JP6485859B2 - Titanium copper alloy material with surface coating and method for producing the same - Google Patents

Titanium copper alloy material with surface coating and method for producing the same Download PDF

Info

Publication number
JP6485859B2
JP6485859B2 JP2015038097A JP2015038097A JP6485859B2 JP 6485859 B2 JP6485859 B2 JP 6485859B2 JP 2015038097 A JP2015038097 A JP 2015038097A JP 2015038097 A JP2015038097 A JP 2015038097A JP 6485859 B2 JP6485859 B2 JP 6485859B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy material
furnace
titanium
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015038097A
Other languages
Japanese (ja)
Other versions
JP2016160452A (en
Inventor
聡 千星
聡 千星
維林 高
維林 高
久 須田
久 須田
佐々木 史明
史明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Dowa Holdings Co Ltd
Original Assignee
Tohoku University NUC
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Tohoku University NUC
Priority to JP2015038097A priority Critical patent/JP6485859B2/en
Publication of JP2016160452A publication Critical patent/JP2016160452A/en
Application granted granted Critical
Publication of JP6485859B2 publication Critical patent/JP6485859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、コネクター、リードフレーム、リレー、スイッチなどの電気・電子部品に適したCu−Ti系銅合金材であって、特に高強度と優れた耐応力緩和性を維持しながら、耐摩耗性と耐疲労特性を呈する銅合金材およびその製造法、さらにこの銅合金材を用いたコネクター端子およびその製造法に関する。   The present invention is a Cu-Ti-based copper alloy material suitable for electrical and electronic parts such as connectors, lead frames, relays, switches, etc., and particularly wear resistance while maintaining high strength and excellent stress relaxation resistance. The present invention also relates to a copper alloy material exhibiting fatigue resistance and a manufacturing method thereof, and further to a connector terminal using the copper alloy material and a manufacturing method thereof.

電気・電子部品を構成するコネクター、リードフレーム、リレー、スイッチなどの部品に使用される材料には、電気・電子機器の組立時や作動時に付与される応力に耐え得る高い「強度」が要求される。また、電気・電子部品間の接触信頼性を確保するために、接触圧力が時間とともに低下する現象(応力緩和)に対する耐久性、すなわち「耐応力緩和性」に優れることが要求される。さらに、ジャックなど繰返し挿抜が必要な電気・電子部品間の接触信頼性を確保するために、「耐摩耗性」と「耐疲労特性」に優れることも要求される。   Materials used for components such as connectors, lead frames, relays, and switches that make up electrical and electronic parts are required to have high strength to withstand the stress applied during assembly and operation of electrical and electronic equipment. The Further, in order to ensure contact reliability between electrical and electronic parts, it is required to have excellent durability against a phenomenon (stress relaxation) in which the contact pressure decreases with time, that is, “stress relaxation resistance”. Furthermore, in order to ensure contact reliability between electrical and electronic parts that require repeated insertion and removal, such as jacks, it is also required to have excellent “wear resistance” and “fatigue resistance”.

特に近年、電気・電子部品は高集積化、小型化および軽量化が進む傾向にあり、それに伴って素材である銅および銅合金には薄肉化の要求が高まっている。そのため、素材に要求される「強度」のレベルは一層厳しいものとなっている。   In particular, in recent years, electrical and electronic components have been increasingly integrated, miniaturized, and lightened, and accordingly, copper and copper alloys, which are materials, have been demanded to be thin. For this reason, the level of “strength” required for materials has become even stricter.

また、電気・電子部品が過酷な環境で使用される用途の増加に伴い「耐応力緩和性」に対する要求も厳しくなっている。例えば、自動車用コネクターのように高温に曝される環境下で使用される場合は「耐応力緩和性」が特に重要となる。   In addition, the demand for “stress relaxation resistance” has become stricter with the increase in applications in which electrical and electronic parts are used in harsh environments. For example, “stress relaxation resistance” is particularly important when used in an environment exposed to high temperatures such as an automobile connector.

さらに、「強度」の増大に伴い、ジャックなど繰返し挿抜や、リレーなど摺動が必要な電気・電子部品間の接触信頼性を確保するために、「耐摩耗性」と「耐疲労特性」に優れることも要求される。   Furthermore, as the “strength” increases, the “wear resistance” and “fatigue resistance” have been improved in order to ensure contact reliability between electrical and electronic parts that require repeated insertion and removal such as jacks and sliding such as relays. It is also required to be excellent.

Cu−Ti系銅合金は、銅合金中でCu−Be系合金に次ぐ高強度を有し、Cu−Be系合金を凌ぐ耐応力緩和性を有する。また、コストと環境負荷の視点からCu−Be系合金より有利である。このためCu−Ti系銅合金は、一部のCu−Be系合金の代替材としてコネクター材などに使用されている。しかし、Cu−Ti系合金は、Cu−Be系合金と比べて、「強度」、「耐摩耗性」、「耐疲労特性」がまだ及ばないことが一般に知られている。   The Cu—Ti based copper alloy has the second highest strength in the copper alloy after the Cu—Be based alloy, and has a stress relaxation resistance surpassing that of the Cu—Be based alloy. Moreover, it is more advantageous than Cu—Be alloy from the viewpoint of cost and environmental load. For this reason, Cu—Ti based copper alloys are used in connector materials and the like as substitutes for some Cu—Be based alloys. However, it is generally known that Cu—Ti alloys do not yet have “strength”, “wear resistance”, and “fatigue resistance” compared to Cu—Be alloys.

例えば、代表的なCu−Be系銅合金C17200(Cu−2.0wt%Be−0.2wt%Co)は、最高強度がビッカース硬さでHV350〜400に達するが、代表的なCu−Ti系銅合金C19900(Cu−3.2wt%Ti)は、最高強度がHV300〜350に留まる。したがって、Cu−Be系銅合金の代替材となるCu−Ti系合金の代替性を向上させるためには、Cu−Ti系合金の強度を向上させることが求められる。   For example, a typical Cu—Be based copper alloy C17200 (Cu—2.0 wt% Be—0.2 wt% Co) has a maximum strength of HV350 to 400 in terms of Vickers hardness. The maximum strength of the copper alloy C19900 (Cu-3.2 wt% Ti) remains at HV300 to 350. Therefore, in order to improve the substitutability of the Cu—Ti alloy that is a substitute for the Cu—Be copper alloy, it is required to improve the strength of the Cu—Ti alloy.

従来のCu−Ti系合金の強度向上手段として、特許文献1には、銅合金の表層部にTiの炭化物が形成され、内部にTiの析出相が分散している曲げ加工性に優れた銅合金の提案がある。その製造方法として、特許文献1には、時効処理前の銅合金を塩浴浸炭剤中で加熱処理して表層部に炭素を拡散させる旨の記載がある。また、特許文献1には、材料表層部に析出成分と反応する元素を拡散させ、上記材料表層部に拡散元素と析出成分との化合物を形成させることにより、材料の時効処理を行った際に表層部に析出相が生成しない、曲げ加工性に優れた銅合金およびその製造方法を開発したとの記載がある。   As a conventional means for improving the strength of a Cu-Ti alloy, Patent Document 1 discloses copper having excellent bending workability in which Ti carbide is formed on a surface layer portion of a copper alloy and a precipitated phase of Ti is dispersed inside. There is an alloy proposal. As a manufacturing method thereof, Patent Document 1 describes that a copper alloy before aging treatment is heat-treated in a salt bath carburizing agent to diffuse carbon to the surface layer portion. Patent Document 1 discloses that when an aging treatment of a material is performed by diffusing an element that reacts with a precipitation component in a material surface layer portion and forming a compound of the diffusion element and the precipitation component in the material surface layer portion. There is a description that a copper alloy excellent in bending workability and a manufacturing method thereof, in which a precipitated phase is not generated in the surface layer portion, have been developed.

その他に、特許文献2では、黄銅の表面を浸炭処理して表面改質し、耐摩耗性高強度銅合金部品を得ることが提案されている。また、特許文献3では、チタンなどの金属を溶体化処理した後にプラズマ浸炭を行う方法において、マイクロパルス電源を用いてプラズマ浸炭処理と時効処理を同時に進行させる方法が開示されている。   In addition, Patent Document 2 proposes to obtain a wear-resistant high-strength copper alloy part by carburizing the surface of brass to improve the surface. Patent Document 3 discloses a method in which plasma carburization and aging are simultaneously performed using a micro pulse power source in a method of performing plasma carburization after solution treatment of a metal such as titanium.

特開平8−53751号公報JP-A-8-53751 特開2001−11551号公報JP 2001-11551 A 特開2004−10979号公報JP 2004-10979 A

しかしながら、Cu−Ti系合金において、母相のTi含有量が過剰(5.0質量%以上)になると、溶解鋳造中のTi酸化や熱間と冷間加工過程中に割れが発生しやすく、生産性の低下を招きやすい。例えば、板厚0.3mm以下の板状製品を製造するのが困難となる。また、溶体化処理が可能な温度域が狭くなり良好な特性を引き出すことが困難になる。   However, in the Cu-Ti alloy, if the Ti content of the parent phase is excessive (5.0 mass% or more), cracks are likely to occur during Ti oxidation during hot casting and during hot and cold working processes, Productivity is likely to decrease. For example, it becomes difficult to manufacture a plate-like product having a plate thickness of 0.3 mm or less. Moreover, the temperature range in which the solution treatment can be performed becomes narrow, and it becomes difficult to extract good characteristics.

さらに、Ti含有量が過剰になると、結晶粒界に沿って不連続析出、いわゆる「粒界反応型析出」が発生しやすい。「粒界反応型析出」が生じた部分は、非常に弱い部分であるため、銅合金強度の低下を招く。また、疲労破壊や曲げ割れの起点となり、総合特性を著しく損壊する。   Further, when the Ti content is excessive, discontinuous precipitation, so-called “grain boundary reaction type precipitation” is likely to occur along the crystal grain boundaries. The portion where “grain boundary reaction type precipitation” has occurred is a very weak portion, which causes a decrease in copper alloy strength. In addition, it becomes the starting point of fatigue failure and bending cracking, and the overall characteristics are significantly damaged.

特に、銅合金材を電子部品材料として用いる場合、Ti含有量が3質量%前後のものが使用されるため、この組成領域で表面硬度を確保できることが好ましい。   In particular, when a copper alloy material is used as an electronic component material, a Ti content of about 3% by mass is used, and therefore it is preferable that the surface hardness can be secured in this composition region.

Cu−Be系合金のほとんどは、Co,Niを添加することにより、添加元素が粒界に偏析し、「粒界反応型析出」が抑制される。しかしながら、Cu−Ti系銅合金では、Tiが他の添加元素と非常に反応しやすい活性化元素であるので、ほとんどの添加元素と化合物を生成し、「粒界反応型析出」による抑制効果が低い。また、Cu−Ti系銅合金の強化は、主に固溶Tiの変調構造(スピノーダル構造)に因るものであるため、多量な元素を添加すれば、Cu−Ti系銅合金の良さを相殺してしまう。   In most Cu—Be alloys, the addition of Co and Ni causes the added elements to segregate at the grain boundaries, thereby suppressing “grain boundary reaction precipitation”. However, in Cu-Ti-based copper alloys, Ti is an activation element that is very easy to react with other additive elements, so most of the additive elements and compounds are produced, and the suppression effect by "grain boundary reaction type precipitation" is achieved. Low. In addition, the strengthening of the Cu-Ti copper alloy is mainly due to the solute Ti modulation structure (spinodal structure), so if a large amount of element is added, the goodness of the Cu-Ti copper alloy is offset. Resulting in.

したがって、高強度Cu−Be系合金を代替できる、同等以上の「強度」、「耐摩耗性」、「耐疲労特性」を達成できる銅合金材がまだ無いのが現状である。   Therefore, at present, there is no copper alloy material that can achieve the same or higher “strength”, “wear resistance”, and “fatigue resistance” that can replace a high-strength Cu—Be alloy.

例えば、特許文献1の銅合金材は、高温の塩浴により炭素を拡散させるために母相の強度が低くなることが避けられない。また、炭素と析出成分との化合物が材料表層部に厚く形成され、膜の応力により表層部の化合物が剥離するおそれがある。   For example, in the copper alloy material of Patent Document 1, it is inevitable that the strength of the parent phase becomes low because carbon is diffused by a high-temperature salt bath. Moreover, the compound of carbon and a precipitation component is formed thick in the material surface layer portion, and the compound in the surface layer portion may be peeled off due to the stress of the film.

また、特許文献2の銅合金材は、黄銅を用いた合金材であり、高強度Cu−Be系合金に対して母相の強度が不十分である。また、特許文献3の合金材は、母材をチタンとする合金材であり、高強度Cu−Be系合金に対して導電率が低く、曲げ加工性に劣る。   Moreover, the copper alloy material of patent document 2 is an alloy material which used the brass, and the intensity | strength of a parent phase is inadequate with respect to a high intensity | strength Cu-Be type alloy. Moreover, the alloy material of patent document 3 is an alloy material which makes a base material titanium, and its electrical conductivity is low with respect to a high intensity | strength Cu-Be type alloy, and it is inferior to bending workability.

本発明はこのような現状において、「高強度」、「耐摩耗性」、「耐疲労特性」を同時に改善できるCu−Ti系銅合金材を提供することを目的とする。   An object of the present invention is to provide a Cu—Ti-based copper alloy material that can simultaneously improve “high strength”, “abrasion resistance”, and “fatigue resistance”.

本願発明者らは、詳細な検討の結果、所定成分のCu−Ti系銅合金に対し、プラズマ浸炭処理を施して、合金表面に硬質なTiC層を被覆することで、「高強度」、「耐摩耗性」、「耐疲労特性」を同時に達成できることを見出した。本発明はこのような知見に基づいて完成したものである。   As a result of detailed studies, the inventors of the present invention performed plasma carburizing treatment on the Cu—Ti-based copper alloy of a predetermined component, and coated the hard TiC layer on the alloy surface, thereby obtaining “high strength”, “ It has been found that "wear resistance" and "fatigue resistance" can be achieved simultaneously. The present invention has been completed based on such findings.

すなわち本発明では、Ti:1.0〜4.8質量%、残部:Cuおよび不可避的不純物から成る組成の母相の表面にCuTiO層が形成され、前記CuTiO層上にTiC層が形成されたチタン銅合金材が提供される。 That is, in the present invention, Ti: from 1.0 to 4.8 wt%, balance: Cu and Cu 3 Ti 3 O layer on the surface of the matrix composition consisting of unavoidable impurities is formed, the Cu 3 Ti 3 O layer A titanium-copper alloy material having a TiC layer formed thereon is provided.

前記TiC層は、50nm〜1000nmであっても良い。前記CuTiO層は、100nm〜3000μmであっても良い。 The TiC layer may be 50 nm to 1000 nm. The Cu 3 Ti 3 O layer may be 100 nm to 3000 μm.

上記銅合金母相の組成において、さらに、Ni、Co、Fe、Sn、Zn、Mg、Zr、Al、Si、P、B、Cr、Mn、Vの1種以上を合計で0.01質量%以上、1.0質量%以下の範囲で含有する組成を有していても良い。   In the composition of the copper alloy parent phase, 0.01% by mass in total of at least one of Ni, Co, Fe, Sn, Zn, Mg, Zr, Al, Si, P, B, Cr, Mn, and V As mentioned above, you may have the composition contained in 1.0 mass% or less.

試験荷重を10gとして評価したマイクロビッカース硬さ(表面硬さ)がHV200以上であっても良い。試験荷重を300gとして評価した母相のマイクロビッカース硬さはHV150以上であっても良い。 The micro Vickers hardness (surface hardness) evaluated with a test load of 10 g may be HV200 or more. The micro Vickers hardness of the parent phase evaluated with a test load of 300 g may be HV150 or more.

別の観点による本発明によれば、Ti:1.0〜4.8質量%、残部:Cuおよび不可避的不純物から成る鋳片に対して、950〜500℃での熱間圧延、冷間圧延、750〜1000℃での溶体化処理を順次施し、プラズマ処理炉の炉圧を0.1Pa以下とした状態で、炉温が750〜900℃となるまで加熱し、加熱された炉内に炭化水素系ガスを供給して前記炉内のガス雰囲気圧力100〜500Paにした後、プラズマ電圧を100〜1000V、処理時間を1〜10時間として前記溶体化処理された被処理体のプラズマ浸炭処理を行う、チタン銅合金材の製造方法が提供される。 According to the present invention from another aspect, Ti: 1.0 to 4.8% by mass, balance: hot rolling at 950 to 500 ° C., cold rolling with respect to a slab comprising Cu and inevitable impurities The solution treatment at 750 to 1000 ° C. is sequentially performed, and the furnace pressure of the plasma processing furnace is set to 0.1 Pa or less until the furnace temperature reaches 750 to 900 ° C., and carbonization is performed in the heated furnace. after supplying the hydrogen-containing gas to the atmosphere pressure in the furnace 100~500P a, the plasma voltage 100~1000V, plasma carburization of the solution treated workpiece processing time as 1-10 hours A method for manufacturing a titanium-copper alloy material is provided.

必要に応じさらに、400〜500℃で1〜100時間の時効処理を施す工程を備えていても良い。   If necessary, a step of performing an aging treatment at 400 to 500 ° C. for 1 to 100 hours may be further provided.

また、曲げ加工性に対する要求が厳しい電気・電子部品について、前記溶体化処理後の柔らかい状態で、プレス成形加工を行い、その後に、プラズマ浸炭処理を行うこともできる。   In addition, electrical / electronic parts that are demanding for bending workability can be subjected to press molding in a soft state after the solution treatment, and then plasma carburized.

また、別の観点による本発明によれば、上記のチタン銅合金材を用いたコネクター端子が提供される。   According to another aspect of the present invention, a connector terminal using the titanium copper alloy material is provided.

また、別の観点による本発明によれば、コネクター端子の製造方法であって、Ti:1.0〜4.8質量%、残部:Cuおよび不可避的不純物から成る鋳片に対して、950〜500℃での熱間圧延、冷間圧延、750〜1000℃での溶体化処理を順次施し、その後、プレス成形加工を行い、プラズマ処理炉の炉圧を0.1Pa以下とした状態で、炉温が750〜900℃となるまで加熱し、加熱された炉内に炭化水素系ガスを供給して前記炉内のガス雰囲気圧力100〜500Paにした後、プラズマ電圧を100〜1000V、処理時間を1〜10時間として前記プレス成形加工された被処理体のプラズマ浸炭処理を行う工程を経て製造される、コネクター端子の製造方法が提供される。 According to another aspect of the present invention, there is provided a method for manufacturing a connector terminal, comprising 950 to 950% of a slab comprising Ti: 1.0 to 4.8% by mass, and the balance: Cu and unavoidable impurities. Hot rolling at 500 ° C., cold rolling, and solution treatment at 750 to 1000 ° C. are sequentially performed, and then press forming is performed, and the furnace pressure of the plasma processing furnace is set to 0.1 Pa or less. temperature is heated until 750 to 900 ° C., by supplying hydrocarbon gas into a heated furnace after the gas atmosphere pressure in the furnace 100~500P a, the plasma voltage 100~1000V, processing Provided is a method for manufacturing a connector terminal, which is manufactured through a step of performing plasma carburizing treatment of the object to be processed that has been press-formed for 1 to 10 hours.

コネクター端子の製造方法において、前記プラズマ浸炭処理後に、前記被処理体に対して400〜500℃で1〜100時間の時効処理を施しても良い。   In the method for manufacturing a connector terminal, after the plasma carburizing treatment, the object to be treated may be subjected to an aging treatment at 400 to 500 ° C. for 1 to 100 hours.

本発明によれば、コネクター、リードフレーム、リレー、スイッチなどの電気・電子部品に必要な基本特性を具備するCu−Ti系銅合金材が、高強度(例えば、表面硬さHV200以上)を有し、かつ優れた「耐摩耗性」と「耐疲労特性」を同時に有することが可能となる。さらに、優れた成形性(特に曲げ加工性)も同時に達成することが可能である。このような高強度レベルを維持しながら「耐摩耗性」と「耐疲労特性」及び曲げ加工性を安定して顕著に向上させることは、従来のCu−Ti系銅合金製造技術では困難であった。
本発明は、今後ますます進展が予想される電気・電子部品の小型化、薄肉化のニーズに対応し得るものである。
According to the present invention, a Cu-Ti-based copper alloy material having basic characteristics required for electrical and electronic parts such as connectors, lead frames, relays, and switches has high strength (for example, surface hardness of HV200 or more). In addition, it is possible to have excellent “wear resistance” and “fatigue resistance” at the same time. Furthermore, excellent formability (particularly bending workability) can be achieved at the same time. It is difficult for the conventional Cu-Ti copper alloy manufacturing technology to stably and significantly improve the "wear resistance", "fatigue resistance" and bending workability while maintaining such a high strength level. It was.
The present invention can meet the needs for downsizing and thinning of electric and electronic parts, which are expected to make further progress in the future.

実施例2の試験片の断面TEM像を示す図である。6 is a diagram showing a cross-sectional TEM image of a test piece of Example 2. FIG. 図1に示す試験片の表面近傍の拡大図である。It is an enlarged view of the surface vicinity of the test piece shown in FIG.

本実施形態に係る銅合金材は、主としてCu−Ti系銅合金板材の表面にプラズマ浸炭処理により硬質なTiC層を被覆することによって、「強度」、「耐応力緩和性」、「耐摩耗性」、「耐疲労特性」の同時改善を可能にするものである。   The copper alloy material according to the present embodiment mainly covers the surface of the Cu-Ti-based copper alloy plate material with a hard TiC layer by plasma carburizing treatment, so that "strength", "stress relaxation resistance", "wear resistance" ”And“ fatigue resistance ”can be improved simultaneously.

以下、本実施形態に係る銅合金板材の構成について説明する。   Hereinafter, the configuration of the copper alloy sheet according to the present embodiment will be described.

《TiC膜》
切削工具や金型などの硬度と耐摩耗性が要求される機械部品には,鋼に比べて硬く耐摩耗性の高いTiC膜などの炭化物系硬質被膜が広く用いられている。TiCは、極めて高い強度(硬度:HV2500〜4000)を有し、導電性があり(TiNの2倍以上)、高耐熱性(耐熱温度:600℃以上)を有し、銅合金材料の「耐摩耗性」と「耐疲労特性」を格段に向上できる。
<< TiC film >>
For machine parts that require hardness and wear resistance such as cutting tools and molds, carbide-based hard coatings such as TiC films that are harder and have higher wear resistance than steel are widely used. TiC has extremely high strength (hardness: HV 2500 to 4000), is electrically conductive (more than twice that of TiN), has high heat resistance (heat resistant temperature: 600 ° C. or more), Abrasion ”and“ fatigue resistance ”can be significantly improved.

銅合金板材の最表面のTiC層の厚さは、50nm〜1000nmとすることが好ましく、100nm〜500nmの範囲に調整することが一層好ましい。TiC層の厚さが薄すぎると、上記作用を十分に発揮することができず、厚すぎると、母相との密接性が弱くなり、TiC層が剥離しやすくなる。   The thickness of the TiC layer on the outermost surface of the copper alloy sheet is preferably 50 nm to 1000 nm, and more preferably adjusted to a range of 100 nm to 500 nm. If the thickness of the TiC layer is too thin, the above-described effect cannot be exhibited sufficiently, and if it is too thick, the close contact with the parent phase becomes weak and the TiC layer is easily peeled off.

《過渡層》
銅合金板材の最表面のTiC層の下に、TiCとCu−Ti系銅合金母相の間の強度を有する過渡層が必要である。この過渡層がないと、TiCとCu−Ti系銅合金母相の強度差があまりにも大きくなり、応力負荷下において界面に応力集中が発生しやすく、TiC層が剥離しやすくなる。
<Transient layer>
Under the outermost TiC layer of the copper alloy sheet, a transient layer having strength between TiC and the Cu—Ti-based copper alloy matrix is required. Without this transient layer, the strength difference between the TiC and the Cu—Ti-based copper alloy matrix becomes too large, stress concentration is likely to occur at the interface under stress loading, and the TiC layer tends to peel off.

この過渡層は、Cu−Ti−Oの化合物(CuTiO)で構成される。母相とTiC層との間にCuTiO層が形成されることにより、TiC層が母相表面に直接形成される場合に比べ、表面硬さを大きくすることが可能となる。CuTiO層の厚さは、100nm〜3000nmとすることが好ましく、300nm〜2000nmの範囲に調整することが一層好ましい。CuTiO層の厚さが薄すぎると、TiC層とCu−Ti系銅合金母相との接合強度が弱くなりやすく、厚すぎると、母相との密接性が弱くなり、TiC層が剥離しやすくなる。 This transient layer is composed of a Cu—Ti—O compound (Cu 3 Ti 3 O). By forming the Cu 3 Ti 3 O layer between the parent phase and the TiC layer, the surface hardness can be increased as compared with the case where the TiC layer is directly formed on the surface of the parent phase. The thickness of the Cu 3 Ti 3 O layer is preferably 100 nm to 3000 nm, and more preferably adjusted to a range of 300 nm to 2000 nm. If the thickness of the Cu 3 Ti 3 O layer is too thin, the bonding strength between the TiC layer and the Cu—Ti-based copper alloy matrix tends to be weak, and if it is too thick, the adhesion with the matrix phase becomes weak, and the TiC layer Becomes easy to peel.

《母相合金組成》
本発明では、Cu−Tiの2元系基本成分に、必要に応じてNi、Co、Fe等、あるいはその他の合金元素を配合したCu−Ti系銅合金を採用する。
<Mother phase alloy composition>
In the present invention, a Cu—Ti based copper alloy in which Ni, Co, Fe or the like or other alloy elements are blended with a Cu—Ti binary basic component as required is employed.

Tiは、Cuマトリックスにおいて時効硬化作用が高い元素であり、強度上昇および耐応力緩和性向上に寄与する。また、母相に固溶Ti原子が存在すると、表面プラズマ浸炭処理において、Cイオンが表面から浸透し、断面(板材の厚さ方向)に沿ってTiと連続的にTiCが生成される。Ti含有量が1.0質量%未満では、上記効果を十分に引き出すことが難しい。一方、Ti含有量が5.0質量%以上になると、熱間と冷間加工過程中に割れが発生しやすく、生産性の低下を招きやすい。また、溶体化処理が可能な温度域が狭くなり良好な特性を引き出すことが困難になる。種々検討の結果、Ti含有量は4.8質量%以下とする必要がある。したがって、Ti含有量は1.0〜4.8質量%に規定される。Ti含有量は、2.0〜4.8質量%とすることがより好ましく、2.5〜4.0質量%とすることが更に好ましく、2.5〜3.5質量%の範囲に調整することが一層好ましい。   Ti is an element having a high age hardening effect in the Cu matrix, and contributes to an increase in strength and an improvement in stress relaxation resistance. Further, when solid solution Ti atoms are present in the matrix, in the surface plasma carburization process, C ions permeate from the surface, and TiC is continuously generated along the cross section (thickness direction of the plate material). When the Ti content is less than 1.0% by mass, it is difficult to sufficiently bring out the above effects. On the other hand, if the Ti content is 5.0% by mass or more, cracks are likely to occur during the hot and cold working processes, and productivity is likely to be reduced. Moreover, the temperature range in which the solution treatment can be performed becomes narrow, and it becomes difficult to extract good characteristics. As a result of various studies, the Ti content needs to be 4.8% by mass or less. Therefore, the Ti content is defined as 1.0 to 4.8% by mass. The Ti content is more preferably 2.0 to 4.8% by mass, still more preferably 2.5 to 4.0% by mass, and is adjusted to a range of 2.5 to 3.5% by mass. More preferably.

さらに、必要に応じ、Ni、Co、Fe、Sn、Zn、Mg、Zr、Al、Si、P、B、Cr、Mn、Vの1種以上を含有させることができる。例えば、Ni、Co、Fe、Zr、CrはCu−Ti系銅合金の「粒界反応型析出」を抑制する効果がある。Sn、Zn、Mg、Al、Mnは固溶強化効果がある。また、B、P、Zr、Vは鋳造組織の微細化効果を有し、熱間加工性の改善に寄与しうる。   Furthermore, one or more of Ni, Co, Fe, Sn, Zn, Mg, Zr, Al, Si, P, B, Cr, Mn, and V can be contained as necessary. For example, Ni, Co, Fe, Zr, and Cr have an effect of suppressing “grain boundary reaction type precipitation” of a Cu—Ti based copper alloy. Sn, Zn, Mg, Al, and Mn have a solid solution strengthening effect. Further, B, P, Zr, and V have an effect of refining the cast structure and can contribute to improvement of hot workability.

Ni、Co、Fe、Sn、Zn、Mg、Zr、Al、Si、P、B、Cr、Mn、Vの1種以上を含有させる場合は、各元素の作用を十分に得るためにこれらの総量が0.01質量%以上となるように含有させることが効果的である。ただし、多量に含有させると、熱間または冷間加工性に悪影響を与える。したがって、Ni、Co、Fe、Sn、Zn、Mg、Zr、Al、Si、P、B、Cr、Mn、Vの合計含有量は、1.0質量%以下に抑えることが望ましく、0.5質量%以下に抑えることが更に望ましい。   When one or more of Ni, Co, Fe, Sn, Zn, Mg, Zr, Al, Si, P, B, Cr, Mn, and V are contained, the total amount of these elements is sufficient to obtain the effect of each element. It is effective to make it contain so that it may become 0.01 mass% or more. However, if contained in a large amount, it adversely affects hot or cold workability. Therefore, the total content of Ni, Co, Fe, Sn, Zn, Mg, Zr, Al, Si, P, B, Cr, Mn, and V is desirably 1.0% by mass or less. It is further desirable to keep it to less than mass%.

《特性》
「表面硬さ」
表面硬さが高いほど銅合金板材の全体強度が高くなる。特に耐摩耗性や疲労強度は格段に高くなる。マイクロビッカース硬さ試験で、試験荷重を10gとして評価した表面硬さはHV200以上であることが好ましく、HV300以上であることがより好ましく、HV350以上であることが一層好ましい。
"Characteristic"
"Surface hardness"
The higher the surface hardness, the higher the overall strength of the copper alloy sheet. In particular, the wear resistance and fatigue strength are remarkably increased. In the micro Vickers hardness test, the surface hardness evaluated with a test load of 10 g is preferably HV200 or more, more preferably HV300 or more, and even more preferably HV350 or more.

「母相硬さ」
母相硬さは通常のCu−Ti系銅合金と同等以上の強度を有することが好ましい。具体的には、母相硬さはHV150以上であることが好ましく、HV170以上であることがより好ましく、HV200以上であることが一層好ましい。
"Matrix hardness"
The matrix hardness preferably has a strength equal to or higher than that of a normal Cu-Ti-based copper alloy. Specifically, the matrix hardness is preferably HV 150 or more, more preferably HV 170 or more, and even more preferably HV 200 or more.

《製造法》
以上のような本実施形態に係る銅合金板材は、銅合金の一般的な製造方法、例えば以下のような製造工程により作ることができる。
「溶解・鋳造→熱間圧延(熱間加工)→冷間圧延(冷間加工)→溶体化処理」
ただし、後述のようにいくつかの工程での製造条件を工夫することが重要である。なお、上記工程中には記載していないが、溶解・鋳造後には必要に応じて均熱処理(又は熱間鍛造)が行われ、熱間圧延後には必要に応じて面削が行われ、各熱処理後には必要に応じて酸洗、研磨、あるいはさらに脱脂が行われる。
<Production method>
The copper alloy sheet according to the present embodiment as described above can be produced by a general method for producing a copper alloy, for example, the following production process.
“Melting / Casting → Hot Rolling (Hot Processing) → Cold Rolling (Cold Processing) → Solution Treatment”
However, as described later, it is important to devise manufacturing conditions in several steps. In addition, although not described in the above process, soaking and casting (or hot forging) is performed as necessary after melting and casting, and chamfering is performed as necessary after hot rolling. After the heat treatment, pickling, polishing, or further degreasing is performed as necessary.

上記溶体化処理に続いて、溶体化処理された銅合金板材のプラズマ浸炭処理を行う。これにより、銅合金板材の強度を高めることができる。強度要求がさらに高い用途に対しては、プラズマ浸炭処理後に、さらに時効処理を行っても良い。   Subsequent to the solution treatment, a plasma carburization treatment is performed on the solution-treated copper alloy sheet. Thereby, the intensity | strength of a copper alloy board | plate material can be raised. For applications with higher strength requirements, further aging treatment may be performed after the plasma carburization treatment.

以下、各工程について説明する。   Hereinafter, each step will be described.

〔溶解・鋳造〜溶体化処理〕
まず、連続鋳造、半連続鋳造等により鋳片を製造する。Tiの酸化を防止するためには、不活性ガス雰囲気または真空溶解炉で溶解を行うのがよい。
[Dissolution / Casting to Solution Treatment]
First, a slab is manufactured by continuous casting, semi-continuous casting, or the like. In order to prevent the oxidation of Ti, melting is preferably performed in an inert gas atmosphere or a vacuum melting furnace.

次に、製造された鋳片を一般的な熱間圧延工程により熱間圧延する。鋳片を熱間圧延する際には、再結晶が発生しやすい700℃以上の高温域で最初の圧延パスを実施することによって、鋳造組織が破壊され、成分と組織の均一化を図ることができる。また、熱間圧延工程中における完全再結晶の発生を確実に行うためには、950℃〜500℃の温度域で圧延率60%以上の熱間圧延を行うことが有効である。これによって組織の均一化が一層促進される。なお、圧延工程では多パス圧延が実施されるが、析出物の生成と粗大化を防止するためには、熱間圧延の最終パス温度は600℃以上であることが効果的である。
また、熱間圧延後には、被圧延材を水冷することが望ましい。
Next, the manufactured slab is hot-rolled by a general hot rolling process. When the slab is hot-rolled, the cast structure is destroyed and the components and the structure are made uniform by performing the first rolling pass in a high temperature region of 700 ° C. or higher where recrystallization is likely to occur. it can. Further, in order to reliably generate complete recrystallization during the hot rolling process, it is effective to perform hot rolling at a rolling rate of 60% or more in a temperature range of 950 ° C to 500 ° C. This further promotes tissue homogenization. In the rolling process, multi-pass rolling is performed, but in order to prevent the formation and coarsening of precipitates, it is effective that the final pass temperature of hot rolling is 600 ° C. or higher.
Moreover, it is desirable that the material to be rolled is water-cooled after hot rolling.

続いて、熱間圧延後の被圧延材が目標板厚となるまで冷間圧延を行う。冷間圧延率の上限はミルパワー等により必然的に制約を受けるので、特に規定する必要はないが、エッジ割れなどを防止する観点から概ね99%以下でよい。また、下限は90%以上であることが好ましい。なお、必要に応じて、冷間圧延の中間に高温軟化熱処理を行ってもよい。   Subsequently, cold rolling is performed until the material to be rolled after hot rolling reaches the target plate thickness. The upper limit of the cold rolling rate is inevitably restricted by mill power or the like, and thus need not be specified. However, it may be approximately 99% or less from the viewpoint of preventing edge cracks and the like. The lower limit is preferably 90% or more. In addition, you may perform a high temperature softening heat processing in the middle of cold rolling as needed.

続いて、冷間圧延後の被圧延材を処理炉において溶体化処理する。溶体化処理は、溶質元素のマトリックス中への再固溶を主目的として、該当合金組成の固溶線(平衡状態図で確定できる)よりも30℃以上高い炉温で行うことが必要である。炉温が低すぎると溶質元素の固溶が不十分であり、炉温が高すぎると結晶粒が粗大化してしまう。具体的には、本発明で規定する化学組成の合金では、750〜1000℃の炉温で5sec〜5min保持する加熱条件において適正条件を設定できる。溶体化処理後の冷却は、冷却途中にTiの析出を防止するために急冷却することが好ましい。また、溶体化処理後の平均結晶粒
径を8〜15μmとすることが好ましい。
Subsequently, the material to be rolled after the cold rolling is subjected to a solution treatment in a processing furnace. The solution treatment needs to be performed at a furnace temperature higher by 30 ° C. or more than the solid solution wire (which can be determined by an equilibrium diagram) of the corresponding alloy composition, mainly for the purpose of re-dissolution of solute elements in the matrix. If the furnace temperature is too low, the solute elements are not sufficiently dissolved, and if the furnace temperature is too high, the crystal grains become coarse. Specifically, in an alloy having a chemical composition defined in the present invention, appropriate conditions can be set under heating conditions of holding at a furnace temperature of 750 to 1000 ° C. for 5 seconds to 5 minutes. The cooling after the solution treatment is preferably rapid cooling in order to prevent Ti precipitation during the cooling. Moreover, it is preferable that the average crystal grain diameter after solution treatment shall be 8-15 micrometers.

〔プラズマ浸炭処理〕
次に、溶体化処理が施された被処理体のプラズマ浸炭処理を行う。まず、プラズマ処理炉内を圧力0.1Pa以下の真空状態とし、炉内温度を750〜900℃の温度範囲まで加熱する。この昇温時において、炉内の真空度が0.1Paを超える低真空であると、銅合金板材が酸化しやすく、良好なTiC層が得られにくい。その後、炉内にメタンやエタン等の炭化水素系ガスを供給し続け、炉内のガス雰囲気圧力を100〜500Paとする。そして、その状態の炉内において、プラズマ電圧を100〜1000V、処理時間を1〜10時間としてプラズマ浸炭処理を行う。
[Plasma carburizing treatment]
Next, the plasma carburizing process of the to-be-processed object to which solution treatment was performed is performed. First, the inside of the plasma processing furnace is evacuated to a pressure of 0.1 Pa or less, and the furnace temperature is heated to a temperature range of 750 to 900 ° C. If the degree of vacuum in the furnace is a low vacuum exceeding 0.1 Pa at the time of the temperature rise, the copper alloy plate material is likely to be oxidized, and it is difficult to obtain a good TiC layer. Thereafter, hydrocarbon gas such as methane or ethane is continuously supplied into the furnace, and the gas atmosphere pressure in the furnace is set to 100 to 500 Pa. And in the furnace of the state, a plasma carburizing process is performed with a plasma voltage of 100 to 1000 V and a processing time of 1 to 10 hours.

プラズマ浸炭処理時の温度、ガス雰囲気の圧力とプラズマ電圧はTiC層の生成に重要である。温度、ガス雰囲気の圧力またはプラズマ電圧が低すぎると、TiC層とCu−Ti−O化合物の過渡層が生成しないか、または膜厚が目標層厚さとなるまで長時間を要してしまう。   The temperature at the time of the plasma carburizing process, the pressure of the gas atmosphere, and the plasma voltage are important for the generation of the TiC layer. If the temperature, the pressure in the gas atmosphere, or the plasma voltage is too low, a transient layer of TiC layer and Cu—Ti—O compound is not generated, or it takes a long time until the film thickness reaches the target layer thickness.

一方で、温度、ガス雰囲気の圧力またはプラズマ電圧が高すぎると、TiC層の生成速度が速く、均一かつ緻密なTiC膜が得られにくく、表面硬さの低下を招きやすい。また、TiC膜厚とCu−Ti−O化合物の過渡層の厚さのバランスをコントロールしにくい。そのため、プラズマ浸炭処理温度は、750〜900℃の範囲にある炉温で行うことが望ましく、800〜850℃の範囲が一層好ましい。特に、ガス雰囲気の圧力が高過ぎると、Cu−Ti−O化合物の過渡層が生成しなくなる。Cu−Ti−O化合物生成の機構はまだ調査中であるが、母相表面層付近に残留した微量のTi−O化合物が特定の表面ガス雰囲気の圧力下にしかCu−Ti−O化合物に変換しないと推測される。そのため、ガス雰囲気の圧力が100〜500Paであることが好ましい。また、プラズマ電圧が100〜1000Vであることが好ましく、300〜700Vであることが一層好ましい。   On the other hand, if the temperature, the pressure in the gas atmosphere, or the plasma voltage is too high, the TiC layer is generated at a high rate, and it is difficult to obtain a uniform and dense TiC film, which tends to reduce the surface hardness. In addition, it is difficult to control the balance between the TiC film thickness and the thickness of the Cu—Ti—O compound transient layer. Therefore, it is desirable to perform the plasma carburizing temperature at a furnace temperature in the range of 750 to 900 ° C, and more preferably in the range of 800 to 850 ° C. In particular, when the pressure in the gas atmosphere is too high, a Cu—Ti—O compound transient layer is not generated. Although the mechanism of Cu-Ti-O compound formation is still under investigation, a small amount of Ti-O compound remaining in the vicinity of the surface layer of the parent phase is converted into a Cu-Ti-O compound only under the pressure of a specific surface gas atmosphere. I guess not. Therefore, it is preferable that the pressure of a gas atmosphere is 100-500 Pa. Moreover, it is preferable that plasma voltage is 100-1000V, and it is still more preferable that it is 300-700V.

〔時効処理〕
前記溶体化処理後にプラズマ浸炭処理した場合、母相の硬さはHV150以上に達する。母相の強度として更なる高強度が要求される場合、プラズマ浸炭処理後に、400〜500℃で1〜100時間程度の時効処理を行うことが好ましい。この温度範囲内で時効処理する場合、母相の強度を向上できると同時に、TiC層とCu−Ti−O化合物の過渡層にほとんど影響を与えない。時効処理中における表面酸化膜の形成を極力抑制する場合には、水素、窒素またはアルゴン雰囲気を使うことが好ましい。
[Aging treatment]
When plasma carburization is performed after the solution treatment, the hardness of the parent phase reaches HV150 or more. When a further high strength is required as the strength of the matrix phase, it is preferable to perform an aging treatment at 400 to 500 ° C. for about 1 to 100 hours after the plasma carburizing treatment. When the aging treatment is performed within this temperature range, the strength of the parent phase can be improved, and at the same time, the transient layer of the TiC layer and the Cu—Ti—O compound is hardly affected. In order to suppress the formation of the surface oxide film during the aging treatment as much as possible, it is preferable to use a hydrogen, nitrogen or argon atmosphere.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

例えば、上記実施形態では、銅合金材を製造する方法として、板材を例に挙げて説明したが、銅合金材は線材であっても良い。   For example, in the above embodiment, the method for producing a copper alloy material has been described by taking a plate material as an example, but the copper alloy material may be a wire.

また、一部の複雑な曲げ加工が必要な電子部品を製造する際には、溶体化処理後の軟質な状態でプレス・曲げ加工により銅合金板材を加工した後、プラズマ浸炭処理およびさらに時効処理を行っても良い。その後、従来の方法を用いて、コネクター端子を製造しても良い。   Also, when manufacturing some electronic parts that require complex bending, after processing the copper alloy sheet by pressing and bending in a soft state after solution treatment, plasma carburization treatment and further aging treatment May be performed. Thereafter, the connector terminal may be manufactured using a conventional method.

本発明に係る銅合金材の特性評価を行うため、下記の方法で銅合金板材を製造した。なお、本実施例の実験条件は一例であり、本発明は以下の実験条件に限定されるものではない。   In order to evaluate the characteristics of the copper alloy material according to the present invention, a copper alloy sheet was produced by the following method. In addition, the experimental conditions of a present Example are an example, and this invention is not limited to the following experimental conditions.

まず、Ti:3.2質量%、残部Cuおよび不可避的不純物からなる組成の銅合金を溶製し、縦型半連続鋳造機を用いて鋳造した。得られた鋳片を950℃に加熱したのち抽出して、熱間圧延を開始した。熱間圧延の最終パス温度は600℃〜500℃の間にあり、熱間圧延終了後は水冷した。熱間圧延開始からのトータルの熱間圧延率は約95%である。熱間圧延後、被圧延材の表層の酸化層を機械研磨により除去(面削)し、厚さ10mmの圧延板が得られた。次いで、その圧延板に対して圧延率97.8%で冷間圧延を行った後、得られた厚さ0.22mmの板材に900℃×1minで溶体化処理して、プラズマ浸炭処理に供した。溶体化処理後の平均結晶粒径は約10μmであった。また、各供試材の組成を確認のため分析したところ、Tiの含有率は実施例1が3.22質量%、実施例2が3.18質量%、比較例1が3.20質量%であった。なお、平均結晶粒径は、供試材の圧延方向に垂直に切断した断面を研磨したのちエッチングし、その面を光学顕微鏡で観察し、JISH0501の切断法で測定した。   First, a copper alloy having a composition comprising Ti: 3.2% by mass, the balance Cu and inevitable impurities was melted and cast using a vertical semi-continuous casting machine. The obtained slab was heated to 950 ° C. and extracted, and hot rolling was started. The final pass temperature of the hot rolling was between 600 ° C. and 500 ° C., and water cooling was performed after the hot rolling was completed. The total hot rolling rate from the start of hot rolling is about 95%. After hot rolling, the oxide layer on the surface layer of the material to be rolled was removed (faced) by mechanical polishing, and a rolled plate having a thickness of 10 mm was obtained. Next, after cold rolling the rolled plate at a rolling rate of 97.8%, the obtained 0.22 mm thick plate material was subjected to a solution treatment at 900 ° C. × 1 min for use in plasma carburizing treatment. did. The average crystal grain size after the solution treatment was about 10 μm. Further, when the composition of each test material was analyzed for confirmation, the Ti content was 3.22% by mass in Example 1, 3.18% by mass in Example 2, and 3.20% by mass in Comparative Example 1. Met. The average grain size was measured by polishing a cross section cut perpendicular to the rolling direction of the test material, etching the surface, observing the surface with an optical microscope, and cutting with JISH0501.

プラズマ浸炭処理においては、まず、真空度が圧力0.1Paの処理炉において、850℃(実施例1)と800℃(実施例2)の2温度水準まで加熱した後、メタンガスを供給し、ガス雰囲気圧力200Paとした。その後、プラズマ電圧500Vで6時間プラズマ浸炭処理を実施して供試材を得た。なお、比較例として、プラズマ浸炭処理前の供試材(比較例1)を準備した。   In the plasma carburizing process, first, in a processing furnace having a vacuum degree of 0.1 Pa, after heating to two temperature levels of 850 ° C. (Example 1) and 800 ° C. (Example 2), methane gas is supplied, The atmospheric pressure was 200 Pa. Thereafter, plasma carburizing treatment was performed at a plasma voltage of 500 V for 6 hours to obtain a test material. As a comparative example, a test material (comparative example 1) before plasma carburizing treatment was prepared.

実施例1,2と比較例1の各供試材から試験片を採取して、断面における各分層部の厚さと結晶構造(実施例2のみ記録)、及び、表面硬さと母相硬さを調べた。   Samples were collected from the specimens of Examples 1 and 2 and Comparative Example 1, and the thickness and crystal structure of each layered portion in the cross section (recorded only in Example 2), as well as surface hardness and matrix hardness. I investigated.

試験片の組織、特性の調査は以下の方法で行った。
〔断面観察〕
プラズマ浸炭した試験片表面層を集束イオンビーム加工にて断面の薄膜化を行い、透過型電子顕微鏡(TEM)にて25000〜30000倍で観察した。また、電子線回折図形解析より、各分層部の結晶構造を同定した。
The examination of the structure and characteristics of the test piece was carried out by the following method.
[Cross-section observation]
The surface layer of the plasma carburized specimen was thinned by focused ion beam processing, and observed with a transmission electron microscope (TEM) at 25000 to 30000 times. Moreover, the crystal structure of each layered portion was identified by electron diffraction pattern analysis.

〔表面硬さと母相硬さ〕
試験片の表面硬さはマイクロビッカース硬さ試験により評価した。試験荷重を10g、荷重負荷時間を10sとした。室温で10点の測定を行って、その平均値を表面硬さとした。試験片の断面中心付近の母相においては、試験荷重を300g、荷重負荷時間を10sで測定したビッカース硬さを母相硬さとした。
[Surface hardness and matrix hardness]
The surface hardness of the test piece was evaluated by a micro Vickers hardness test. The test load was 10 g, and the load time was 10 s. Ten points were measured at room temperature, and the average value was defined as the surface hardness. In the mother phase near the center of the cross section of the test piece, the Vickers hardness measured with a test load of 300 g and a load time of 10 s was defined as the mother phase hardness.

試験片の組織、特性の調査結果は以下の通りである。   The examination results of the structure and characteristics of the specimen are as follows.

図1,図2には、実施例2の試験片の断面TEM像を示す。図1,図2に示す通り、試験片の最表面は、厚さ約250nmのTiC層(立方晶: 格子定数a=0.422nm)であり、その直下が厚さ約1.4μmのCuTiO層(立方晶: a=1.124nm)であった。一方、比較例1の断面TEM像には、TiC層とCuTiO層が観察されなかった。 1 and 2 show cross-sectional TEM images of the test piece of Example 2. FIG. As shown in FIGS. 1 and 2, the outermost surface of the test piece is a TiC layer (cubic crystal: lattice constant a = 0.422 nm) having a thickness of about 250 nm, and a Cu 3 layer having a thickness of about 1.4 μm is directly below it. It was a Ti 3 O layer (cubic crystal: a = 1.124 nm). On the other hand, the TiC layer and the Cu 3 Ti 3 O layer were not observed in the cross-sectional TEM image of Comparative Example 1.

以上の結果をまとめると表1のようになる。なお、実施例1の試験片にもTiC層とCuTiO層が形成されていたが、膜厚は測定していない。 The above results are summarized in Table 1. Although TiC layer and Cu 3 Ti 3 O layer in the test piece of Example 1 was formed, the film thickness was not measured.

表1に示す通り、試験片の母相表面にCu3Ti3O層が形成され、Cu3Ti3O層上にTiC層が形成されている場合(実施例1,2)には、Cu3Ti3O層とTiC層が形成されていない場合(比較例1)よりも、表面硬さが硬くなることがわかる。 As shown in Table 1, when a Cu 3 Ti 3 O layer is formed on the parent phase surface of the test piece and a TiC layer is formed on the Cu 3 Ti 3 O layer (Examples 1 and 2), Cu It can be seen that the surface hardness is harder than when the 3 Ti 3 O layer and the TiC layer are not formed (Comparative Example 1).

本実施例の結果によれば、Cu−Ti系銅合金材のTi含有量が少なくても、表面にTiC層とCu3Ti3O層が形成されることにより、銅合金材の表面硬さ、ひいては耐摩耗性、耐疲労特性を向上させられることがわかる。 According to the results of this example, even if the Ti content of the Cu-Ti-based copper alloy material is small, the surface hardness of the copper alloy material is formed by forming the TiC layer and the Cu 3 Ti 3 O layer on the surface. As a result, it can be seen that the wear resistance and fatigue resistance can be improved.

本発明に係る銅合金材は、コネクター、リードフレーム、リレー、スイッチなどの電気・電子部品の材料として用いることができる。
The copper alloy material according to the present invention can be used as a material for electrical / electronic components such as connectors, lead frames, relays, and switches.

Claims (12)

Ti:1.0〜4.8質量%、残部:Cuおよび不可避的不純物から成る組成の母相の表面にCuTiO層が形成され、前記CuTiO層上にTiC層が形成されたチタン銅合金材。 A Cu 3 Ti 3 O layer is formed on the surface of the parent phase having a composition comprising Ti: 1.0 to 4.8% by mass, and the balance: Cu and inevitable impurities, and a TiC layer is formed on the Cu 3 Ti 3 O layer. Titanium copper alloy material formed. 前記TiC層は、50nm〜1000nmである、請求項1に記載のチタン銅合金材。   The titanium-copper alloy material according to claim 1, wherein the TiC layer is 50 nm to 1000 nm. 前記CuTiO層は、100nm〜3000nmである、請求項1又は2に記載のチタン銅合金材。 The titanium-copper alloy material according to claim 1, wherein the Cu 3 Ti 3 O layer is 100 nm to 3000 nm. 前記母相は、さらに、Ni、Co、Fe、Sn、Zn、Mg、Zr、Al、Si、P、B、Cr、Mn、Vの1種以上を合計で0.01質量%以上、1.0質量%以下の範囲で含有する、請求項1〜3のいずれか一項に記載のチタン銅合金材。   The parent phase further includes at least 0.01% by mass in total of at least one of Ni, Co, Fe, Sn, Zn, Mg, Zr, Al, Si, P, B, Cr, Mn, and V. Titanium copper alloy material as described in any one of Claims 1-3 contained in 0 mass% or less of range. 試験荷重を10gとして評価したマイクロビッカース硬さ(表面硬さ)がHV200以上である、請求項1〜4のいずれか一項に記載のチタン銅合金材。   The titanium-copper alloy material according to any one of claims 1 to 4, wherein the micro Vickers hardness (surface hardness) evaluated with a test load of 10 g is HV200 or more. 試験荷重を300gとして評価した母相のマイクロビッカース硬さがHV150以上である、請求項1〜5のいずれか一項に記載のチタン銅合金材。 The titanium-copper alloy material according to any one of claims 1 to 5, wherein a micro Vickers hardness of a parent phase evaluated with a test load of 300 g is HV150 or more. 板材または線材であることを特徴とする、請求項1〜6にいずれか一項に記載のチタン銅合金材。   It is a board | plate material or a wire, The titanium copper alloy material as described in any one of Claims 1-6 characterized by the above-mentioned. Ti:1.0〜4.8質量%、残部:Cuおよび不可避的不純物から成る鋳片に対して、950〜500℃での熱間圧延、冷間圧延、750〜1000℃での溶体化処理を順次施し、プラズマ処理炉の炉圧を0.1Pa以下とした状態で、炉温が750〜900℃となるまで加熱し、加熱された炉内に炭化水素系ガスを供給して前記炉内のガス雰囲気圧力100〜500Paにした後、プラズマ電圧を100〜1000V、処理時間を1〜10時間として前記溶体化処理された被処理体のプラズマ浸炭処理を行う、チタン銅合金材の製造方法。 Ti: 1.0 to 4.8 mass%, balance: hot rolling at 950 to 500 ° C., cold rolling, solution treatment at 750 to 1000 ° C. with respect to slab comprising Cu and inevitable impurities In a state where the furnace pressure of the plasma processing furnace is 0.1 Pa or less, the furnace temperature is heated to 750 to 900 ° C., and a hydrocarbon-based gas is supplied into the heated furnace. after the gas atmosphere pressure 100~500P a, the plasma voltage 100~1000V, the plasma carburization of the solution treated workpiece processing time as 1-10 hours, the production of copper-titanium alloy Method. 前記プラズマ浸炭処理後に、400〜500℃で1〜100時間の時効処理を施す、請求項8に記載のチタン銅合金材の製造方法。   The manufacturing method of the titanium copper alloy material of Claim 8 which performs the aging treatment for 1 to 100 hours at 400-500 degreeC after the said plasma carburizing process. 請求項1〜7のいずれか一項に記載のチタン銅合金材を用いたコネクター端子。   The connector terminal using the titanium copper alloy material as described in any one of Claims 1-7. コネクター端子の製造方法であって、Ti:1.0〜4.8質量%、残部:Cuおよび不可避的不純物から成る鋳片に対して、950〜500℃での熱間圧延、冷間圧延、750〜1000℃での溶体化処理を順次施し、その後、プレス成形加工を行い、プラズマ処理炉の炉圧を0.1Pa以下とした状態で、炉温が750〜900℃となるまで加熱し、加熱された炉内に炭化水素系ガスを供給して前記炉内のガス雰囲気圧力100〜500Paにした後、プラズマ電圧を100〜1000V、処理時間を1〜10時間として前記プレス成形加工された被処理体のプラズマ浸炭処理を行う工程を経て製造される、コネクター端子の製造方法。 A method for manufacturing a connector terminal, wherein Ti: 1.0 to 4.8% by mass, balance: hot rolling at 950 to 500 ° C., cold rolling with respect to a slab composed of Cu and inevitable impurities, The solution treatment at 750 to 1000 ° C. is sequentially performed, and then press molding is performed. In a state where the furnace pressure of the plasma processing furnace is 0.1 Pa or less, the furnace temperature is heated to 750 to 900 ° C., the heated furnace by supplying hydrocarbon gas after the gas atmosphere pressure in the furnace 100~500P a, the plasma voltage 100~1000V, wherein the press-forming treatment time as 10 hours A method of manufacturing a connector terminal, which is manufactured through a step of performing plasma carburization treatment of a workpiece. 前記プラズマ浸炭処理後に、前記被処理体に対して400〜500℃で1〜100時間の時効処理を施す、請求項11に記載のコネクター端子の製造方法。   The manufacturing method of the connector terminal of Claim 11 which performs the aging treatment for 1 to 100 hours at 400-500 degreeC with respect to the said to-be-processed body after the said plasma carburizing process.
JP2015038097A 2015-02-27 2015-02-27 Titanium copper alloy material with surface coating and method for producing the same Active JP6485859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015038097A JP6485859B2 (en) 2015-02-27 2015-02-27 Titanium copper alloy material with surface coating and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015038097A JP6485859B2 (en) 2015-02-27 2015-02-27 Titanium copper alloy material with surface coating and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016160452A JP2016160452A (en) 2016-09-05
JP6485859B2 true JP6485859B2 (en) 2019-03-20

Family

ID=56844547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015038097A Active JP6485859B2 (en) 2015-02-27 2015-02-27 Titanium copper alloy material with surface coating and method for producing the same

Country Status (1)

Country Link
JP (1) JP6485859B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110512115A (en) * 2019-09-29 2019-11-29 宁波金田铜业(集团)股份有限公司 High strength and high flexibility conductive copper titanium alloy rod bar and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763847B (en) * 2020-06-29 2021-07-06 西安斯瑞先进铜合金科技有限公司 Method for preparing copper-titanium 50 intermediate alloy by using magnetic suspension smelting process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073726A (en) * 1999-09-03 2001-03-21 Fuji Oozx Inc Engine valve made of titanium alloy and method of manufacture
JP3936892B2 (en) * 2002-06-07 2007-06-27 株式会社エスディーシー Plasma carburizing method and apparatus
JP4829485B2 (en) * 2003-06-10 2011-12-07 有限会社真空実験室 Vacuum component material, vacuum component, vacuum device, vacuum component material manufacturing method, vacuum component processing method, and vacuum device processing method
JP5657940B2 (en) * 2010-07-29 2015-01-21 株式会社田中 Titanium metal wear-resistant parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110512115A (en) * 2019-09-29 2019-11-29 宁波金田铜业(集团)股份有限公司 High strength and high flexibility conductive copper titanium alloy rod bar and preparation method thereof
CN110512115B (en) * 2019-09-29 2021-08-17 宁波金田铜业(集团)股份有限公司 High-strength high-elasticity conductive copper-titanium alloy bar and preparation method thereof

Also Published As

Publication number Publication date
JP2016160452A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6263333B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP4857395B1 (en) Cu-Ni-Si alloy and method for producing the same
KR102052879B1 (en) Conductive material for connection parts which has excellent minute slide wear resistance
TWI421354B (en) High strength titanium copper plate and its manufacturing method
JP5426936B2 (en) Copper alloy manufacturing method and copper alloy
JPWO2010013790A1 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP5619389B2 (en) Copper alloy material
JP5050753B2 (en) Manufacturing method of copper alloy for electrical and electronic parts with excellent plating properties
JP6368518B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and energized component
CN113614258B (en) Copper alloy sheet, copper alloy sheet with plating film, and method for producing same
JP2009007625A (en) Method for producing high strength copper alloy for electric/electronic component
JP4756195B2 (en) Cu-Ni-Sn-P copper alloy
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
JP4350049B2 (en) Method for producing copper alloy sheet with excellent stress relaxation resistance
JP4386236B2 (en) Cu-Ni-Si alloy
JP6485859B2 (en) Titanium copper alloy material with surface coating and method for producing the same
JP4068413B2 (en) Cu-Ti alloy and method for producing the same
JP2007084921A (en) Cu-Zn-Sn BASED ALLOY TIN PLATED STRIP
JP6602023B2 (en) Titanium copper alloy material with surface coating and method for producing the same
WO2013058083A1 (en) Corson alloy and method for producing same
JP2009108392A (en) High-strength nickel silver superior in bendability, and manufacturing method therefor
JP2007031801A (en) Titanium-copper alloy excellent in spring characteristic and electric conductivity
JP2004256902A (en) Cu-Cr-Zr ALLOY, AND PRODUCTION METHOD THEREFOR
JP2018070938A (en) Copper alloy sheet material and manufacturing method therefor
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190214

R150 Certificate of patent or registration of utility model

Ref document number: 6485859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250