JPH0612646B2 - 真空バルブ用接点材料 - Google Patents

真空バルブ用接点材料

Info

Publication number
JPH0612646B2
JPH0612646B2 JP60216647A JP21664785A JPH0612646B2 JP H0612646 B2 JPH0612646 B2 JP H0612646B2 JP 60216647 A JP60216647 A JP 60216647A JP 21664785 A JP21664785 A JP 21664785A JP H0612646 B2 JPH0612646 B2 JP H0612646B2
Authority
JP
Japan
Prior art keywords
ppm
less
amount
alloy
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60216647A
Other languages
English (en)
Other versions
JPS6276219A (ja
Inventor
功 奥富
誠司 千葉
薫旦 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60216647A priority Critical patent/JPH0612646B2/ja
Publication of JPS6276219A publication Critical patent/JPS6276219A/ja
Publication of JPH0612646B2 publication Critical patent/JPH0612646B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、再点弧発生率を軽減できる真空バルブ用接点
材料に関するものである。
[発明の技術的背景とその問題点] 真空バルブ用接点に要求される特性は、耐溶着、耐電
圧、高しゃ断性である。
しかしこれら3要件に対しては相反する物理的性質が要
求されるので理想的に両立させることは困難であり、適
用する回路の優先要件を第1にして、他の要件は若干犠
牲にして対応しているのが現状である。
例えば従来、高耐圧、大容量真空しゃ断器においては、
溶着防止成分(Bi,Te,Pbなど)を5重量%以下
含有する銅(以下Cuと称す)合金を電極接点として具
備したものが特公昭41−12131号で公知である。
ところが、近年の高電圧化要求に対しては、耐電圧の面
で十分ではない。すなわち、真空しゃ断器は小形軽量、
メンテナンスフリー環境調和など、他のしゃ断器に比べ
優れた特徴を有するために、年々、その適用範囲も拡大
され、従来一般的に使用されていた36kV以下の回路
から更に高電圧の回路への適用が行われると共に、特殊
回路例えばコンデンサ回路を開閉する需要も急増してい
るので、一層の耐高電圧化が必要となっている。
その達成を阻害している重量な要因の1つとして再点弧
現像、再発弧現象が挙げられる。
再点弧現象は、製品の信頼性向上の観点から重要視され
ているにもかかわらず、未だ防止技術は勿論のこと直接
的な発生原因についても明らかになっていない。
前記高耐圧化に伴って、接点材料に対しても、更に高耐
圧でかつ再点弧現象の発生頻度の低い特性を持つことが
要求されている。
接点材料の高耐圧化、無再点弧化を図るには、耐圧的に
欠陥となる脆弱な溶着防止成分の量そのものを極力少な
くしたり、過度に集中するのを避けること、ガス不純物
やピンホール等を極力少なくすること、接点合金自体の
強度を大きくすることなどが望ましい。
これらの観点から銅Cu−ビスマスBi合金は満足でき
るものではない。
一方、高耐圧、かつ大電流しゃ断を要求する分野では、
銅Cu−クロムCr合金が適用される場合がある。Cu
−Cr合金は、他の接点材料ほどには、構成材料間の蒸
気圧差がないため、均一な性能発揮を期待し得る利点が
あり、使い方によっては、その特徴を十分利用すること
の出来る接点合金である。
この合金は、一般に粉末冶金的手法によって製作される
ため原料粉末の物理的化学的状態、接点合金の焼結技術
などが、再点弧現象の発生に対して特に関与している項
