JPH0441639A - Ti-ni-c shape memory alloy and its manufacture - Google Patents

Ti-ni-c shape memory alloy and its manufacture

Info

Publication number
JPH0441639A
JPH0441639A JP14732590A JP14732590A JPH0441639A JP H0441639 A JPH0441639 A JP H0441639A JP 14732590 A JP14732590 A JP 14732590A JP 14732590 A JP14732590 A JP 14732590A JP H0441639 A JPH0441639 A JP H0441639A
Authority
JP
Japan
Prior art keywords
shape memory
alloy
memory alloy
tinic
tini
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14732590A
Other languages
Japanese (ja)
Other versions
JP3141328B2 (en
Inventor
Kiyoshi Yamauchi
清 山内
Shoichi Sato
正一 佐藤
Hideo Takaara
高荒 秀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP02147325A priority Critical patent/JP3141328B2/en
Priority to EP19910109349 priority patent/EP0460695B1/en
Priority to DE1991623084 priority patent/DE69123084T2/en
Publication of JPH0441639A publication Critical patent/JPH0441639A/en
Application granted granted Critical
Publication of JP3141328B2 publication Critical patent/JP3141328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect

Abstract

PURPOSE:To provide a shape memory alloy with superplasticity of having high spring rigidity at a body temp. by incorporating a specified amt. of C into a Ti-Ni series shape memory allay. CONSTITUTION:A Ti-Ni-C shape memory alloy contg., by atom, 0.20 to 5.0% C and in which the total content of Ni and C is regulated to at least >=50% is subjected to aging treatment at <=600 deg.C, by which it can be used for a spring material or the like having high rigidity without damaging superplastic function of its own even in the case its cross-sectional area is small.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超弾性機能を有する形状記憶合金に関し、詳
しくはバネ材等に用いられる形状記憶合金及びその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a shape memory alloy having a superelastic function, and more particularly to a shape memory alloy used for spring materials and the like, and a method for manufacturing the same.

[従来の技術] TiNi合金 TiN1X合金(但し、X−Fe、Cu
、Cr、V・・・等)合金が、熱弾性マルテンサイト変
態の逆変態に付随して顕著な形状記憶効果を示すことは
良く知られている(「金属」1966年2月13日号、
44.r日本金属学会会報」第12巻、第3号(197
B)157゜「日本金属学会誌」第30巻、第2号(1
975)175)。
[Prior art] TiNi alloy TiN1X alloy (however, X-Fe, Cu
, Cr, V, etc.) It is well known that alloys (such as Cr, V, etc.) exhibit a remarkable shape memory effect accompanying the reverse transformation of thermoelastic martensitic transformation ("Metal", February 13, 1966 issue,
44. ``Bulletin of the Japan Institute of Metals'' Volume 12, No. 3 (197
B) 157゜ “Journal of the Japan Institute of Metals” Vol. 30, No. 2 (1
975) 175).

これと同時にTiNi合金にゴムのようなしなやかさを
示す超弾性機能があることも良く知られている(rJ、
Appl、phys、、34(1963)1475.東
北大学選研紮報27(1,971)245)  。
At the same time, it is well known that TiNi alloys have superelastic properties that exhibit rubber-like flexibility (rJ,
Appl, phys, 34 (1963) 1475. Tohoku University Senken Rhoho 27 (1,971) 245).

更1.:、TiNi合金にCを添加したTiNiC合金
について1本発明者はC添加によって1本質的なTiN
i合金のもつ形状記憶特性は損なわれないこと、及び形
状記憶、特に可逆形状記憶特性に役立つことを示してい
る(東北大学選研索報。
Further 1. : Regarding the TiNiC alloy in which C is added to the TiNi alloy, the present inventor has discovered that by adding C, the essential TiN
It has been shown that the shape memory properties of the i-alloy are not impaired, and that it is useful for shape memory, especially reversible shape memory properties (Tohoku University Research Report).

昭和57年6月、第38巻、特開昭63−11636号
公報) 前述したTiNi合金の超弾性機能は、約7%の伸び変
形を与えても、荷重を解放すると同時に殆ど元に戻る。
(June 1980, Vol. 38, JP-A-63-11636) The above-mentioned superelastic function of the TiNi alloy returns to almost its original state as soon as the load is released, even if it is subjected to an elongation deformation of about 7%.

また、変形に必要な応力が殆ど一定で、且つ変形除荷の
回復応力もほぼ一定となるため、これまでにブラジャー
用芯金、歯列矯正器具、カテーテルガイドワイヤー等主
として人体に関するバネ材とに使用されている。
In addition, the stress required for deformation is almost constant, and the recovery stress after deformation and unloading is also almost constant. It is used.

[発明が解決しようとする課8] しかし、従来のステンレス、あるいはピアノ線等のバネ
材に比べ、バネの剛性に欠ける難点があった。
[Problem 8 to be solved by the invention] However, compared to conventional spring materials such as stainless steel or piano wire, the spring has a disadvantage in that it lacks rigidity.

これに対し1通常TiNi合金の超弾性機能は。In contrast, the superelastic function of normal TiNi alloys is.

冷間加工後、400〜550℃の時効処理によって付与
されるが、この方法では、優れた変形・回復挙動を示す
もののバネとしての剛性感に欠ける。
After cold working, it is applied by aging treatment at 400 to 550°C, but this method shows excellent deformation and recovery behavior, but lacks the rigidity of a spring.

これを解決する手段として冷間加工状態でバネ材として
使用する方法が挙げられるが、剛性感の改善には若干の
効果は認められるものの1本来的に求められる超弾性機
能は損なわれる。
One way to solve this problem is to use it as a spring material in a cold-worked state, but although it is somewhat effective in improving the stiffness, the originally required superelastic function is impaired.

このように、従来のバネ材の剛性を保持できなため1人
体に係るガイドワイヤー、ブラジャー芯金、歯列矯正器
具に形状記憶合金を用いる場合において、従来と同等の
機能を持たせるためには。
In this way, when shape memory alloys are used in guide wires, brassiere cores, and orthodontic appliances related to the human body because they cannot maintain the rigidity of conventional spring materials, it is necessary to provide them with the same functionality as conventional spring materials. .

用いる線は太くなり、外見上、スペース上の問題を生じ
ていた。
The lines used were thicker, creating visual and spacing problems.

そこで1本発明の技術的課題は、上記難点を解決し、断
面積が小なる場合においても1本質的な超弾性機能を損
なわず高い剛性を有するバネ材等に用いられるTiNi
C形状記憶合金及びその製造方法を提供することにある
Therefore, 1. the technical problem of the present invention is to solve the above-mentioned difficulties, and 1. to use TiNi for spring materials, etc., which has high rigidity without impairing the essential superelastic function even when the cross-sectional area is small.
An object of the present invention is to provide a C shape memory alloy and a method for manufacturing the same.

[課題を解決するための手段] 本発明によれば、TiNi系形状記憶合金において、C
を0.20〜5.Oat%含み、37℃以下で超弾性特
性を有することを特徴とするTiNiC形状記憶合金が
得られる。
[Means for Solving the Problems] According to the present invention, in a TiNi-based shape memory alloy, C
0.20 to 5. A TiNiC shape memory alloy containing Oat% and having superelastic properties at 37° C. or lower is obtained.

本発明によれば、前記TiNiC形状記憶合金において
、Ni及びCの含有量が総量で少なくとも50a t%
以上であることを特徴とするTiNiC形状記憶合金が
得られる。
According to the present invention, in the TiNiC shape memory alloy, the total content of Ni and C is at least 50at%.
A TiNiC shape memory alloy characterized by the above is obtained.

本発明によれば、前記TiNiC形状記憶合金を製造す
る方法であって、600’C以下の時効処理を行うこと
を特徴とするTiNiC形状記憶合金の製造方法が得ら
れる。
According to the present invention, there is obtained a method for manufacturing the TiNiC shape memory alloy, which is characterized in that an aging treatment at 600'C or less is performed.

本発明によれば、前記TiNiC形状記憶合金の製造方
法であって、前記時効処理は400〜550℃で行うこ
とを特徴とするTiNiC形状記憶合金の製造方法が得
られる。
According to the present invention, there is obtained a method for manufacturing the TiNiC shape memory alloy, wherein the aging treatment is performed at 400 to 550°C.

TiNi合金で少なくとも37℃における超弾性特性を
得るためには、600”C以下の温度での時効処理によ
って中間相変態が現れる必要がある。
In order to obtain superelastic properties at least at 37° C. in a TiNi alloy, an intermediate phase transformation must occur through aging treatment at a temperature below 600”C.

溶体化処理後の600℃以下の温度で時効処理がおこな
われる場合は、中間相変態が現れるためには、Ni濃度
は少なくとも50.5at%が必要である。
When aging treatment is performed at a temperature of 600° C. or lower after solution treatment, the Ni concentration must be at least 50.5 at % in order for mesophase transformation to occur.

また、冷間加工後に600’C以下の温度での時効処理
が行われる場合には1合金のNi濃度は49、Oat%
以上である。
In addition, when aging treatment is performed at a temperature of 600'C or less after cold working, the Ni concentration of one alloy is 49, Oat%.
That's all.

特に、超弾性の良好なカーブを得る最適熱処理温度の5
00℃前後の時効処理では1合金のNi濃度は少なくと
も50.2at%が必要とされる。
In particular, the optimum heat treatment temperature for obtaining a good curve of superelasticity is 5.
In aging treatment at around 00°C, the Ni concentration of one alloy is required to be at least 50.2 at%.

本発明によるTiNiC合金についても少なくとも同様
の時効で中間相変態が出現されることが必要とされる。
It is also necessary for the TiNiC alloy according to the present invention that an intermediate phase transformation appears with at least similar aging.

しかし、Cの添加により剛性アップの効果と同時に変態
温度低下の効果を奏するためには合金中のNi4度は、
TiNi合金に比べ少ない領域で可能であり1具体的に
は、Ni十Cの含量が50.0at%以上であれば良い
However, in order for the addition of C to have the effect of increasing rigidity and lowering the transformation temperature, the Ni4 degree in the alloy must be
This is possible in a smaller area compared to TiNi alloys, and specifically, it is sufficient if the content of Ni+C is 50.0 at% or more.

本発明において、Cの添加効果の範囲を0.20〜5.
Oat%としたのは、0.20at%未満では1変態温
度を低下させ剛性アップの効果が認め難いためであり、
5.Oat%を越えると剛性の上昇効果は認められるも
のの、冷間加工性を極度に悪くするためである。
In the present invention, the range of the effect of adding C is 0.20 to 5.
The reason why it is set as Oat% is that if it is less than 0.20at%, it is difficult to see the effect of lowering the first transformation temperature and increasing the rigidity.
5. This is because if it exceeds Oat%, although the effect of increasing rigidity is recognized, cold workability becomes extremely poor.

尚、以下に述べる実施例においては、TiNi合金につ
いて述べるでいるが1本発明はTiNi合金の一部を第
3の元素X (Xl、tCr、 V、 A I 。
In the examples described below, a TiNi alloy will be described; however, in the present invention, a part of the TiNi alloy is replaced by a third element X (Xl, tCr, V, A I ).

Nb、Ta、W等の元素)で置換したTiN1X合金に
ついても、C添加効果は十分に認められるものである。
The effect of C addition is also sufficiently recognized in the TiN1X alloy substituted with elements such as Nb, Ta, and W.

[実施例コ 次に1本発明の実施例を図面を参照して説明する。[Example code] Next, an embodiment of the present invention will be described with reference to the drawings.

溶解法によって得たTiNi合金及びTiNiC合金及
びTiNiC合金を熱間加工、冷間加工によって、直径
1.311mφまで加工し、950℃×10分の溶体化
処理後、直径1,0■φまで加工し、冷間加工率40%
の試験片を得た。
The TiNi alloy, TiNiC alloy, and TiNiC alloy obtained by the melting method were processed to a diameter of 1.311 mφ by hot working and cold working, and after solution treatment at 950°C for 10 minutes, processed to a diameter of 1.0 mmφ. and cold working rate 40%
A test piece was obtained.

その後、500℃で30分間の時効処理を行い。Thereafter, aging treatment was performed at 500°C for 30 minutes.

37℃での引張り試験により、荷重及び除荷型サイクル
による超弾性特性の測定を行った。
The superelastic properties were measured by tensile testing at 37°C with loading and unloading type cycles.

第1図(a)、(b)は本発明の実施例による合金とし
て+ T j 50−X/2N i 50−X/2CX
合金(但し、  X−1,2,3,) +  T i 
49.75−X/2  ・Ni50、25−X/2 C
X合金(但し、X−1,2,3,)の式で表わされるT
iNi合金線の5%引張りによる荷重・除荷型サイクル
結果を示している。
FIGS. 1(a) and 1(b) show + T j 50-X/2N i 50-X/2CX as an alloy according to an embodiment of the present invention.
Alloy (X-1, 2, 3,) + Ti
49.75-X/2 ・Ni50, 25-X/2 C
T expressed by the formula of X alloy (X-1, 2, 3,)
The results of loading/unloading type cycles of iNi alloy wire under 5% tension are shown.

また、比較例として、上記合金のX−0の場合の合金も
夫々併せて示した。
In addition, as comparative examples, alloys in the case of X-0 of the above alloys are also shown.

第1図(a)、(b)において、Cを添加しない(X−
0)の比較例に係るTi、。Ni、。合金線は、37℃
では超弾性を示さないが、CをX−1゜2.3の割合で
添加した実施例による合金はそれぞれ良好な超弾性特性
を示し、その応力レベルもほぼ直線的に高くなっている
。また、同様なことが(T i 49.5−X/2N 
i 50.5−X/2CX (X= 1 、2゜3)合
金について言えることが判明した。
In Figures 1(a) and (b), C is not added (X-
Ti according to the comparative example of 0). Ni,. Alloy wire is 37℃
However, the alloys according to the examples in which C was added at a ratio of X-1°2.3 each exhibited good superelastic properties, and their stress levels increased almost linearly. Also, the same thing happens (T i 49.5-X/2N
It has been found that the same can be said for the i50.5-X/2CX (X=1, 2°3) alloy.

−船釣に、TiNi合金にCを添加すると。- When C is added to TiNi alloy for boat fishing.

TiNi合金がマトリックス中のCと反応して。TiNi alloy reacts with C in the matrix.

主としてTiCを生成させ、この合金の変態温度を低下
させることが知られている。しかし2本発明の実施例に
おいては単にCが合金の変態温度を低下させるだけでは
なく、加工によって、ファイバー化されたTiCが10
の添加量に共に増加し。
It is known to primarily produce TiC and lower the transformation temperature of this alloy. However, in the two embodiments of the present invention, C not only lowers the transformation temperature of the alloy, but also allows fiberized TiC to
The amount of addition increases as well.

合金の超弾性の応力アップを導き母相でのバネの剛性ア
ップをさせる効果を導くものであることが判明した。
It was found that this increases the superelastic stress of the alloy and increases the rigidity of the spring in the matrix.

゛[発明の効果] 以上説明したように1本発明によれば、少なくとも体温
(37℃)でバネ剛性の高い超弾性を得ることかできる
ため、従来のTiNi合金で使われていた歯列矯正器具
、ブラジャー用芯金、カテーテルガイドワイヤー等人体
に供される断面の小さなバネ材等に幅広く使われること
が期待さねる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain superelasticity with high spring stiffness at least at body temperature (37°C). It is expected that it will be widely used in spring materials with small cross sections used in the human body, such as instruments, brassiere cores, and catheter guide wires.

荷重サイクル結果を夫々示す図で、比較の為にT i 
5ON j so金合金即ち、X−0)、及びTia、
7sNi5゜29合金(即ち、X−0)の式で表される
TiNi合金線の特性も併せC示した。
This figure shows the load cycle results, and for comparison, T i
5ON j so gold alloy i.e. X-0), and Tia,
The characteristics of the TiNi alloy wire represented by the formula of 7sNi5°29 alloy (ie, X-0) are also shown in C.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 1、TiNi系形状記憶合金において、 Cを0.20〜5.0at%含み、37℃以下で超弾性
特性を有することを特徴とするTiNiC形状記憶合金
。 2、第1の請求項記載のTiNiC形状記憶合金におい
て、Ni及びCの含有量が総量で少なくとも50at%
以上であることを特徴とするTiNiC形状記憶合金。 3、第1又は第2の請求項記載のTiNiC形状記憶合
金を製造する方法であって、600℃以下の時効処理を
行うことを特徴とするTiNiC形状記憶合金の製造方
法。 4、第3の請求項記載のTiNiC形状記憶合金の製造
方法において、前記時効処理は400〜550℃で行う
ことを特徴とするTiNiC形状記憶合金の製造方法。
[Claims] 1. A TiNiC shape memory alloy, which contains 0.20 to 5.0 at% of C and has superelastic properties at temperatures below 37°C. 2. In the TiNiC shape memory alloy according to the first claim, the total content of Ni and C is at least 50 at%
A TiNiC shape memory alloy characterized by the above. 3. A method for manufacturing a TiNiC shape memory alloy according to claim 1 or 2, which comprises performing an aging treatment at 600° C. or lower. 4. The method for manufacturing a TiNiC shape memory alloy according to claim 3, wherein the aging treatment is performed at 400 to 550°C.
JP02147325A 1990-06-07 1990-06-07 Manufacturing method of super elastic spring alloy Expired - Fee Related JP3141328B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP02147325A JP3141328B2 (en) 1990-06-07 1990-06-07 Manufacturing method of super elastic spring alloy
EP19910109349 EP0460695B1 (en) 1990-06-07 1991-06-07 Ti-Ni-C shape memory alloy with a pseudoelasticity and a wide elasticity range
DE1991623084 DE69123084T2 (en) 1990-06-07 1991-06-07 Pseudoelastic Ti-Ni-C shape memory alloy with a higher elastic limit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02147325A JP3141328B2 (en) 1990-06-07 1990-06-07 Manufacturing method of super elastic spring alloy

Publications (2)

Publication Number Publication Date
JPH0441639A true JPH0441639A (en) 1992-02-12
JP3141328B2 JP3141328B2 (en) 2001-03-05

Family

ID=15427633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02147325A Expired - Fee Related JP3141328B2 (en) 1990-06-07 1990-06-07 Manufacturing method of super elastic spring alloy

Country Status (3)

Country Link
EP (1) EP0460695B1 (en)
JP (1) JP3141328B2 (en)
DE (1) DE69123084T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147549A (en) * 2005-11-30 2007-06-14 Hugle Electronics Inc Method and device for displaying measured data

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3782289B2 (en) * 2000-07-06 2006-06-07 トキコーポレーション株式会社 Method of processing shape memory alloy and shape memory alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533411A (en) * 1983-11-15 1985-08-06 Raychem Corporation Method of processing nickel-titanium-base shape-memory alloys and structure
JPH0665742B2 (en) * 1987-01-08 1994-08-24 株式会社ト−キン Shape memory TiNiV alloy manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147549A (en) * 2005-11-30 2007-06-14 Hugle Electronics Inc Method and device for displaying measured data

Also Published As

Publication number Publication date
DE69123084D1 (en) 1996-12-19
EP0460695A1 (en) 1991-12-11
DE69123084T2 (en) 1997-04-03
JP3141328B2 (en) 2001-03-05
EP0460695B1 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
EP1614759B1 (en) Super-elastic titanium alloy for medical uses
JP5215855B2 (en) Fe-based alloy and manufacturing method thereof
US5951793A (en) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
US7988281B2 (en) Structural member for eyeglass, eyeglass frame comprising the structural member, and processes for production of the structural member and the eyeglass frame
JP2001329325A (en) Shape memory alloy for living body
JP4302604B2 (en) Superelastic titanium alloy for living body
US20040168751A1 (en) Beta titanium compositions and methods of manufacture thereof
US8801875B2 (en) Radiopaque alloy and medical device made of this alloy
JPS6362583B2 (en)
JP5107661B2 (en) Ti-based alloy
US10590519B2 (en) Superelastic alloy
JPH0441639A (en) Ti-ni-c shape memory alloy and its manufacture
JP2004197112A (en) Method of producing biological superelastic titanium alloy
JPH0547620B2 (en)
JP2541802B2 (en) Shape memory TiNiV alloy and manufacturing method thereof
JP2935124B2 (en) Orthodontic appliance
WO2006082682A1 (en) Ti-Nb-Zr BASED ALLOY
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JPS63235444A (en) Ti-ni-al based shape memory alloy and its production
JP2602652B2 (en) Super-elastic TiNiA Cr Cr alloy
JPH0860277A (en) Nickel-titanium alloy
JP3933623B2 (en) Method for producing superelastic titanium alloy for living body and titanium alloy for superelasticity
JP2979420B2 (en) Orthodontic appliance
JP2691567B2 (en) Super elastic element
JPH07207390A (en) Super elastic spring

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees