JP5012384B2 - Surface treatment method - Google Patents

Surface treatment method Download PDF

Info

Publication number
JP5012384B2
JP5012384B2 JP2007260852A JP2007260852A JP5012384B2 JP 5012384 B2 JP5012384 B2 JP 5012384B2 JP 2007260852 A JP2007260852 A JP 2007260852A JP 2007260852 A JP2007260852 A JP 2007260852A JP 5012384 B2 JP5012384 B2 JP 5012384B2
Authority
JP
Japan
Prior art keywords
coating
carbon
film
treatment
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007260852A
Other languages
Japanese (ja)
Other versions
JP2009091602A (en
Inventor
善和 中野
健 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007260852A priority Critical patent/JP5012384B2/en
Publication of JP2009091602A publication Critical patent/JP2009091602A/en
Application granted granted Critical
Publication of JP5012384B2 publication Critical patent/JP5012384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導電性を有する電極と被処理材との間にパルス状の放電を発生させ、このパルス状の放電エネルギーによって被処理材の表面に、電極材料の被膜または放電エネルギーにより電極材料が反応して得られた物質を含有する被膜を形成する表面処理方法に関するものである。   In the present invention, a pulsed discharge is generated between a conductive electrode and a material to be processed, and the electrode material is applied to the surface of the material to be processed by the pulsed discharge energy. The present invention relates to a surface treatment method for forming a film containing a substance obtained by reaction.

絶縁加工油中での放電によって、被処理材の表面に放電電極の材料に基づく被膜を形成する表面処理方法がある。この表面処理方法において、放電電極として金属の水素化合物粉末を含有する粉末を成形したものを用い、炭素の存在する液中で被処理材との間に電圧を印加して、上記被処理材表面上に上記金属の化合物を含む表面層を形成する。これにより、密着力が強固で耐摩耗性が良く、仕上げ面粗さも美麗である表面層を得ることができる(例えば、特許文献1参照)。   There is a surface treatment method in which a coating based on the material of the discharge electrode is formed on the surface of a material to be treated by electric discharge in insulating processing oil. In this surface treatment method, the surface of the material to be treated is obtained by applying a voltage between the material to be treated in a liquid containing carbon by using a powder containing metal hydride powder as a discharge electrode. A surface layer containing the metal compound is formed thereon. As a result, a surface layer having strong adhesion, good wear resistance, and beautiful finished surface roughness can be obtained (see, for example, Patent Document 1).

特開平9−192937号公報(第1頁)JP-A-9-192937 (first page)

上記表面処理方法により、例えばアルミニウムまたはアルミニウム合金等の金属材料からなる被処理材表面を、アルミニウムとは異なる金属でコーティングして、耐食性や耐磨耗性を与えることができる。しかしながら、使用環境の苛酷化および多様化に伴い、より厳しい使用条件に耐えるコーティング材料が要求されている。そこで、放電電極の材料として、析出硬化処理により高い強度が発現できる析出硬化型の金属材料を用いて上記従来の方法で表面処理を行ったところ、被処理材に形成された被膜が脆化されるという課題が生じた。   By the surface treatment method described above, for example, the surface of a material to be treated made of a metal material such as aluminum or an aluminum alloy can be coated with a metal different from aluminum to give corrosion resistance and wear resistance. However, with the harsh and diversified usage environment, coating materials that can withstand more severe usage conditions are required. Therefore, when the surface treatment is performed by the above-described conventional method using a precipitation hardening type metal material capable of expressing high strength by precipitation hardening as the material of the discharge electrode, the coating formed on the material to be treated becomes brittle. The problem of becoming.

本発明は、かかる課題を解決するためになされたものであり、高温での強度が高い被膜を形成することができる表面処理方法を提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a surface treatment method capable of forming a film having high strength at high temperatures.

本発明に係る表面処理方法は、加工油中で、析出硬化型の合金材料を用いて形成された放電電極と被処理材との間に電圧を印加して放電を発生させ、上記被処理材の表面に第1の被膜を形成する放電表面処理工程と、上記第1の被膜の表面の炭素を除去する炭素除去工程と、上記炭素を除去した第1の被膜を焼きなまし処理した後析出硬化処理して第2の被膜を得る熱処理工程とを備えた方法である。   The surface treatment method according to the present invention generates a discharge by applying a voltage between a discharge electrode formed using a precipitation hardening type alloy material in a processing oil and the material to be treated. A discharge surface treatment process for forming a first film on the surface of the first film, a carbon removal process for removing carbon on the surface of the first film, and a precipitation hardening process after annealing the first film from which the carbon has been removed. And a heat treatment step for obtaining a second film.

放電電極の材料として、析出硬化型の合金材料を用いると共に、加工油中での放電表面処理により被処理材に形成した第1の被膜の表面の炭素を除去した上で、第1の被膜を熱処理する。そのため、熱処理により第1の被膜の表面に存在する炭素が、CrやFeとの炭化物を析出させて第1の被膜の強度を低下させ脆化させることが防止され、析出硬化処理により高い強度が発現された第2の被膜を得ることができる。   A precipitation hardening type alloy material is used as the material of the discharge electrode, and after removing carbon on the surface of the first film formed on the material to be treated by the discharge surface treatment in the processing oil, the first film is formed. Heat treatment. Therefore, it is possible to prevent carbon existing on the surface of the first film by heat treatment from precipitating carbides with Cr and Fe, thereby reducing the strength of the first film and causing embrittlement. An expressed second coating can be obtained.

実施の形態1.
本発明の実施の形態1の表面処理方法は、加工油中で、析出硬化型の合金材料を用いて形成された放電電極と被処理材との間に電圧を印加して、放電電極と被処理材との間に放電を発生させて被処理材の表面に第1の被膜を形成し、上記第1の被膜の表面の炭素を除去した上で、焼きなまし処理した後に、析出硬化処理する熱処理を施して第2の被膜を得る方法である。
Embodiment 1 FIG.
In the surface treatment method according to the first embodiment of the present invention, a voltage is applied between a discharge electrode formed using a precipitation hardening type alloy material and a material to be treated in processing oil, and the discharge electrode and the material to be treated are thus treated. A heat treatment in which a discharge is generated between the material and the first material to form a first film on the surface of the material to be treated, carbon on the surface of the first film is removed, and annealing treatment is performed, followed by precipitation hardening. To obtain a second coating.

本実施の形態に係る放電電極に用いる析出硬化型合金とは、固溶化処理とその後の時効処理(即ち析出硬化処理)によって材料が硬化し、高い強度が発現するもので、過飽和に固溶され、その後の時効処理によって微粒析出して硬化するという、析出現象を利用した熱処理方法を施し得る合金で、例えば表1に示す組成を有するNi基合金がある。   The precipitation hardening type alloy used for the discharge electrode according to the present embodiment is a material in which the material is hardened by solid solution treatment and subsequent aging treatment (that is, precipitation hardening treatment), and exhibits high strength. An alloy that can be subjected to a heat treatment method utilizing the precipitation phenomenon in which fine particles are precipitated and hardened by subsequent aging treatment, for example, there is a Ni-based alloy having the composition shown in Table 1.

Figure 0005012384
Figure 0005012384

Ni基合金は、表1に示すようにNiを主成分とし、CrおよびFeを含有する。なお、析出硬化型の合金としては、例えば、ステンレス鋼、アルミニウム合金または銅合金がある。   As shown in Table 1, the Ni-based alloy contains Ni as a main component and contains Cr and Fe. Examples of the precipitation hardening type alloy include stainless steel, aluminum alloy, and copper alloy.

図1は、本実施の形態において、Ni基合金を放電電極として用い、放電表面処理によって形成された第1の被膜である、Ni基合金を含有する被膜の断面を示す光学顕微鏡写真、図2は、図1における第1の被膜(Ni基合金を含有する被膜)の表面から第1の被膜内部へ至る距離による炭素量を、第1の被膜1の表面の炭素量を100として示した炭素の分布図である。
なお、以下、第1の被膜である、Ni基合金を含有する被膜を単に第1の被膜と記載する。
図1および図2に示すように、本実施の形態に係る放電電極を用いて、放電表面処理を絶縁性の加工油中で行うと、放電の発生により加工油は分解して炭素が生成し、この炭素が塊状粒子により形成された第1の被膜1に浸入する。
図2に示すように、本実施の形態における放電表面処理により得られた第1の被膜1では、炭素は表面に多く存在し、この表面に存在する炭素は浸炭と呼ばれ、塊状粒子表面に加工油由来の炭素が付着していることを示唆している。
FIG. 1 is an optical micrograph showing a cross section of a coating containing a Ni-based alloy, which is a first coating formed by discharge surface treatment using a Ni-based alloy as a discharge electrode in the present embodiment. Is the carbon amount by the distance from the surface of the first coating (the Ni-based alloy-containing coating) in FIG. 1 to the inside of the first coating, and the carbon amount on the surface of the first coating 1 is 100. FIG.
Hereinafter, the first film, which is a film containing a Ni-based alloy, is simply referred to as a first film.
As shown in FIG. 1 and FIG. 2, when the discharge surface treatment is performed in an insulating processing oil using the discharge electrode according to the present embodiment, the processing oil is decomposed due to the occurrence of electric discharge to generate carbon. The carbon penetrates into the first coating 1 formed by the massive particles.
As shown in FIG. 2, in the first coating 1 obtained by the discharge surface treatment in the present embodiment, a large amount of carbon is present on the surface, and the carbon present on this surface is called carburizing and is formed on the surface of the massive particles. This suggests that carbon derived from processing oil is attached.

表2は、本実施の形態に係る、放電表面処理により得られた第1の被膜1の表面の炭素量を電子プローブマイクロアナライザにより定量分析した結果であり、表2に示すように、第1の被膜1の表面の炭素量は、放電電極のNi基合金中の炭素量(表1に示す。)より300倍程度多いことがわかる。   Table 2 shows the result of quantitative analysis of the amount of carbon on the surface of the first coating 1 obtained by the discharge surface treatment according to the present embodiment, using an electron probe microanalyzer. It can be seen that the amount of carbon on the surface of the coating 1 is about 300 times greater than the amount of carbon in the Ni-based alloy of the discharge electrode (shown in Table 1).

Figure 0005012384
Figure 0005012384

上記のように、放電電極として上記析硬化型合金のNi基合金を用いた場合、加工油中での放電表面処理によって、加工油の分解生成物である炭素が第1の被膜1に取り込まれ易く、特に表面に多く存在する。また、放電表面処理においてNi基合金に含有されるCrは表面に偏析し易く、その後に施される析出硬化処理における、高温中での時効処理において炭素と炭化物をつくり易くなる。このようにして、表面に存在する炭素はCrやFeとの炭化物を析出させ、その周辺のCrやFeの濃度が減じている部分を酸化され易くする。つまり、上記浸炭により網目状の炭化物にそって酸化や腐食が内部に進行し、第2の被膜の合金の強度を低下させ脆化を引き起こす。
以上のことから、第1の被膜1の表面の炭素を除去することが、その後に施される析出硬化処理により、高い強度を発現させるためには必須となることを見出した。
As described above, when the Ni-based alloy of the above-described precipitation hardening type alloy is used as the discharge electrode, carbon which is a decomposition product of the processing oil is taken into the first coating 1 by the discharge surface treatment in the processing oil. It is easy and exists especially on the surface. In addition, Cr contained in the Ni-based alloy is easily segregated on the surface in the discharge surface treatment, and carbon and carbide are easily formed in the aging treatment at a high temperature in the subsequent precipitation hardening treatment. In this way, the carbon existing on the surface precipitates carbides with Cr and Fe, and makes the portion where the concentration of Cr and Fe in the periphery is reduced easily oxidized. In other words, the carburization causes oxidation and corrosion to progress inside along the mesh-like carbide, thereby reducing the strength of the alloy of the second coating and causing embrittlement.
From the above, it has been found that the removal of carbon on the surface of the first coating 1 is indispensable in order to develop a high strength by the subsequent precipitation hardening treatment.

そこで、本実施の形態においては、析出硬化型の合金材料を放電電極に用いているので、高い強度を発現させるための熱処理を施す前に、放電表面処理により形成された第1の被膜1の表面の炭素を除去することにより、第1の被膜1の表面に偏析したCrと炭素とが反応し、浸炭により脆化することを防止することができる。
本実施の形態に係る被膜表面の炭素を除去する方法としては、イオンエッチング法、光励起を利用して、ターゲット物質のイオン化や化学結合の切断させる方法、または高い熱エネルギーを蓄積させて融解や蒸発などを起こすレーザー・アブレーション法がある。
Therefore, in the present embodiment, since the precipitation hardening type alloy material is used for the discharge electrode, the first coating 1 formed by the discharge surface treatment is subjected to the heat treatment for expressing the high strength. By removing the carbon on the surface, it is possible to prevent Cr and carbon segregated on the surface of the first coating 1 from reacting and embrittlement due to carburization.
As a method for removing carbon on the surface of the film according to the present embodiment, ion etching, photoexcitation is used to ionize a target material or chemical bonds are cut, or high thermal energy is accumulated to melt or evaporate. There is a laser ablation method that causes.

本実施の形態において、第1の被膜1の表面の炭素を除去した後に焼きなまし処理を施す。本実施の形態における放電表面処理は急熱急冷の局部的溶解を伴うので、ある程度の変形や収縮が起こり、内部応力が被処理材と被膜の界面に残留し易い。そこで、本実施の形態に係る焼きなまし処理は、このような残留応力を除去して高温での強度を高めるために施される。また、この焼きなまし処理は、第1の被膜1の内部を形成する塊間に生じる残留応力を緩和し、第1の被膜1の内部の空孔がなくなる方向に作用し、第1の被膜1の緻密性を向上させる役割も担っている。
また、本実施の形態においては第1の被膜1の表面の炭素が除去されているので、焼きなまし処理の後に施される析出硬化処理により、脆化することが防止され高温での強度が高い表面処理膜を得ることができる。
In the present embodiment, annealing treatment is performed after removing carbon on the surface of the first coating 1. Since the discharge surface treatment in this embodiment involves local dissolution of rapid heating and quenching, some deformation or shrinkage occurs, and internal stress tends to remain at the interface between the material to be treated and the coating. Therefore, the annealing treatment according to the present embodiment is performed to remove such residual stress and increase the strength at high temperature. In addition, this annealing treatment relaxes the residual stress generated between the lumps forming the inside of the first coating 1, acts in the direction in which the vacancies in the first coating 1 disappear, and the first coating 1 It also plays a role in improving precision.
In the present embodiment, since carbon on the surface of the first coating 1 is removed, the precipitation hardening treatment performed after the annealing treatment prevents the embrittlement and the surface has high strength at high temperatures. A treated film can be obtained.

なお、図1に示すように、本実施の形態における第1の被膜1の内部では、隣接する塊状粒子同士が閉気孔を作り、直接外気に触れることがないため、浸炭により第1の被膜1内部に炭素が存在していても、表面に偏析したCrとは反応しないので酸化等の腐食が進行しないため大きな問題とならない。   In addition, as shown in FIG. 1, in the inside of the 1st film | membrane 1 in this Embodiment, since adjacent lump particles make a closed pore and do not touch external air directly, the 1st film | membrane 1 is carburized by carburization. Even if carbon is present inside, since it does not react with Cr segregated on the surface, corrosion such as oxidation does not proceed, so that no major problem is caused.

実施の形態2.
本発明の実施の形態2において、実施の形態1の表面処理方法における、炭素除去工程とその後に施される熱処理工程を具体的に示す。
まず、実施の形態1と同様にして、放電表面処理により被処理材に第1の被膜1を形成する。次に第1の被膜1の表面をイオンエッチングすることにより第1の被膜1の表面の炭素を除去する。
図3は、本実施の形態に係るイオンエッチングの処理時間と、放電表面処理により得られた第1の被膜1の表面の炭素量との関係を示す特性図で、イオンエッチングをAr雰囲気中で、投入電力を500Wとして施した場合である。なお、イオンエッチング処理時間の0分は放電表面処理によって形成したままの第1の被膜1である。
図3に示すように、4分間以上イオンエッチング処理すると、第1の被膜1の表面の炭素量は、そもそものNi基合金中の炭素量(表1に示す。)とほとんど同程度の炭素量に低減することがわかる。
Embodiment 2. FIG.
In Embodiment 2 of the present invention, a carbon removal step and a heat treatment step performed thereafter in the surface treatment method of Embodiment 1 will be specifically shown.
First, in the same manner as in the first embodiment, the first film 1 is formed on the material to be processed by the discharge surface treatment. Next, the surface of the first coating 1 is ion-etched to remove carbon on the surface of the first coating 1.
FIG. 3 is a characteristic diagram showing the relationship between the ion etching processing time according to the present embodiment and the carbon content of the surface of the first coating 1 obtained by the discharge surface treatment. The ion etching is performed in an Ar atmosphere. In this case, the applied power is 500 W. In addition, 0 minutes of ion etching treatment time is the 1st film | membrane 1 as formed by discharge surface treatment.
As shown in FIG. 3, when the ion etching treatment is performed for 4 minutes or more, the carbon content on the surface of the first coating 1 is almost the same as the carbon content in the Ni-based alloy (shown in Table 1). It can be seen that

図4は、本実施の形態に係るイオンエッチングを、投入電力を500、1000または1500Wとして施した場合の、イオンエッチングの処理時間とNi基合金の第1の被膜1の表面の炭素量との関係を示す特性図で、図4中、a、b、cは投入電力を500、1000、1500Wとして施した場合の特性である。
図4に示すように、投入電力を大きくした方が処理時間を短縮できることがわかる。
FIG. 4 shows the relationship between the ion etching processing time and the amount of carbon on the surface of the first coating 1 of the Ni-based alloy when the ion etching according to the present embodiment is performed with an input power of 500, 1000, or 1500 W. In the characteristic diagram showing the relationship, a, b, and c in FIG. 4 are characteristics when the input power is 500, 1000, and 1500 W.
As shown in FIG. 4, it can be seen that the processing time can be shortened by increasing the input power.

図5は、本実施の形態に係るイオンエッチングを、エッチング雰囲気をAr、KrまたはXeとして施した時の、イオンエッチングの処理時間と第1の被膜1の表面の炭素量との関係を示す特性図で、イオンエッチング時の投入電力は1500Wとした場合である。図4中、x、y、zはエッチング雰囲気がAr、Kr、Xeの場合の特性である。
図5に示すように、KrまたはXe雰囲気の方が、Arを用いた場合よりも早く被膜に含まれる炭素量を低減できる。
FIG. 5 is a characteristic showing the relationship between the ion etching treatment time and the carbon content of the surface of the first coating 1 when the ion etching according to the present embodiment is performed with the etching atmosphere being Ar, Kr or Xe. In the figure, the input power during ion etching is 1500 W. In FIG. 4, x, y, and z are characteristics when the etching atmosphere is Ar, Kr, and Xe.
As shown in FIG. 5, the Kr or Xe atmosphere can reduce the amount of carbon contained in the coating earlier than when Ar is used.

次に、上記のようにして表面の炭素を除去した第1の被膜1を熱処理し、第2の被膜を得る工程について説明する。
図6は、本実施の形態に係る熱処理の条件を示した図である。放電表面処理は急熱急冷の局部的溶解を伴うので、ある程度の変形や収縮が起こり、内部応力が被処理材と第1の被膜1の界面に残留し易い。熱処理の第1段階として、この残留応力を除去するための焼きなまし処理pを施す。焼きなまし処理pの温度は、図7に示す0.2%耐力測定の結果を踏まえ、700℃で、保持時間を2時間とする。
焼きなまし処理pの後に施される析出硬化処理の固溶化処理qは、980℃での保持時間を1時間とする。その後の時効処理として、第1段時効処理r1は720℃での保持時間を8時間、第2段時効処理r2は620℃での保持時間を8時間とする。なお、固溶化処理q時の980℃から第1弾時効処理r1時の720℃までの冷却速度と第1段時効処理r1時の720℃から第2段時効処理r2時の620℃までの冷却速度はともに55℃/時間とした。
Next, a process of obtaining a second film by heat-treating the first film 1 from which carbon on the surface has been removed as described above will be described.
FIG. 6 is a diagram showing conditions for the heat treatment according to the present embodiment. Since the discharge surface treatment involves rapid melting and rapid local melting, a certain amount of deformation or shrinkage occurs, and internal stress tends to remain at the interface between the material to be treated and the first coating 1. As a first stage of the heat treatment, an annealing process p for removing the residual stress is performed. The temperature of the annealing treatment p is 700 ° C. and the holding time is 2 hours based on the result of 0.2% proof stress measurement shown in FIG.
In the solid solution treatment q of the precipitation hardening treatment performed after the annealing treatment p, the holding time at 980 ° C. is 1 hour. As the subsequent aging treatment, the first stage aging treatment r1 has a holding time at 720 ° C. of 8 hours, and the second stage aging treatment r2 has a holding time at 620 ° C. of 8 hours. The cooling rate from 980 ° C. during the solution treatment q to 720 ° C. during the first bullet aging treatment r1 and the cooling rate from 720 ° C. during the first stage aging treatment r1 to 620 ° C. during the second stage aging treatment r2. Both speeds were 55 ° C./hour.

図8は、本実施の形態による第2の被膜の、600℃における引張強度および第1の被膜1の表面の炭素量と、イオンエッチング処理の処理時間との関係を示す特性図である。なお、イオンエッチング処理時間の0分は放電表面処理によって形成したままのNi基合金の被膜である。
図8に示すように、Ar雰囲気中のイオンエッチング処理時間が4分間以上のものは、第1の被膜1の表面の炭素量が少ないため、酸化による脆化を引き起こし難く、本実施の形態による第2の被膜の引張強度が増加し高温での強度が高い被膜となっている。
なお、上記傾向は、焼きなまし処理pの温度が400〜800℃の間でみられ、焼きなまし処理pの保持時間は長い方がより除去できるため望ましい。
FIG. 8 is a characteristic diagram showing the relationship between the tensile strength at 600 ° C. of the second coating according to the present embodiment, the carbon content of the surface of the first coating 1, and the processing time of the ion etching process. In addition, 0 minutes of the ion etching treatment time is a Ni-based alloy film as formed by the discharge surface treatment.
As shown in FIG. 8, when the ion etching time in the Ar atmosphere is 4 minutes or longer, the amount of carbon on the surface of the first coating 1 is small, so that it is difficult to cause embrittlement due to oxidation. The tensile strength of the second coating is increased, resulting in a coating with high strength at high temperatures.
The above tendency is desirable because the temperature of the annealing treatment p is observed between 400 to 800 ° C., and the longer the holding time of the annealing treatment p can be removed.

図9は、本実施の形態において、イオンエッチング処理を10分間施して第1の被膜1の表面の炭素を除去する工程を施した後、700℃での焼きなまし処理後に析出硬化処理して得られた第2の被膜と、焼きなまし処理を施さないで析出硬化処理して得られた被膜とに対して、600℃における引張強度を比較して示す図であり、横軸における、「有」は焼きなまし処理ありの被膜、「無」は焼きなまし処理無しの被膜を示す。
図9より、残留応力除去を目的とした焼きなまし処理を省略して熱処理を施した場合には、被膜の高温での強度が著しく低下することがわかった。
FIG. 9 is obtained in the present embodiment by performing an ion etching process for 10 minutes to remove the carbon on the surface of the first coating 1, and then performing a precipitation hardening process after annealing at 700 ° C. It is a figure which compares and shows the tensile strength in 600 degreeC with respect to the 2nd film and the film obtained by carrying out the precipitation hardening process, without performing an annealing process, and "on" in a horizontal axis is annealing. A film with treatment, "None" indicates a film without annealing treatment.
From FIG. 9, it was found that when the annealing process for removing the residual stress was omitted and the heat treatment was performed, the strength of the coating at a high temperature was remarkably lowered.

実施の形態3.
本発明の実施の形態3の表面処理方法は、実施の形態2において、放電電極として密度が2.7〜5.0g/のものを用い、エッチング時間を10分として実施の形態2と同様にして表面処理を施して第2の被膜を得る方法である。
図10は、本実施の形態に係る放電電極の密度と、本実施の形態による第2の被膜の600℃での被膜の引張強度および被膜中の炭素量との関係を示す特性図である。
つまり、実施の形態2と同様にして、放電表面処理により第1の被膜を作製し、Ar雰囲気で、投入電力を500Wとして10分間イオンエッチング処理して、第1の被膜1の表面に存在する炭素を除去した後、図6に示す熱処理を施して第2の被膜を得、600℃での被膜の引張強度と被膜内の炭素量を測定した。
図10に示すように、放電表面処理用電極の密度が3.0〜5.0g/cmの範囲であれば、第2の被膜内部の炭素量が少なく、靭性に優れて引張強度が高く、又放電表面処理を安定して行うことができる。
なお、放電電極として他の析出硬化型の合金を用いた場合も同様である。
Embodiment 3 FIG.
The surface treatment method of the third embodiment of the present invention is the same as that of the second embodiment, except that the discharge electrode having the density of 2.7 to 5.0 g / in the second embodiment and the etching time is 10 minutes. The surface treatment is performed to obtain the second coating.
FIG. 10 is a characteristic diagram showing the relationship between the density of the discharge electrode according to the present embodiment, the tensile strength of the second coating film according to the present embodiment at 600 ° C., and the amount of carbon in the coating film.
That is, as in the second embodiment, a first film is produced by a discharge surface treatment, and is ion-etched for 10 minutes in an Ar atmosphere with an input power of 500 W, and is present on the surface of the first film 1. After removing the carbon, the heat treatment shown in FIG. 6 was performed to obtain a second coating, and the tensile strength of the coating at 600 ° C. and the amount of carbon in the coating were measured.
As shown in FIG. 10, when the density of the discharge surface treatment electrode is in the range of 3.0 to 5.0 g / cm 3 , the carbon content in the second coating is small, the toughness is excellent, and the tensile strength is high. Moreover, the discharge surface treatment can be performed stably.
The same applies when another precipitation hardening type alloy is used as the discharge electrode.

本発明の実施の形態1に係る、放電表面処理によって形成された第1の被膜であるNi基合金を含有する被膜の断面を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the cross section of the film containing the Ni-based alloy which is the 1st film formed by the discharge surface treatment based on Embodiment 1 of this invention. 図1におけるNi基合金を含有する被膜(第1の被膜)の表面から被膜内部へ至る炭素の分布図である。FIG. 2 is a distribution diagram of carbon extending from the surface of the coating (first coating) containing the Ni-based alloy in FIG. 1 to the inside of the coating. 本発明の第2の実施の形態に係るイオンエッチングの処理時間と放電表面処理により得られたNi基合金の第1の被膜の表面の炭素量との関係を示す特性図である。It is a characteristic view which shows the relationship between the processing time of the ion etching which concerns on the 2nd Embodiment of this invention, and the carbon content of the surface of the 1st film of the Ni-based alloy obtained by the discharge surface treatment. 本発明の第2の実施の形態に係るイオンエッチングを、投入電力を500、1000または1500Wとして施した場合の、イオンエッチングの処理時間とNi基合金の第1の被膜の表面の炭素量との関係を示す特性図である。When the ion etching according to the second embodiment of the present invention is performed with an input power of 500, 1000, or 1500 W, the ion etching processing time and the carbon amount on the surface of the first film of the Ni-based alloy It is a characteristic view which shows a relationship. 本発明の第2の実施の形態に係るイオンエッチングを、エッチング雰囲気をAr、KrまたはXeとして施した時の、イオンエッチングの処理時間とNi基合金の第1の被膜の表面の炭素量との関係を示す特性図である。When the ion etching according to the second embodiment of the present invention is performed with the etching atmosphere being Ar, Kr, or Xe, the ion etching treatment time and the amount of carbon on the surface of the first film of the Ni-based alloy It is a characteristic view which shows a relationship. 本発明の第2の実施の形態に係る熱処理の条件を示した図である。It is the figure which showed the conditions of the heat processing which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る0.2%耐力測定の結果を示す図である。It is a figure which shows the result of 0.2% yield strength measurement which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態による第2の被膜の、600℃における引張強度および第1の被膜の表面の炭素量と、イオンエッチング処理の処理時間との関係を示す特性図である。It is a characteristic view which shows the relationship between the tensile strength in 600 degreeC of the 2nd film by the 2nd Embodiment of this invention, the carbon content of the surface of a 1st film, and the processing time of an ion etching process. 本発明の第2の実施の形態に係る第2の被膜と、焼きなまし処理を施さない他は本実施の形態と同様にして得られた被膜との、600℃における引張強度を比較して示す図である。The figure which compares and compares the 2nd film which concerns on the 2nd Embodiment of this invention, and the film obtained by carrying out similarly to this Embodiment except not performing an annealing process in 600 degreeC. It is. 本発明の第3の実施の形態に係る放電電極の密度と、第2の被膜の600℃での被膜の引張強度および被膜中の炭素量との関係を示す特性図である。It is a characteristic view which shows the relationship between the density of the discharge electrode which concerns on the 3rd Embodiment of this invention, the tensile strength of the film in 600 degreeC of a 2nd film, and the carbon content in a film.

符号の説明Explanation of symbols

1 第1の被膜、2 被処理材。   1 1st film, 2 material to be treated.

Claims (5)

加工油中で、析出硬化型の合金材料を用いて形成された放電電極と被処理材との間に電圧を印加して放電を発生させ、上記被処理材の表面に第1の被膜を形成する放電表面処理工程と、上記第1の被膜の表面の炭素を除去する炭素除去工程と、上記炭素を除去した第1の被膜を焼きなまし処理した後析出硬化処理して第2の被膜を得る熱処理工程とを備えた表面処理方法。   In processing oil, a voltage is applied between a discharge electrode formed using a precipitation hardening type alloy material and the material to be processed to generate a discharge, and a first film is formed on the surface of the material to be processed A discharge surface treatment step to perform, a carbon removal step to remove carbon on the surface of the first coating, and a heat treatment to obtain a second coating by performing precipitation hardening after annealing the first coating from which the carbon has been removed A surface treatment method comprising the steps. 析出硬化型の合金材料が、CrまたはFeを含有するNi基合金材料であることを特徴とする請求項1に記載の表面処理方法。   2. The surface treatment method according to claim 1, wherein the precipitation hardening type alloy material is a Ni-based alloy material containing Cr or Fe. 放電電極の密度が3.0〜5.0g/cmであることを特徴とする請求項1または請求項2に記載の特徴とする表面処理方法。 The surface treatment method according to claim 1 or 2, wherein the density of the discharge electrode is 3.0 to 5.0 g / cm 3 . 炭素除去工程をイオンエッチングにより施すことを特徴とする請求項1ないし請求項3のいずれか1項に記載の表面処理方法。   The surface treatment method according to claim 1, wherein the carbon removing step is performed by ion etching. 希ガスを用いてイオンエッチングを、4分間以上施すことを特徴とする請求項4に記載の表面処理方法。   The surface treatment method according to claim 4, wherein ion etching is performed using a rare gas for 4 minutes or more.
JP2007260852A 2007-10-04 2007-10-04 Surface treatment method Expired - Fee Related JP5012384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007260852A JP5012384B2 (en) 2007-10-04 2007-10-04 Surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007260852A JP5012384B2 (en) 2007-10-04 2007-10-04 Surface treatment method

Publications (2)

Publication Number Publication Date
JP2009091602A JP2009091602A (en) 2009-04-30
JP5012384B2 true JP5012384B2 (en) 2012-08-29

Family

ID=40663879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007260852A Expired - Fee Related JP5012384B2 (en) 2007-10-04 2007-10-04 Surface treatment method

Country Status (1)

Country Link
JP (1) JP5012384B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504680B2 (en) 2008-07-23 2014-05-28 大同特殊鋼株式会社 Free-cutting alloy tool steel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165505A (en) * 1985-01-14 1986-07-26 三菱重工業株式会社 Corrosionproof method of boiler
JPH0569130A (en) * 1991-02-26 1993-03-23 Ishikawajima Harima Heavy Ind Co Ltd Method for welding iron alloy clad
ES2075546T3 (en) * 1991-07-12 1995-10-01 Praxair Technology Inc ROTARY CLOSURE MEMBER COATED WITH CHROME CARBIDE AND A NICKEL BASE ALLOY HARDENABLE BY AGING.
JP4882162B2 (en) * 2000-06-12 2012-02-22 大同特殊鋼株式会社 Heat-resistant multilayer metal tube with excellent caulking resistance and its manufacturing method
DE60041364D1 (en) * 2000-11-21 2009-02-26 Sambix Corp WHISK-FREE GALVANIZED PRODUCT WITH A VARIETY OF WHISK-FREE GALVANIZED PRODUCT WITH A MULTILAYER ANTI-STRIP FILM
JP4332636B2 (en) * 2004-01-29 2009-09-16 三菱電機株式会社 Discharge surface treatment electrode manufacturing method and discharge surface treatment electrode
JP4449847B2 (en) * 2005-07-21 2010-04-14 三菱電機株式会社 Method of manufacturing discharge surface treatment electrode and apparatus for manufacturing the same

Also Published As

Publication number Publication date
JP2009091602A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5831670B1 (en) Titanium material or titanium alloy material having surface conductivity, manufacturing method thereof, and fuel cell separator and fuel cell using the same
Cui et al. Characterization of the laser gas nitrided surface of NiTi shape memory alloy
EP2829628A1 (en) Cast product having alumina barrier layer, and method for manufacturing same
JP5790906B1 (en) Titanium material or titanium alloy material having surface conductivity, fuel cell separator and fuel cell using the same
CN104220631A (en) Cr-containing austenitic alloy and method for producing same
WO2009054536A1 (en) METHOD OF TREATING SURFACE OF Ti-Al ALLOY AND TI-AL ALLOY OBTAINED BY THE SAME
JP2013023769A (en) Surface hardening method for metal or resin
JP5012384B2 (en) Surface treatment method
JP2005048284A (en) Stainless steel having carburization resistance and calking resistance, and stainless steel pipe thereof
JP5295813B2 (en) Method for nitriding iron group alloys
JP2007308788A (en) Nitriding/oxidizing treatment method for metal member and reoxidizing method therefor
WO2004015151A1 (en) Titanium alloys excellent in hydrogen absorption-resistance
JP2007077422A (en) Carburizing method and carburized component produced by the same
Guo et al. Microstructural evolution and phase-dependent corrosion of Si3N4/316L joints using AgCuTi/Ag composite fiols
Man et al. Phase transformation characteristics of laser gas nitrided NiTi shape memory alloy
JP6485859B2 (en) Titanium copper alloy material with surface coating and method for producing the same
JP5162148B2 (en) Composite and production method thereof
JP6505415B2 (en) Surface treatment method of Fe-Cr-Ni alloy material excellent in workability and corrosion resistance
JP2021080570A (en) Heat-resistant alloy member, method for manufacturing the same, alloy coating, method for manufacturing the same, high temperature device and method for manufacturing the same
JP2013199672A (en) Cast product having alumina barrier layer, and method for manufacturing the same
JP2010222649A (en) Production method of carbon steel material and carbon steel material
JP7197109B2 (en) Stainless steel product and method for manufacturing stainless steel product
JP5561638B2 (en) Metal curing method
JP7281929B2 (en) Stainless steel sheet and method for manufacturing stainless steel sheet
JP5119429B2 (en) Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees