JPH0547620B2 - - Google Patents

Info

Publication number
JPH0547620B2
JPH0547620B2 JP5370990A JP5370990A JPH0547620B2 JP H0547620 B2 JPH0547620 B2 JP H0547620B2 JP 5370990 A JP5370990 A JP 5370990A JP 5370990 A JP5370990 A JP 5370990A JP H0547620 B2 JPH0547620 B2 JP H0547620B2
Authority
JP
Japan
Prior art keywords
alloy
shape memory
alloys
weight
superelastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5370990A
Other languages
Japanese (ja)
Other versions
JPH03257141A (en
Inventor
Hideyuki Ootsuka
Setsuo Kajiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP5370990A priority Critical patent/JPH03257141A/en
Publication of JPH03257141A publication Critical patent/JPH03257141A/en
Publication of JPH0547620B2 publication Critical patent/JPH0547620B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、Fe−Ni−Co−Al−C合金に関す
るものである。さらに詳しくは、この発明は、加
工性、耐食性および強度の良好な超弾性・形状記
憶合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a Fe-Ni-Co-Al-C alloy. More specifically, the present invention relates to a superelastic shape memory alloy with good workability, corrosion resistance, and strength.

(従来の技術とその課題) 近年、機能性金属材料の一つとして形状記憶合
金が注目されている。一般の合金は一度加工され
ると加熱してももとの形に戻らないのに対し、こ
の形状記憶合金は一度加工された場合でも加熱す
ると元の形に戻るという、非常に特徴的で興味深
い特性を持つている。このような特徴のある形状
記憶合金はパイプの継手をはじめ、エネルギー変
換材、各種アクチユエータあるいはセンサ、防振
及び防音材料として、さらには医療分野でも広く
その利用が検討されてきており、すでに実用化も
進められてきている。また、合金に通常の弾性歪
み以上の歪みを加えても、除荷すると元の形に戻
る、いわゆる超弾性現象についても、このような
形状記憶効果と本質的には同じ現象であると考え
られており、両者の違いは、形状の回復が応力除
荷後直ちに起こるか、加熱によつて起こるかであ
り、形状記憶合金のほとんどはまた超弾性を示す
ことが知られてもいる。
(Prior art and its problems) In recent years, shape memory alloys have been attracting attention as one of the functional metal materials. While ordinary alloys do not return to their original shape even if heated once they are processed, this shape memory alloy is very unique and interesting in that it returns to its original shape even if it is heated once it is processed. It has characteristics. Shape memory alloys with these characteristics have been widely considered for use in pipe joints, energy conversion materials, various actuators or sensors, vibration and soundproofing materials, and even in the medical field, and have already been put into practical use. progress is also being made. In addition, the so-called superelastic phenomenon, in which an alloy returns to its original shape when the load is removed even if a strain greater than normal elastic strain is applied, is thought to be essentially the same phenomenon as the shape memory effect. The difference between the two is whether the shape recovery occurs immediately after stress unloading or upon heating, and most shape memory alloys are also known to exhibit superelasticity.

これまでにも、形状記憶合金として、Ni−Ti
金属をはじめ、Cu系あるいはFe系合金など各種
のものが知られているが、実用化されているもの
はNi−Ti合金とCu−Zn−Al合金だけである。し
かしながら、このNi−Ti合金の場合には、形状
記憶合金としての性能は優れているものの、その
製造、特に溶解時に特殊な技術を必要とし、製造
コストは極めて高価であつて、しかも切削性が悪
いという欠点がある。また、Cu系合金の場合に
は比較的安価ではあるが加工性が悪く、材質的に
は延性に乏しくて粒界破壊がおこりやすく、ま
た、耐食性が悪いなどの欠点がある。
Until now, Ni-Ti has been used as a shape memory alloy.
A variety of materials are known, including metals and Cu-based or Fe-based alloys, but only Ni-Ti alloys and Cu-Zn-Al alloys are in practical use. However, although this Ni-Ti alloy has excellent performance as a shape memory alloy, it requires special technology during its manufacture, especially during melting, is extremely expensive, and has poor machinability. It has the disadvantage of being bad. In addition, although Cu-based alloys are relatively inexpensive, they have poor workability, poor ductility and are prone to intergranular fracture, and have poor corrosion resistance.

この発明は、以上の通りの事情に鑑みてなされ
たものであり、従来の合金の欠点を解消し、比較
的安価に、しかも容易に製造可能であつて、強
度、加工性、耐食性、形状記憶特性にも優れた、
形状記憶および超弾性効果を示す新しい組成の合
金を提供することを目的としている。
This invention was made in view of the above circumstances, and it eliminates the drawbacks of conventional alloys, can be manufactured relatively cheaply and easily, and has excellent strength, workability, corrosion resistance, and shape memory. Excellent characteristics,
The aim is to provide alloys of new composition that exhibit shape memory and superelastic effects.

(課題を解決するための手段) この発明は、上記の課題を解決するものとし
て、重量百分率で、 Ni:26〜30% Co:10〜13% Al:3〜5% C:0.4〜0.8% を含有し、残部がFeと、許容される微量元素と
からなる合金を、溶体化処理および時効処理して
なることを特徴とする超弾性・形状記憶Fe−Ni
−Co−Al−C合金を提供する。
(Means for Solving the Problems) The present invention solves the above problems in terms of weight percentage: Ni: 26-30% Co: 10-13% Al: 3-5% C: 0.4-0.8% A superelastic, shape-memory Fe-Ni alloy characterized by being formed by solution treatment and aging treatment of an alloy containing Fe and the balance consisting of Fe and allowable trace elements.
- Provides a Co-Al-C alloy.

この合金は、次の通りの知見に基づいてなされ
たものである。すなわち、まず、 超弾性効果や、形状記憶効果が発現するために
は、(1)冷却または応力付加によつて生成するマル
テンサイトの形態が薄い板状であること、(2)母相
が充分強く、試料の変形時に母相が塑性変形しな
い、の二つの条件が必要であることから、発明者
は、Fe−Ni合金にC(炭素)を添加することを考
えた。従来、形状記憶合金にこのCを添加するこ
とは禁忌とみなされていたが、C添加により母相
が強化できること、また、生成するマルテンサイ
トの軸比が著しく上昇するため薄い板状になりや
すいことから上記の(1)および(2)の条件を容易に満
たせると考え、具体的にその作用を検討し、0.4
重量%から最高0.8重量%までCを添加すること
が極めて有効であることを見出した。また、マル
テンサイト変態がおこる温度(Ms点)が室温か
ら液体窒素温度までの間の適当な温度になるよう
に、C量に応じてNi量についても検討し、その
添加量を26〜30重量%とすべきことを見出した。
同様にCoとAlを添加すると、適当な温度で時効
したときにペロヴスカイト型の析出物が生成し、
マルテンサイトの軸比もさらに大きくなるととも
に母相も強化されることを見い出した。このよう
な知見に基づいて、鉄系形状記憶合金として、
種々の組成のFe−Ni−Co−Al−C合金を作製
し、様々な時効条件のもとでマルテンサイト変態
挙動、母相の硬度やマルテサイトの軸比などを詳
しく検討した。その結果、C量は0.4重量%以下
だと(1)および(2)の条件に及ぼす効果は少なく、
0.8重量%以上だともろくなること、Ni量は上記
の通り26〜30重量%とすべきこと、Co、Alは
各々10重量%、3重量%以下だと効果はなく、
各々13重量%、5重量%以上だともろくなること
を見出し、合金元素の組成が、Ni26〜30重量%、
Co10〜13重量%、Al3〜5重量%、C0.4〜0.8重
量%および残部のFeからなるこの発明の合金を
完成した。
This alloy was created based on the following knowledge. In other words, in order for the superelastic effect and shape memory effect to occur, (1) the form of martensite produced by cooling or stress application must be thin and plate-like, and (2) the matrix must be sufficient. The inventors considered adding C (carbon) to the Fe-Ni alloy because two conditions are necessary: the metal phase is strong and the matrix does not undergo plastic deformation when the sample is deformed. Conventionally, adding C to shape memory alloys was considered contraindicated, but the addition of C can strengthen the matrix, and the axial ratio of the resulting martensite increases significantly, making it easier to form thin plates. Therefore, we believe that the conditions (1) and (2) above can be easily satisfied, and we specifically examine the effect, and 0.4
It has been found that adding C up to 0.8% by weight is very effective. In addition, in order to ensure that the temperature at which martensitic transformation occurs (Ms point) is an appropriate temperature between room temperature and liquid nitrogen temperature, we also examined the amount of Ni depending on the amount of C, and set the amount of Ni to 26 to 30% by weight. I found out what should be done with %.
Similarly, when Co and Al are added, perovskite-type precipitates are formed when aged at an appropriate temperature,
It was found that as the axial ratio of martensite increases, the matrix also becomes stronger. Based on this knowledge, as an iron-based shape memory alloy,
Fe-Ni-Co-Al-C alloys with various compositions were prepared, and the martensitic transformation behavior, hardness of the matrix, and martesite axial ratio were investigated in detail under various aging conditions. As a result, when the amount of C is 0.4% by weight or less, the effect on conditions (1) and (2) is small;
If it is more than 0.8% by weight, it will become brittle, the Ni amount should be 26 to 30% by weight as mentioned above, Co and Al should be 10% by weight each, and if it is less than 3% by weight, it will not be effective.
We found that if the alloying element composition exceeds 13% by weight and 5% by weight, Ni26 to 30% by weight,
An alloy of the present invention was completed consisting of 10-13% by weight of Co, 3-5% by weight of Al, 0.4-0.8% by weight of C and the balance Fe.

この発明の合金の場合、時効温度は500℃以下
又は、600℃以上だとあまり効果はなく、時効時
間が6時間以上だと粒界に析出がおこつてもろく
なる。そのため、500〜600℃で6時間以下の時効
を施すのが適当である。
In the case of the alloy of this invention, if the aging temperature is below 500°C or above 600°C, it will not be very effective, and if the aging time is over 6 hours, precipitation will occur at the grain boundaries and the alloy will become brittle. Therefore, it is appropriate to carry out aging at 500 to 600°C for 6 hours or less.

製造時の溶体化処理については、1100〜1300℃
程度の温度において20〜50分間程度とすることが
好ましい。
For solution treatment during manufacturing, 1100-1300℃
It is preferable to set it as about 20 to 50 minutes at a temperature of about 20 to 50 minutes.

以上の通りのこの合金によつて、超弾性およ
び/または形状記憶効果が実現される。鉄基合金
であるので、安価で、かつ、製造が容易である。
合金の加工性、切削性、耐食性、強度も良好であ
る。
With this alloy as described above, superelasticity and/or shape memory effects are realized. Since it is an iron-based alloy, it is inexpensive and easy to manufacture.
The alloy has good workability, machinability, corrosion resistance, and strength.

たとえば、合金の加工性については、従来の
Ni−Ti合金の場合、冷間で30%圧延が最大であ
るが、この発明の合金の場合最低70%以上の圧延
が可能であり、加工性は大きく改善される。切削
性については、従来のNi−Ti合金の場合、切削
はきわめて困難で、通常放電加工により切削する
が、この発明の合金の場合には、放電加工は必要
とせず、切削は非常に容易である。
For example, regarding the workability of alloys, conventional
In the case of Ni-Ti alloys, the maximum cold rolling is 30%, but in the case of the alloy of the present invention, rolling of at least 70% or more is possible, and the workability is greatly improved. Regarding machinability, conventional Ni-Ti alloys are extremely difficult to cut and are usually cut by electrical discharge machining, but the alloy of this invention does not require electrical discharge machining and is extremely easy to cut. be.

また、強度・耐食性に関しても、この発明の合
金の場合には、Ni−Ti合金と同等の優れた成果
が得られる。
Furthermore, in terms of strength and corrosion resistance, the alloy of the present invention provides excellent results equivalent to those of the Ni-Ti alloy.

(実施例) 実施例 1 Fe−30Ni−12Co−4Al−0.4C合金を1200℃の
温度で30分間溶体化処理した後に、500℃で40分
間時効処理した。
(Examples) Example 1 A Fe-30Ni-12Co-4Al-0.4C alloy was solution-treated at a temperature of 1200°C for 30 minutes, and then aged at 500°C for 40 minutes.

第1図a,bは、この得られた合金の超弾性挙
動を示したものである。試料を液体窒素温度で荷
重をかけて曲げ、さらに除荷したときの試料表面
の変化を光学顕微鏡で観察した結果を示してい
る。
Figures 1a and 1b show the superelastic behavior of the obtained alloy. The graph shows the results of observing changes in the sample surface using an optical microscope when the sample was bent under a load at liquid nitrogen temperature and then unloaded.

荷重をかけない時(77K)にはオーステナイト
単相を示しているaが、これに荷重をかけると、
図中に矢印で示した薄い板状のマルテンサイトが
生成しb、試料は変形する。
When no load is applied (77K), a shows a single austenite phase, but when a load is applied to it,
A thin plate-shaped martensite, indicated by an arrow in the figure, is generated b, and the sample is deformed.

そこで荷重を取り除くと、マルテンサイトは消
滅し、再びオーステナイト単相となるa。曲がつ
た試料ももとの形に戻る。すなわち超弾性特性が
確認される。
When the load is removed, martensite disappears and becomes austenite single phase again. The bent sample also returns to its original shape. In other words, superelastic properties are confirmed.

また、加工性を評価したところ、冷間で約80%
の圧延が可能であつた。一方、従来の合金の場合
には、約20%程度にとどまつた。
In addition, when we evaluated the workability, it was found that approximately 80%
rolling was possible. On the other hand, in the case of conventional alloys, it remained at about 20%.

そして、切削性については、従来は放電加工を
施す以外になかつたが、この発明の合金では容易
に切削可能であつた。
As for machinability, conventionally the only option was to perform electric discharge machining, but the alloy of the present invention could be easily machined.

実施例 2 Fe−26Ni−12Co−4Al−0.8C合金を1200℃の
温度で30分間溶体化処理した後に、500℃で40分
間時効処理した。
Example 2 A Fe-26Ni-12Co-4Al-0.8C alloy was solution-treated at a temperature of 1200°C for 30 minutes, and then aged at 500°C for 40 minutes.

この合金の形状記憶効果を示したものが第2図
a,bである。各々、次の状態を示している。
Figures 2a and 2b show the shape memory effect of this alloy. Each indicates the following status.

(a) 液体窒素温度(77K)で荷重をかけて変形さ
せた状態。
(a) Deformed state under load at liquid nitrogen temperature (77K).

薄い板状のマルテンサイト(矢印)が生成す
る。
Thin plate-like martensite (arrow) is generated.

(b) 荷重を取除いて室温まで加熱した時の状態。(b) Condition when the load is removed and the product is heated to room temperature.

マルテンサイトは消滅しオーステナイト単相
に戻り、変形は消滅する。
Martensite disappears, returns to austenite single phase, and deformation disappears.

上記の試料形状の変形状態を例示したものが第
3図である。長さ22mm、幅3mm、厚さ0.5mmの板
状試料を77Kで曲げて2%変形させた状態aと、
無荷重で室温にまで加熱して、変形が消滅した状
態(b)を各々示している。
FIG. 3 shows an example of the deformed state of the sample shape described above. A plate-shaped sample with a length of 22 mm, a width of 3 mm, and a thickness of 0.5 mm is bent at 77K and deformed by 2%.
(b) shows the state in which the deformation disappears after heating to room temperature without any load.

完全な形状記憶効果が実現される。 A perfect shape memory effect is achieved.

(発明の効果) この発明により、以上詳しく説明したように、
鉄基合金なので安価であつて、溶解をはじめ、時
効処理も容易であるため製造が簡便で、加工性、
切削性等にも優れた効果を有する超弾性・形状記
憶合金が実現される。
(Effect of the invention) With this invention, as explained in detail above,
Since it is an iron-based alloy, it is inexpensive, easy to melt and undergo aging treatment, so it is easy to manufacture, has good workability, and
A superelastic shape memory alloy with excellent machinability and other effects will be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の合金の超弾性挙動を示し
た合金表面の金属組織を示す図面代用の光学顕微
鏡写真である。第2図は、この合金の形状記憶効
果を示した合金表面の金属組織を示す図面代用の
光学顕微鏡写真である。第3図は、その変形状態
を示す斜視図である。
FIG. 1 is an optical micrograph used as a drawing showing the metallographic structure of the alloy surface exhibiting superelastic behavior of the alloy of the present invention. FIG. 2 is an optical micrograph used as a drawing showing the metallographic structure of the alloy surface which shows the shape memory effect of this alloy. FIG. 3 is a perspective view showing the deformed state.

Claims (1)

【特許請求の範囲】 1 重量百分率で、 Ni:26〜30% Co:10〜13% Al:3〜5% C:0.4〜0.8% を含有し、残部がFeと、許容される微量元素と
からなる合金を、溶体化処理および時効処理して
なることを特徴とする超弾性・形状記憶Fe−Ni
−Co−Al−C合金。
[Claims] 1 Contains, in weight percentage, Ni: 26-30% Co: 10-13% Al: 3-5% C: 0.4-0.8%, the balance being Fe and allowable trace elements. A superelastic, shape-memory Fe-Ni alloy formed by solution treatment and aging treatment of an alloy consisting of
-Co-Al-C alloy.
JP5370990A 1990-03-07 1990-03-07 Fe-ni-co-al-c alloy Granted JPH03257141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5370990A JPH03257141A (en) 1990-03-07 1990-03-07 Fe-ni-co-al-c alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5370990A JPH03257141A (en) 1990-03-07 1990-03-07 Fe-ni-co-al-c alloy

Publications (2)

Publication Number Publication Date
JPH03257141A JPH03257141A (en) 1991-11-15
JPH0547620B2 true JPH0547620B2 (en) 1993-07-19

Family

ID=12950360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5370990A Granted JPH03257141A (en) 1990-03-07 1990-03-07 Fe-ni-co-al-c alloy

Country Status (1)

Country Link
JP (1) JPH03257141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495946C1 (en) * 2012-07-24 2013-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" METHOD OF THERMAL TREATMENT OF Fe-Ni-Co-Al-Nb FERROMAGNETIC ALLOY MONOCRYSTALS WITH THERMOELASTIC CONVERSIONS
US9714708B2 (en) 2011-11-17 2017-07-25 Oiles Corporation Cylindrical gasket, method for manufacturing the same, and insertion-type exhaust pipe joint using the cylindrical gasket

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3822573B2 (en) * 2003-03-18 2006-09-20 本田技研工業株式会社 Shape memory alloy and manufacturing method thereof
DE602006017881D1 (en) 2005-11-09 2010-12-09 Japan Science & Tech Agency IRON BASED ALLOY WITH FORM MEMORY PROPERTY AND SUPER-ELASTICITY AND METHOD OF MANUFACTURING THEREOF
EP2143460B1 (en) 2007-05-09 2015-07-22 Japan Science and Technology Agency Guide wire and stent
JP5875522B2 (en) * 2010-11-01 2016-03-02 テルモ株式会社 Composite material
JP5929251B2 (en) * 2012-01-31 2016-06-01 株式会社豊田中央研究所 Iron alloy
RU2699470C1 (en) * 2019-04-29 2019-09-05 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) METHOD OF HEAT TREATMENT OF MONOCRYSTALS OF ALLOY Fe-Ni-Co-Al-Ti-Nb, ORIENTED ALONG DIRECTION [001], WITH DOUBLE EFFECT OF SHAPE MEMORY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9714708B2 (en) 2011-11-17 2017-07-25 Oiles Corporation Cylindrical gasket, method for manufacturing the same, and insertion-type exhaust pipe joint using the cylindrical gasket
RU2495946C1 (en) * 2012-07-24 2013-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" METHOD OF THERMAL TREATMENT OF Fe-Ni-Co-Al-Nb FERROMAGNETIC ALLOY MONOCRYSTALS WITH THERMOELASTIC CONVERSIONS

Also Published As

Publication number Publication date
JPH03257141A (en) 1991-11-15

Similar Documents

Publication Publication Date Title
US6921441B2 (en) Super-elastic titanium alloy for medical uses
JP2001329325A (en) Shape memory alloy for living body
JPH0547620B2 (en)
JPS62170457A (en) Shape memory iron alloy
JP3169977B2 (en) ▲ high ▼ strength non-magnetic stainless steel
US5032195A (en) FE-base shape memory alloy
KR100380629B1 (en) Fe-Cr-Al alloy for heat resistance wire
US6500282B2 (en) Gold-indium intermetallic compound, shape memory alloys formed therefrom and resulting articles
JP3541458B2 (en) Ferritic stainless steel with excellent high-temperature salt damage characteristics
JP2004197112A (en) Method of producing biological superelastic titanium alloy
JP3378565B2 (en) High-strength high-damping Fe-Cr-Mn alloy and method for producing the same
JPH11335758A (en) High strength titanium alloy excellent in cold ductility
JPH03197638A (en) High strength and high corrosion-resistant titanium base alloy
JPH02228451A (en) Iron-base shape memory alloy
JPS5944383B2 (en) Shindougensuigoukin
JP3977956B2 (en) High strength β-type Ti alloy with excellent cold workability
KR950002897B1 (en) Cu-al-ni shape memory alloy
JPH0524983B2 (en)
JPH03253529A (en) Ti-pd shape memory alloy
JPS62211339A (en) Ni-ti-cr shape memory alloy
JPS60251241A (en) Shape memory alloy
JPH0463247A (en) High strength and high ductility stainless steel
JPH02310345A (en) Ferritic stainless steel for cold forging having excellent electromagnetic characteristics
JP2602652B2 (en) Super-elastic TiNiA Cr Cr alloy
JPH0572464B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term