秒間浸漬した後では、実施例1〜4のいずれの場合も、酸化皮膜を十分に除去することができ、試験片(母材)の表面の変色もなく、算術平均粗さRaも0.15μm以下と良好であった。 As shown in Table 1, after immersion of the test piece in the chemical solution for 60 seconds, there were cases where the removal of the oxide film was not sufficient (Examples 1 to 3), but the test piece was immersed in the chemical solution for 180 seconds. Later, in any case of Examples 1 to 4, the oxide film can be sufficiently removed, the surface of the test piece (base material) is not discolored, and the arithmetic average roughness Ra is also good at 0.15 μm or less. Met.
[実施例5〜6]
Cu−3%Ti合金の代わりにそれぞれCu−2%Ti合金(2質量%のTiを含み、残部がCuからなる銅合金)(実施例5)およびCu−4%Ti合金(4質量%のTiを含み、残部がCuからなる銅合金)(実施例6)を使用した以外は、実施例1と同様の方法により化学研磨を行い、実施例1と同様の評価を行った。その結果を表1に示す。
[Examples 5 to 6]
Instead of Cu-3% Ti alloy, Cu-2% Ti alloy (copper alloy containing 2% by mass of Ti and the balance being Cu) (Example 5) and Cu-4% Ti alloy (4% by mass of Cu) Chemical polishing was performed by the same method as in Example 1 except that Ti (a copper alloy containing Ti and the balance being Cu) (Example 6) was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.
表1に示すように、これらの実施例では、酸化皮膜を十分に除去することができ、試験片(母材)の表面の変色もなく、算術平均粗さRaも0.15μm以下と良好であった。 As shown in Table 1, in these examples, the oxide film can be sufficiently removed, there is no discoloration of the surface of the test piece (base material), and the arithmetic average roughness Ra is as good as 0.15 μm or less. there were.
[実施例7]
化学研磨に使用する薬液として、5質量%のEDTA・4Naと2質量%のアンモニアと8質量%の過酸化水素と水の混合水溶液を使用し、この混合水溶液に浸漬する時間(化学研磨時間)を120秒間にした以外は、実施例1と同様の方法により化学研磨を行い、実施例1と同様の評価を行った。その結果を表2に示す。
[Example 7]
As a chemical solution used for chemical polishing, a mixed aqueous solution of 5% by mass of EDTA · 4Na, 2% by mass of ammonia, 8% by mass of hydrogen peroxide and water is used, and it is immersed in this mixed aqueous solution (chemical polishing time) Was subjected to chemical polishing in the same manner as in Example 1 except that the time was changed to 120 seconds, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
表2に示すように、本実施例では、酸化皮膜を十分に除去することができ、試験片(母材)の表面の変色もなく、算術平均粗さRaも0.15μm以下と良好であった。 As shown in Table 2, in this example, the oxide film can be removed sufficiently, the surface of the test piece (base material) is not discolored, and the arithmetic average roughness Ra is also good at 0.15 μm or less. It was.
[実施例8]
Cu−3%Ti合金の代わりにCu−2%Ti合金(2質量%のTiを含み、残部がCuからなる銅合金)を使用し、化学研磨に使用する薬液として、4質量%のEDTA・4Naと2.4質量%のアンモニアと8質量%の過酸化水素と水の混合水溶液を使用した以外は、実施例7と同様の方法により化学研磨を行い、実施例1と同様の評価を行った。その結果を表2に示す。
[Example 8]
Instead of the Cu-3% Ti alloy, a Cu-2% Ti alloy (a copper alloy containing 2% by mass of Ti and the balance being Cu) is used, and 4% by mass of EDTA. Chemical polishing was performed in the same manner as in Example 7 except that a mixed aqueous solution of 4Na, 2.4% by mass of ammonia, 8% by mass of hydrogen peroxide and water was used, and the same evaluation as in Example 1 was performed. It was. The results are shown in Table 2.
表2に示すように、本実施例では、酸化皮膜を十分に除去することができ、試験片(母材)の表面の変色もなく、算術平均粗さRaも0.15μm以下と良好であった。 As shown in Table 2, in this example, the oxide film can be removed sufficiently, the surface of the test piece (base material) is not discolored, and the arithmetic average roughness Ra is also good at 0.15 μm or less. It was.
[実施例9]
Cu−3%Ti合金の代わりにCu−4%Ti合金(4質量%のTiを含み、残部がCuからなる銅合金)を使用し、化学研磨に使用する薬液として、7質量%のEDTA・4Naと2.4質量%のアンモニアと8質量%の過酸化水素と水の混合水溶液を使用した以外は、実施例7と同様の方法により化学研磨を行い、実施例1と同様の評価を行った。その結果を表2に示す。
[Example 9]
Instead of Cu-3% Ti alloy, Cu-4% Ti alloy (copper alloy containing 4% by mass of Ti and the balance being Cu) is used, and 7% by mass of EDTA · Chemical polishing was performed in the same manner as in Example 7 except that a mixed aqueous solution of 4Na, 2.4% by mass of ammonia, 8% by mass of hydrogen peroxide and water was used, and the same evaluation as in Example 1 was performed. It was. The results are shown in Table 2.
表2に示すように、本実施例では、酸化皮膜を十分に除去することができ、試験片(母材)の表面の変色もなく、算術平均粗さRaも0.15μm以下と良好であった。 As shown in Table 2, in this example, the oxide film can be removed sufficiently, the surface of the test piece (base material) is not discolored, and the arithmetic average roughness Ra is also good at 0.15 μm or less. It was.
[比較例1〜4]
化学研磨に使用する薬液として、弗化アンモニウムと硫酸と水の混酸を使用し、薬液の温度を55℃とした以外は、実施例1と同様の方法により化学研磨を行い、実施例1と同様の評価を行った。なお、薬液中の弗化アンモニウムと硫酸の濃度は、比較例1では5質量%と5質量%、比較例2では10質量%と5質量%、比較例3では10質量%と10質量%、比較例4では13質量%と13質量%とした。これらの結果を表3に示す。
[Comparative Examples 1-4]
Chemical polishing was performed in the same manner as in Example 1 except that a mixed acid of ammonium fluoride, sulfuric acid and water was used as the chemical solution for chemical polishing, and the temperature of the chemical solution was set to 55 ° C. Was evaluated. The concentrations of ammonium fluoride and sulfuric acid in the chemical solution were 5% by mass and 5% by mass in Comparative Example 1, 10% by mass and 5% by mass in Comparative Example 2, 10% by mass and 10% by mass in Comparative Example 3, In the comparative example 4, it was 13 mass% and 13 mass%. These results are shown in Table 3.
表3に示すように、比較例1および2では、酸化皮膜を十分に除去することができず、試験片(母材)の表面が変色していた。また、比較例3および4では、酸化皮膜を十分に除去することができたが、試験片(母材)の表面が変色していた。 As shown in Table 3, in Comparative Examples 1 and 2, the oxide film could not be sufficiently removed, and the surface of the test piece (base material) was discolored. In Comparative Examples 3 and 4, the oxide film could be removed sufficiently, but the surface of the test piece (base material) was discolored.
[比較例5]
化学研磨に使用する薬液として、10質量%の硫酸と5質量%の過酸化水素と水の混酸を使用し、薬液の温度を55℃とした以外は、実施例1と同様の方法により化学研磨を行い、実施例1と同様の評価を行った。その結果を表3に示す。
[Comparative Example 5]
The chemical polishing is carried out by the same method as in Example 1 except that a chemical acid used for chemical polishing is a mixed acid of 10% by mass sulfuric acid, 5% by mass hydrogen peroxide and water, and the temperature of the chemical is 55 ° C. The same evaluation as in Example 1 was performed. The results are shown in Table 3.
表3に示すように、本比較例では、酸化皮膜を十分に除去することができず、算術平均粗さRaが0.60μmと粗く、減肉厚も非常に大きかった。
As shown in Table 3, in this comparative example, the oxide film could not be removed sufficiently, the arithmetic average roughness Ra was as coarse as 0.60 μm, and the thickness reduction was very large.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009060988A JP5396113B2 (en) | 2009-03-13 | 2009-03-13 | Method for removing oxidized scale of copper alloy material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009060988A JP5396113B2 (en) | 2009-03-13 | 2009-03-13 | Method for removing oxidized scale of copper alloy material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010215934A JP2010215934A (en) | 2010-09-30 |
JP5396113B2 true JP5396113B2 (en) | 2014-01-22 |
Family
ID=42975071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009060988A Active JP5396113B2 (en) | 2009-03-13 | 2009-03-13 | Method for removing oxidized scale of copper alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5396113B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6602023B2 (en) * | 2014-03-24 | 2019-11-06 | 国立大学法人東北大学 | Titanium copper alloy material with surface coating and method for producing the same |
CN115216779A (en) * | 2022-07-06 | 2022-10-21 | 陕西斯瑞新材料股份有限公司 | Surface treatment method of oxygen-free copper TU1 or CuCr2 cup-shaped contact material |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1157038A (en) * | 1967-09-19 | 1969-07-02 | Lancy Lab | Pickling Solutions for Removing Copper Oxides from Copper Containing Workpieces |
JPS5216049B2 (en) * | 1972-03-08 | 1977-05-06 | ||
SE400575B (en) * | 1974-12-13 | 1978-04-03 | Nordnero Ab | BATH FOR CELLING OF COPPER AND ITS ALLOYS |
-
2009
- 2009-03-13 JP JP2009060988A patent/JP5396113B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010215934A (en) | 2010-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8535552B2 (en) | Method of evaluating center segregation of continuous cast slab | |
TWI718527B (en) | NEAR NEUTRAL pH PICKLE ON MULTI-METALS AND METHOD FOR PICKLING A SURFACE TO REMOVE METALLIC OXIDES THEREON | |
JP2008174839A (en) | Method of surface treating metallic article, and solution system | |
Tehrani et al. | A new etchant for the chemical machining of St304 | |
JP5396113B2 (en) | Method for removing oxidized scale of copper alloy material | |
JP2008095192A (en) | Electropolishing process for niobium and tantalum | |
US20090145856A1 (en) | Acid recycle process with iron removal | |
JP2010285637A (en) | Method for recycling nickel-plated copper or copper alloy scrap | |
US6793738B2 (en) | Method for processing acid treatment solution, solution processed thereby, and method for treating articles therewith | |
EP1460148A1 (en) | METHOD OF SURFACE−FINISHING STAINLESS STEEL AFTER DESCALING | |
JP5481179B2 (en) | Method for stripping Sn plating layer of Cu-based material | |
JP5509669B2 (en) | Etching solution for structure observation of copper or copper alloy, etching method and structure observation method | |
JP6731236B2 (en) | Descaling promoting additive for alloy steel, acid cleaning liquid composition containing the same, and acid cleaning method | |
JP2004256896A (en) | Treatment method for steel surface, and production method for steel | |
JP5634673B2 (en) | Method for detecting solidification structure of steel | |
JPH0568537B2 (en) | ||
JP4826372B2 (en) | Stainless steel sheet having uniform film and method for producing the same | |
JP2008031038A (en) | Method for cleaning surface of quartz glass | |
KR102264345B1 (en) | Composition for enhancing surface property of aluminium sheet and method of enhancing using the same | |
JP4473737B2 (en) | Pickling method and pickling solution for titanium or titanium alloy plate | |
CN108136546A (en) | Aluminium composite material and its production method in the thermal bonding method of fluxless | |
JP5864243B2 (en) | Stainless steel surface treatment method | |
JP5378818B2 (en) | Oxidation inhibitor | |
JP4322726B2 (en) | Manufacturing method of stainless steel sheet with excellent surface gloss | |
CN110541169B (en) | Deplating liquid and deplating method for removing coating on surface of workpiece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130709 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131008 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131021 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5396113 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |