JP2009095872A - Casting method - Google Patents

Casting method Download PDF

Info

Publication number
JP2009095872A
JP2009095872A JP2007271298A JP2007271298A JP2009095872A JP 2009095872 A JP2009095872 A JP 2009095872A JP 2007271298 A JP2007271298 A JP 2007271298A JP 2007271298 A JP2007271298 A JP 2007271298A JP 2009095872 A JP2009095872 A JP 2009095872A
Authority
JP
Japan
Prior art keywords
casting
core
resistant glass
fluorine
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007271298A
Other languages
Japanese (ja)
Inventor
Hiroshi Otsuki
寛 大月
Takamitsu Asanuma
孝充 浅沼
Kohei Yoshida
耕平 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007271298A priority Critical patent/JP2009095872A/en
Publication of JP2009095872A publication Critical patent/JP2009095872A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a casting method where a core made of heat resistant glass can be easily and securely removed after casting. <P>SOLUTION: In the casting method utilizing the core 1 made of heat resistant glass, the surface of the core body 1a before casting is coated with a metal made passive by coming into contact with fluorine, after casting, the surface of a casting body 4a demolded from a mold 2 is filmed with the metal, and subsequently, the casting 4 in a state of incorporating the cast core 1 inside is immersed into a hydrofluoric acid solution. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐熱ガラス製の中子を利用した鋳造方法に関する。   The present invention relates to a casting method using a heat-resistant glass core.

耐熱ガラス製の中子を利用した鋳造方法として、耐熱ガラス管の内周面に凹部を形成することにより、鋳造時の熱収縮でその凹部に応力集中を生じさせて耐熱ガラス管を粉砕し除去する方法が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2〜4が存在する。   As a casting method using a heat-resistant glass core, by forming a recess on the inner peripheral surface of the heat-resistant glass tube, the heat-resistant glass tube is crushed and removed by causing stress concentration in the recess due to thermal shrinkage during casting. There is a known method (see Patent Document 1). In addition, there are Patent Documents 2 to 4 as prior art documents related to the present invention.

特開平10−305349号公報JP-A-10-305349 特開平10−305348号公報JP-A-10-305348 特開平11−342453号公報JP-A-11-342453 特開2006−167731号公報JP 2006-167731 A

耐熱ガラス製の中子は細かく形成することができるため鋳物内部の微細構造の形成に有利である。しかし、上述したように中子を粉砕すると鋳造後の中子の除去が難しくなる。   Since the core made of heat-resistant glass can be finely formed, it is advantageous for forming a fine structure inside the casting. However, if the core is pulverized as described above, it becomes difficult to remove the core after casting.

そこで、本発明は、耐熱ガラス製の中子を鋳造後に容易にかつ確実に除去できる鋳造方法を提供することを目的とする。   Then, an object of this invention is to provide the casting method which can remove the core made from heat-resistant glass easily and reliably after casting.

本発明は、耐熱ガラス製の中子を利用した鋳造方法において、鋳造前の中子の表面をフッ素との接触で不動態化する金属にて被膜し、鋳造後は、鋳込まれた中子をフッ素系の溶剤により除去することにより上述した課題を解決する(請求項1)。   The present invention relates to a casting method using a core made of heat-resistant glass, in which the surface of the core before casting is coated with a metal that is passivated by contact with fluorine, and after casting, the core is cast. The above-mentioned problem is solved by removing the solvent with a fluorine-based solvent (claim 1).

本発明の鋳造方法によれば、フッ素系の溶剤により耐熱ガラス製の中子を溶かしているので中子の除去を容易に行うことができる。また、中子の表面にて不動態膜が形成されるので、鋳物の表面の腐食を防止することができる。これにより、耐熱ガラス製の中子を鋳造後に容易にかつ確実に除去できる。   According to the casting method of the present invention, since the core made of heat-resistant glass is melted with the fluorine-based solvent, the core can be easily removed. In addition, since a passive film is formed on the surface of the core, corrosion of the surface of the casting can be prevented. Thereby, the core made of heat-resistant glass can be easily and reliably removed after casting.

本発明の鋳造方法の一形態において、鋳型から取り出された鋳物の表面を前記金属にて被膜した後に、鋳込まれた中子を内部に含んだ状態の鋳物を前記溶剤に浸けてもよい(請求項2)。この形態によれば、鋳物の表面に不動態膜が形成するので、鋳物の表面の腐食を防止することができる。また、鋳物をフッ素系の溶剤に浸けることで、その溶剤が鋳物内部の中子まで確実に入り込むことができる。   In one form of the casting method of the present invention, after casting the surface of the casting taken out from the mold with the metal, the casting containing the core inserted therein may be immersed in the solvent ( Claim 2). According to this aspect, since the passive film is formed on the surface of the casting, corrosion of the surface of the casting can be prevented. Also, by immersing the casting in a fluorine-based solvent, the solvent can surely enter the core inside the casting.

以上説明したように、本発明の鋳造方法によれば、フッ素系の溶剤により耐熱ガラス製の中子を溶かしているので中子の除去を容易に行うことができる。また、中子の表面にて不動態膜が形成されるので、鋳物の表面の腐食を防止することができる。これにより、耐熱ガラス製の中子を鋳造後に容易にかつ確実に除去できる。   As described above, according to the casting method of the present invention, since the core made of heat-resistant glass is melted with the fluorine-based solvent, the core can be easily removed. In addition, since a passive film is formed on the surface of the core, corrosion of the surface of the casting can be prevented. Thereby, the core made of heat-resistant glass can be easily and reliably removed after casting.

図1は、本発明の鋳造方法を不図示の車両に走行用動力源として搭載される内燃機関のエンジンブロックの製造に適用した場合の鋳造工程の一例を示している。エンジンブロックはアルミニウム合金により形成されている。エンジンブロックの内部には、中子1を用いて鋳造をすることによりウォータジャケット等の微細な空間が形成される。   FIG. 1 shows an example of a casting process when the casting method of the present invention is applied to manufacture of an engine block of an internal combustion engine mounted on a vehicle (not shown) as a driving power source. The engine block is made of an aluminum alloy. Inside the engine block, a minute space such as a water jacket is formed by casting using the core 1.

図1を参照して本発明の鋳造方法の詳細を説明する。図1に示したように本発明の鋳造方法では、まず第1ニッケル蒸着工程S1において、複数(図1では3つのみ示す。)の円柱状に延びた中子本体1aの表面にニッケル(Ni)を蒸着する。これにより、それぞれの中子本体1aの表面に中子ニッケル薄膜1bが被膜されて中子1が形成される。なお、中子本体1aの材質は、アルミニウム合金の溶湯(700℃)よりも融点の高い耐熱ガラスが用いられる。例えば、石英ガラス(SiO)を利用することができる。中子本体1aの形状は、円柱状に限らず、エンジンブロックの内部に形成される空間の形状に合わせて適宜に変更してよい。中子本体1aの表面に蒸着させる物質はニッケルに限らず、溶湯よりも融点が高く、かつフッ素との接触で不動態化する金属であればよく、例えば銅などを適宜に選択してよい。 The details of the casting method of the present invention will be described with reference to FIG. As shown in FIG. 1, in the casting method of the present invention, first, in the first nickel vapor deposition step S1, nickel (Ni is formed on the surface of a plurality of (only three are shown in FIG. 1) cylindrical core bodies 1a. ). Thereby, the core 1 is formed by coating the core nickel thin film 1b on the surface of each core body 1a. The core body 1a is made of heat-resistant glass having a melting point higher than that of the molten aluminum alloy (700 ° C.). For example, quartz glass (SiO 2 ) can be used. The shape of the core body 1a is not limited to a cylindrical shape, and may be changed as appropriate in accordance with the shape of the space formed inside the engine block. The material to be deposited on the surface of the core body 1a is not limited to nickel, but may be any metal that has a melting point higher than that of the molten metal and is passivated by contact with fluorine. For example, copper may be appropriately selected.

次に、鋳造工程S2において、予めエンジンブロックの形状が内部に形成された上下鋳型2a、2bを組み合わせることにより形成される空間3内の所定の位置に中子1を配置した後に鋳造する。各中子1は、鋳造により形成される鋳物本体4aの外部にその一部が露出するように設定されている。   Next, in the casting step S2, the core 1 is placed at a predetermined position in the space 3 formed by combining the upper and lower molds 2a and 2b in which the shape of the engine block is formed in advance, and then casting is performed. Each core 1 is set so that a part thereof is exposed to the outside of the casting body 4a formed by casting.

次に、第2ニッケル蒸着工程S3において、鋳型2から取り出された鋳物本体4aの表面にニッケルを蒸着する。これにより、鋳物本体4aの表面に鋳物ニッケル薄膜4bが被膜されて鋳物4が形成される。鋳物本体4aの表面に蒸着させる物質はニッケルに限らず、フッ素との接触で不動態化する金属であればよく、銅等を適宜に選択してよい。その後、中子1における鋳物本体4aの外部に露出している部分の中子ニッケル薄膜1bをそれぞれ剥離し、中子本体1aを露出させる。剥離方法は、例えば、刃物あるいはサンドペーパ等によって中子ニッケル薄膜1bを削り取ればよい。   Next, nickel is vapor-deposited on the surface of the casting body 4a taken out from the mold 2 in the second nickel vapor deposition step S3. Thereby, the casting nickel thin film 4b is coated on the surface of the casting main body 4a, and the casting 4 is formed. The substance to be deposited on the surface of the casting body 4a is not limited to nickel, but may be any metal that is passivated by contact with fluorine, and copper or the like may be appropriately selected. Thereafter, the core nickel thin film 1b exposed to the outside of the casting body 4a in the core 1 is peeled off to expose the core body 1a. As the peeling method, for example, the core nickel thin film 1b may be scraped off with a blade or sandpaper.

次に、フッ素処理工程S4において、鋳物4をフッ素処理容器5の中に入れたフッ素系の溶剤としてのフッ化水素酸溶液(HF)に浸ける。フッ化水素酸溶液量は、中子本体1aの露出部と接触できる程度に調整されている。フッ素処理容器4としては、例えばポリエチレン製のものが用いられる。   Next, in the fluorine treatment step S4, the casting 4 is immersed in a hydrofluoric acid solution (HF) as a fluorine-based solvent placed in the fluorine treatment container 5. The amount of hydrofluoric acid solution is adjusted to such an extent that it can come into contact with the exposed portion of the core body 1a. As the fluorine treatment container 4, for example, a polyethylene container is used.

次に、フッ素処理工程S4にて生じる反応について説明する。中子本体1aの露出部とフッ化水素酸溶液とが接触することにより下記の反応(1)が生じ、耐熱ガラス製の中子本体1aが溶出する。
SiO+6HFaq→HSiF+2HO ・・・(1)
一方、ニッケル薄膜1b、4bとフッ化水素酸溶液とが接触することにより下記の反応(2)が生じ、ニッケルがフッ化水素酸溶液により不動態化される。
Ni+HF→NiF ・・・(2)
Next, the reaction that occurs in the fluorine treatment step S4 will be described. When the exposed portion of the core body 1a comes into contact with the hydrofluoric acid solution, the following reaction (1) occurs, and the core body 1a made of heat-resistant glass is eluted.
SiO 2 + 6HFaq → H 2 SiF 6 + 2H 2 O (1)
On the other hand, when the nickel thin films 1b and 4b come into contact with the hydrofluoric acid solution, the following reaction (2) occurs, and nickel is passivated by the hydrofluoric acid solution.
Ni + HF → NiF (2)

フッ素処理工程S4において、反応(1)により中子本体1aを全て溶出させた後、鋳物4をフッ化水素酸溶液から取り出し、その鋳物4の表面を水で洗浄する。洗浄に用いた水は、例えば炭酸カルシウム等により中和された後に廃却される。   In the fluorine treatment step S4, after all the core body 1a is eluted by reaction (1), the casting 4 is taken out of the hydrofluoric acid solution, and the surface of the casting 4 is washed with water. The water used for washing is discarded after neutralization with, for example, calcium carbonate.

以上の鋳造方法によれば、鋳込まれた中子1を内部に含んだ状態の鋳物4をフッ素処理容器5の中のフッ化水素酸溶液に浸けると、鋳物4の表面にて鋳物ニッケル薄膜4bとフッ化水素酸溶液とが接触し、上述した反応(2)を生じることによりフッ化ニッケル(NiF)の不動態膜6(表層数nm)が形成される。これにより、鋳物4の表面の腐食を防止することができる。これと同時に、中子本体1aの露出部とフッ化水素酸溶液とが接触し、上述した反応(1)を生じることにより中子本体1aが溶出し始める。フッ化水素酸溶液と接触している中子本体1aが溶出されると、略同時に中子本体1aの内部が露出されてフッ化水素酸溶液と接触する。この動作を繰り返すことにより、中子本体1aの溶出がその内部に進行して行く。中子本体1aの溶出がその表面にまで進行すると、中子ニッケル薄膜1bとフッ化水素酸溶液とが接触するため、上述した反応(2)を生じることにより鋳物4表面と同様の不動態膜6が形成する。これにより、鋳物本体4aの表面の腐食を防止することができる。従って、耐熱ガラス製の中子本体1aを鋳造後に容易にかつ確実に除去できる。   According to the above casting method, when the casting 4 containing the core 1 cast therein is immersed in the hydrofluoric acid solution in the fluorination vessel 5, the cast nickel thin film is formed on the surface of the casting 4. 4b and the hydrofluoric acid solution are brought into contact with each other to cause the above-described reaction (2), thereby forming a passive film 6 (surface number of nm) of nickel fluoride (NiF). Thereby, corrosion of the surface of the casting 4 can be prevented. At the same time, the exposed portion of the core body 1a comes into contact with the hydrofluoric acid solution, and the core body 1a starts to elute by causing the above-described reaction (1). When the core main body 1a in contact with the hydrofluoric acid solution is eluted, the inside of the core main body 1a is exposed at substantially the same time and comes into contact with the hydrofluoric acid solution. By repeating this operation, elution of the core body 1a proceeds to the inside thereof. When elution of the core body 1a proceeds to the surface, the core nickel thin film 1b and the hydrofluoric acid solution come into contact with each other. 6 forms. Thereby, corrosion of the surface of the casting main body 4a can be prevented. Therefore, the core body 1a made of heat-resistant glass can be easily and reliably removed after casting.

本発明は上述した形態に限定されることなく、種々の形態にて実施することができる。中子ニッケル薄膜1bの剥離は、例えば鋳込まれた中子1の表面から中子本体1aが露出するように第1ニッケル蒸着工程S1にて中子本体1aにニッケルを被膜させていれば省略してもよい。第2ニッケル蒸着工程S3は、フッ素処理工程S4において中子本体1aにのみフッ化水素酸溶液を接触させるようにしていれば省略してもよい。本発明の鋳造方法が適用されるのはエンジンブロックの製造方法に限定されない。耐熱ガラス製の中子1を利用する鋳造方法であれば適宜に適用することができる。中子本体1a及び鋳物本体4aに対するニッケルの被膜方法は蒸着に限らず、例えば無電解めっき等の方法により被膜してもよい。また、フッ素処理工程S4において、フッ素系の溶剤はフッ化水素酸溶液に限らず、例えばフッ化水素を用いてもよい。その場合、下記の反応(3)が生じ、中子1を溶出させることができる。
SiO+4HF→SiF+2HO ・・・(3)
This invention is not limited to the form mentioned above, It can implement with a various form. The peeling of the core nickel thin film 1b is omitted if, for example, the core body 1a is coated with nickel in the first nickel vapor deposition step S1 so that the core body 1a is exposed from the surface of the core 1 cast. May be. The second nickel vapor deposition step S3 may be omitted if the hydrofluoric acid solution is brought into contact only with the core body 1a in the fluorine treatment step S4. The casting method of the present invention is not limited to the engine block manufacturing method. Any casting method that uses the core 1 made of heat-resistant glass can be applied as appropriate. The method of coating nickel on the core body 1a and the casting body 4a is not limited to vapor deposition, and the film may be coated by a method such as electroless plating. In the fluorine treatment step S4, the fluorine-based solvent is not limited to the hydrofluoric acid solution, and for example, hydrogen fluoride may be used. In that case, the following reaction (3) occurs, and the core 1 can be eluted.
SiO 2 + 4HF → SiF 4 + 2H 2 O (3)

本発明の鋳造方法を内燃機関のエンジンブロックの製造に適用した場合の鋳造工程の一例を示す図。The figure which shows an example of the casting process at the time of applying the casting method of this invention to manufacture of the engine block of an internal combustion engine.

符号の説明Explanation of symbols

1 中子
1a 中子本体
1b 中子ニッケル薄膜
2、2a、2b 鋳型
3 空間
4 鋳物
4a 鋳物本体
4b 鋳物ニッケル薄膜
5 フッ素処理容器
6 不動態膜
S1 第1ニッケル蒸着工程
S2 鋳造工程
S3 第2ニッケル蒸着工程
S4 フッ素処理工程
DESCRIPTION OF SYMBOLS 1 Core 1a Core main body 1b Core nickel thin film 2, 2a, 2b Mold 3 Space 4 Casting 4a Casting main body 4b Cast nickel thin film 5 Fluorine treatment container 6 Passive film S1 First nickel vapor deposition process S2 Casting process S3 Second nickel Deposition process S4 Fluorine treatment process

Claims (2)

耐熱ガラス製の中子を利用した鋳造方法において、
鋳造前の中子の表面をフッ素との接触で不動態化する金属にて被膜し、鋳造後は、鋳込まれた中子をフッ素系の溶剤により除去することを特徴とする鋳造方法。
In the casting method using the core made of heat-resistant glass,
A casting method characterized in that the surface of the core before casting is coated with a metal that is passivated by contact with fluorine, and the cast core is removed with a fluorine-based solvent after casting.
鋳型から取り出された鋳物の表面を前記金属にて被膜した後に、鋳込まれた中子を内部に含んだ状態の鋳物を前記溶剤に浸けることを特徴とする請求項1に記載の鋳造方法。   The casting method according to claim 1, wherein after casting the surface of the casting taken out from the mold with the metal, the casting containing the core inserted therein is immersed in the solvent.
JP2007271298A 2007-10-18 2007-10-18 Casting method Pending JP2009095872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271298A JP2009095872A (en) 2007-10-18 2007-10-18 Casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271298A JP2009095872A (en) 2007-10-18 2007-10-18 Casting method

Publications (1)

Publication Number Publication Date
JP2009095872A true JP2009095872A (en) 2009-05-07

Family

ID=40699371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271298A Pending JP2009095872A (en) 2007-10-18 2007-10-18 Casting method

Country Status (1)

Country Link
JP (1) JP2009095872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109175316A (en) * 2018-09-21 2019-01-11 贵州安吉航空精密铸造有限责任公司 The minimizing technology of shell and type core in a kind of investment casting process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109175316A (en) * 2018-09-21 2019-01-11 贵州安吉航空精密铸造有限责任公司 The minimizing technology of shell and type core in a kind of investment casting process

Similar Documents

Publication Publication Date Title
JP2019502825A5 (en)
JP2008174839A (en) Method of surface treating metallic article, and solution system
JP7454774B2 (en) Wet atomic layer etching using self-limiting, finite solubility reactions
JP6446486B2 (en) Casting using metal parts and metal thin film layers
CN104561925A (en) Method for preparing self-supporting diamond film
JP2007070709A (en) Electroforming die, method for producing electroforming die, and method for producing electroformed component
CN102024718A (en) Method for making aluminum soldering disc
CN101399196A (en) Coarsening processing method for backing side of wafer
JP5770575B2 (en) Formation method of oxide film
JP2009095872A (en) Casting method
JP2008190033A (en) Peeling liquid for anodized film and peeling method of anodized film
US6727138B2 (en) Process for fabricating an electronic component incorporating an inductive microcomponent
JP2010006010A (en) Surface treating method of metallic mold for pattern transfer, method for manufacturing of metallic mold for duplicate pattern transfer and metallic mold for duplicate pattern transfer
JP4800774B2 (en) Manufacturing method of electroformed parts
JP5373745B2 (en) Method for producing aluminum material for electrolytic capacitor electrode having excellent etching characteristics, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
CN105924016A (en) Thinning liquid and glass substrate thinning method
KR102004591B1 (en) Method for manufacturing a micromechanical timepiece part and said micromechanical timepiece part
KR102568034B1 (en) Method for manufacturing silver product
JP2007204809A (en) Method of manufacturing three-dimensional microstructure
JP3150015B2 (en) Waveguide manufacturing method
US20030098767A1 (en) Process for fabricating an electronic component incorporating an inductive microcomponent
WO2018080476A1 (en) Coating alloy substrates
JP2008144195A (en) Surface treatment method for aluminum material
JP4259332B2 (en) Optical element manufacturing method and optical element
JP2009114522A (en) Method for producing gold-plated structure