目と考えられる。
前者の原料粉末について、本発明者らは接点材料を加熱
する過程で放出されるガスの総量ならびに放出の形態に
ついて詳細な観察を行ったところ、これら要因と再点弧
現象の発生には重要な相関があり、特に接点材料を構成
する原材料の個々について、これらガスの放出、なかで
も融点近傍で突発的に発生するガスの放出、を制御する
ことにより、再点弧現象を効果的に抑制できることを見
出した。
すなわち、接点材料を加熱していくと、吸着ガスのほと
んどは溶融点以下で脱ガスされ、溶融点近傍で固溶した
ガスが放出されるが、さらに溶融点以上で加熱放置する
と、極めて短時間(例えば数ミリ秒程度)ではあるがパ
ルス的な突発性ガスの放出(数回ないし数百回突発す
る)が観察される。
これら突発性ガスにはアセチレンC、メタンCH
等が若干含まれるが、主体はCO,CO,O等の
酸素系であることから、これら突発性ガスは接点材料に
混入している酸化物の分解により放出されるものと考え
られる。
本発明者らの研究によれば、この再点弧現象の多く発生
する接点材料には、突発性ガスの放出も多い。
従って、前述の知見よりすれば、接点材料をその融点以
上の温度で保持して、この突発性ガスを予め放出させて
おくことにより、再点弧現象の発生を防止することが考
えられる。又、初めから酸化物の形態を持ち、原料粉中
に混入している酸化物などの異物については、原料粉と
の比重の違いを利用した沈降法による除去或いは、粒径
の違いを利用し主として篩いわけで、予め除去するか、
スケルトン中に高導電性材料を溶浸する際の、溶浸工程
を一方向から行うことで前記酸化物などの異物を一カ所
に集めることが出来、これらの作業を与えることによっ
て同じく再点弧現象の発生を軽減化させ得ることを確認
した。
しかし問題は、原料中に固溶或いは析出した存在する不
純物である。これらは篩いわけ、比重差或いは溶浸工程
では除去することが出来ず、潜在的な再点弧の一要因を
占めていることが考えられた。しかしそれでもその解決
の一つの手段として原料粉(Cr粉)を十分吟味し、介
在物のより少なく原料粉を選択することで、再点弧現象
の発生は、より一層軽減化される傾向にあることを認め
た。
このように主として介在物(ここでは主として酸化物)
の少ない原料粉の選択は再点弧現象の軽減に対して効果
は認めたものの厳密な実験を進めると未だ改善の余地の
あることが判った。
すなわちCr粉中の介在物が実質的に認められないロッ
トを選択し、これをCr原料とし、Cuについても十分
吟味したロットを原料とし夫々を使用しCu−Cr合金
としたところ合金中に析出物の存在を認める合金と、析
出物の存在のない合金とが製造され、再点弧発生は前者
の析出物の存在する合金を使用した真空バルブに、より
多く発生していることが判った。
結局、Cr粉中に固溶していた或る種の元素と、焼結中
の雰囲気との反応によって生成した介在物であると推考
され、従って再点弧特性を飛躍的に改善させるために
は、原料に単に混入している酸化物などの不純物以外
に、原料に特に固溶している或る種の元素(固溶状態に
あるため顕微鏡的には、一般に検出確認出来ない)に注
目する必要性のあることを示唆している。
微小分析の結果、前述した或る種の元素は、アルミニウ
ム(以下Alと称す)、シリコン(以下、Siと称
す)、バナジウム(以下Vと称す)、カルシウム(以下
Caと称す)であることが確認され、焼結、溶浸処理
後、これらの酸化物を生成し、顕微鏡的観察が可能とな
る介在物を形成していることも確認した。
一方、真空バルブの溶着、耐圧、さい断特性に対してC
r粒径の重要性を特開昭54−157284号公報、特開昭5
6−19832号公報が指摘している。耐圧は、Cr粒
径が小さい程優れていることを示唆しているが、本発明
者らの実験によればこの傾向は、製造時の何らかの条件
に左右され、特に再点弧現象に対して単に粒径のみを管
理したのでは一定の特性を得ることが出来ないことが判
った。ここで言う何らかの条件とは再点弧発生現象に対
し、Cr粒径の影響を効果的に発揮させる他の要因を指
すものでその1つは、前述の原料Cr・Cu中に固溶又
は析出している介在物であることは勿論であり、その元
素の種類(Al,Si,V,Ca,O,N)とその
量であり、他の1つは、合金中のCr量が所定範囲内
(Cr=20〜80重量%)にあることが必要である。
すなわち再点弧現象を充分に把握するためには、これら
の3者、原料Cr中の不純物の種類とその量、Cr粒
径、Cr量の夫々の管理が必要であり、再点弧現象には
相互が関与している。
[発明の目的] 本発明は、前述した知見にもとづきなされたもので、再
点弧発生頻度が飛躍的に低減する真空バルブ用接点材料
を提供することを目的としている。
[本発明の概要] 本発明は、前記目的を達成するために次のようにしたも
のである。すなわち、第1番目の発明は銅Cu又は/及
び銀Agより選ばれた高導電性材料とクロームCrより
なる耐火性材料との合金であって、前記Crが前記合金
中に20〜80重量%を占めたCr−Cu又は/及びA
g合金において、前記Crは合金中に粒状で一様に分散
しその平均粒径が5〜150μmの範囲にあり、かつ前記
Cr中に不純物として存在するアルミニウムAl成分の
量が10ppm以下、前記Cr中に不純物として存在する
シリコンSi成分の量が20ppm以下、前記Cr中に不
純物として存在するバナジウムV成分の量が10ppm以
下、前記Cr中に不純物として存在するカルシウムCa
成分の量が10ppm以下であり、しかも前記Cr中の酸
素が1000ppm以下、窒素が1000ppm以下でかつC
r中の酸素と窒素の合計量が1000ppm以下で、さら
にCu又は/及びAg中の酸素が1000ppm以下、窒
素が100ppm以下でかつCu又は/及びAg中の酸素
と窒素の合計量が100ppm以下であることを特徴とす
る真空バルブ用接点材料である。第2番目の発明は銅C
u又は/及び銀Agより選ばれた高導電性材料とクロー
ムCrよりなる耐火性材料との合金であって、前記Cr
が前記合金中に20〜80重量%を占めたCr−Cu又
は/及びAg合金において、前記Crは合金中に粒状で
一様に分散しその平均粒径が5〜150μmの範囲にあ
り、かつ前記Cu又は/及びAg中に不純物として存在
するアルミニウムAl成分の量が10ppm以下、前記C
u又は/及びAg中に不純物として存在するシリコンS
i成分の量が20ppm以下、前記Cu又は/及びAg中
に不純物として存在するバナジウムV成分の量が10pp
m以下、前記Cu又は/及びAg中に不純物として存在
するカルシウムCa成分の量が10ppm以下であり、し
かも前記Cr中の酸素が1000ppm以下、窒素が10
00ppm以下でかつCr中の酸素と窒素の合計量が10
0ppm以下で、さらにCu又は/及びAg中の酸素が1
00ppm以下、窒素が100ppm以下でかつCu又は/及
びAg中の酸素と窒素の合計量が100ppm以下である
ことを特徴とする真空バルブ用接点材料である。
[発明の具体的説明] 以下、本発明について更に詳細に説明するが、はじめに
本発明に係る接点材料を適用する真空バルブの構成例に
ついて第1図を参照して説明する。同図に於いて、1は
しゃ断室を示し、このしゃ断室1は絶縁材料によりほぼ
円筒状に形成された絶縁容器2と、この両端に封止金具
3a,3bを介して設けた金属製の蓋体4a,dbとで
真空気密に構成されている。しかして前記しゃ断室1内
には、導電棒5,6の対向する端部に取付けられた1対
の電極7,8が配設され、上部の電極7を固定電極、下
部の電極8を可動電極としている。またこの可動電極8
の電極棒6には、ベローズ9が取付けられしゃ断室1内
を真空気密に保持しながら電極8の軸方向の移動を可能
にしている。またこのベローズ9上部には金属製のアー
クシールド10が設けられ、ベローズ9がアーク蒸気で
覆われることを防止している。また、11は、前記電極
7,8を覆うようにしてしゃ断室1内に設けられた金属
製のアークシールドで絶縁容器2がアーク蒸気で覆われ
ることを防止している。さらに電極8は、第2図に拡大
して示す如く、導電棒6にろう付部12によって固定さ
れるか、または、かしめによって圧着接続されている。
接点13aは、電極8にろう付け14で固着されてい
る、接点13bは接点13aと同様に電極7にろう付け
で固着されている。
本発明の接点材料は、前記接点13a,13bの双方ま
たはいずれか一方を構成するのに適したものである。
以下、本発明に係る真空バルブ用接点材料について説明
する。ここで実施例の具体的な説明前に本発明にいたる
までの経緯について簡単に説明する。
本発明接点材料を製造するために用いるCrは、従来の
それと大いに異なるものである。すなわちCrを粉砕す
る過程でCr粉に吸着するガス、混入する異物などは、
充分制御した雰囲気での熱処理及び管理した粉砕、篩い
わけ工程によって一定のレベルまでは充分取除くことが
出来る。また不純物として酸化物などが混入しているC
r粉も顕微鏡的な分別が可能である。
しかしCr中に固溶状態にあるAl,Si,V,Ca,
,Nは、顕微鏡的に分別することが不可能であり
(これが前述したように焼結、溶浸雰囲気との反応によ
って好ましくない酸化物を形成する)、また巻込まれた
状態にあるAl,Si,V,Caも取除くことが困難で
あり、再点弧現象特性を飛躍的に改善させるためにこれ
らの存在及びその量は最も注目を要する点である。
本発明接点合金を製造する製造方法の一例は、下記の如
くである。すなわち平均粒径が5〜150μmの粒度を
有し、かつCr中のAl,Si,V,Ca,O,N
の量に関し前記厳選した条件を満すCr粉を用意する。
用意したCr粉の所定量とCu又は/及びAgの所定量
との混合粉末を例えば1.5トン/cm2程度の圧力で成
型する。必要によってはCr粉のみを成型してもよい。
得られた成型体を水素又は1×10−3mmHgより高真
空で900゜C又はこれより高い温度で仮焼結又は本焼結
を行う。仮焼結体についてはスケルトン中の空孔中に水
素または1×10−3mmHg程度より高真空でCuを溶
浸する(Cuの場合は1100゜C程度又はこれより高い
温度、Agの場合は1000゜C程度又はこれより高い温
度)。更に必要によって溶着防止成分(Bi,Pb,T
e,Se,Sbなど)を所定量含有したCu又は/及び
Agを溶浸材としてもよい。
これらのプロセスは十分に管理した状態のるつぼまたは
容器を用いて、接点材料へのるつぼなどからの不純物、
ガスなどの侵入、拡散を防止し、突発性ガスの発生の要
因となる可能性のある因子を削減して行うことがポイン
トである。
その意味において事前にるつぼなどを所定条件で空焼す
ることはすぐれた状態に管理するために重要である。
るつぼなどの状態を管理すること以外に、その材質の選
択も突発性ガスの軽減化に対して重要な技術である。
厳しく管理した条件下では、カーボン、石英なども所定
値以下の突発性ガスに維持出来るが、特に昇華の性質を
持つ窒化ベリリウムBN,窒化アルミニウムAlN,四
窒化三ケイ素Siなどは、その表面をクリーンに
維持する観点から効果が容易に得られる。本発明合金の
効果を十分に発揮させる為のサポート技術として、るつ
ぼ−ボートなどは重要である。
すなわち仮焼結、本焼結、溶浸時に接点合金を収容する
るつぼ、ボート、板などの容器材料は、その状態を十分
クリーンに管理したものを用いることによつて突発性ガ
スの少ない接点素材を得るための効果的サポート技術で
ある。得られた接点素材について必要に応じて切削研磨
などの加工を行い、或いは可能なものは鍜造圧延など塑
性加工を与えることにより所望の形状の接点が得られ
る。
尚、前に述べた本発明に於ける厳選した条件を満すCr
粉とは、粉末状態でのCr中の酸素量、窒素量が所定値
以下であること及びCr中のAl,Si,V,Caの量
が所定値以下であることの二つの要件を同時に満すこと
を意味するものである。
現在、工業的に供給されているCrは、四酸化ニクロム
鉄FeCr、四酸化ニクロムマグネシウムMgC
などのCr鉱石をAl或いはSiなど他の金属
で還元し、金属Crを得る方法及び前記Cr鉱石を溶解
し、未溶解の非金属不純物の分離、Cr以外の金属の分
離を行い、これを電解液とし電気分解して金属CrFe
得る方法が主体である。しかし前者の方法によるCr
は、ガス量(酸素,窒素)は1,000ppm程度である
のに対して、Al,Si,Feなど不純物を数1,00
0ppm〜10,000ppm含有するのに対し、後者の方法
によるCrは、逆にガス量(酸素,窒素)が1,000
ppm〜10,000ppmと著しく多く、Al等の不純物は
少なく、例えば数100ppm程度以下含有するのが一般
的である。すなわち前記の2つの方法によるCrは、前
者方法によるCrはガス量が少なく不純物が多いのに対
し、後者はこれと互いに逆である特徴を持っていること
になる。それにもかかわらず、本発明に於ける真空バル
ブ用接点材料としてのCr原料に対しては、前記ガス量
と不純物の両者を或るレベル以下に制御したものが要求
される。
従って、本発明に於ける厳選した条件を満すCr粉の調
製は、例えば下記のように行う。すなわち、まずCr含
有率のなるべく多いCr鉱石から、金属Crを得る。次
にこの金属Crに必要に応じて真空熱処理、水素熱処理
を与えた後非酸化性雰囲気中で粉砕し、かつ酸化アルミ
ニウムAl、酸化ケイ素SiO、酸化バナジウ
ムV、酸化カルシウムCaO、酸化鉄FeOなど
未だ粒状として混在している非金属粒子を浮遊選鉱など
の手段で除去すると共に、水素中熱処理と、真空中熱処
理との適宜組合せによって、主として酸素、窒素、水素
ガスを除去し、目的とする粒度を持つCr粉を調製す
る。このプロセスによって例えば粒子状の酸化アルミニ
ウムAl、酸化ケイ素SiO、酸化鉄FeOな
どの混合物は、十分取り除けるが、Cr中に固溶状態で
存在するAl,Siなどについては、勿論除去困難であ
る。従って固溶状態にあるAl,Si,V量の制御に
は、スタート時のCr鉱石の選択が重要である。このよ
うにして得た本発明接点に使われる原料Cr中のガス量
は、先に示した工業的に供給される通常のCrの値であ
る1,000ppmより著しく少ない数10ppm程度を確保し
た。
再点弧現象の発生頻度の高いCu−Cr合金は、前述し
たようにCr中のAl及びSi量が多い傾向にあり明快
な相関性が得られている。再点弧発生頻度の一層の軽減
化の為に本発明者らが更に厳密に検討を加えたところA
l及びSi量に注目して再点弧発生頻度を整理すると、
発生頻度は高いレベルにあるものの高いレベルのなかで
もばらつきがあることを認めた。特に接点が開離し消弧
後極めて短時間に発弧する現象にばらつきが見られた。
前記再点弧のみならずこの発弧までも加味し、軽減化さ
せるためにはAl,Si量を100ppm程度に抑制した
のみでは、必ずしも充分でなく、一層厳しく10〜20
ppm程度に管理すると共に、V,Caについても併せ注
目し同程度以下に管理し、更に酸素O、窒素Nにつ
いてもCa,Al,Si,Vの管理と併せて所定値以下
(1000ppm以下)にすることが重要であることが判っ
た。
再点弧発生頻度に及ぼすCr粒径の影響は、未だ明らか
にされていないが、本発明者らの実験によれば平均粒径
が5μm程度までは粒径が小の程、その頻度が小さい傾
向にある知見を得ている。更に、再点弧発生頻度に対し
て重大な影響を与える要因は前記したように原料Cr中
に存在するAl,Si,V,Ca,O,Nであり、
この傾向はCr粒径が5μm以上では明確に示されるが
これより以下では、発生頻度は大きなばらつきを示すよ
うになり不安定となる。他方、Cr粒径が150μm以上
では、特に合金中のCr量が少ない20%程度でかつC
r粒径が大きい例えば150μm以上では、耐溶着性の
低下の傾向が大である。
[発明の実施例および比較例] 以下サンプルテストによって本発明の真空バルブ用接点
材料をさらに具体的に説明する。
なお接点材料の評価は下記に示す再点弧発生確率にもと
づいて行なった。
再点弧発生確率 径30mm、厚さ5mmの円板状接点片を、デイマウンタブ
ル形真空バルブに装着し、6kV×500Aの回路を2
000回しゃ断した時の再点弧発生頻度を測定し、2台
のしゃ断器(バルブとして6本)のばらつき幅(最大お
よび最小)で示した。接点の装着に際しては、ベーキン
グ加熱(450゜C、30分)のみ行い、ろう材の使用な
らびにこれに伴なう加熱は行なわなかった。
サンプルテストの結果を第1表に示す。尚、第1表には
前記のように再点弧発生頻度を測定したときのオッシロ
記録紙上から読みとった発弧についても併記した。
前記サンプルテストを行うにあたって、次のように行
う。すなわち、各種状態、グレードのCu粉、Cu塊、
Cr粉を用意する。Cu粉の一部については、露点マイ
ナス70゜Cの水素中で350゜C×1時間還元処理を行
い、Cr粉と混合しCr−Cu圧粉体を得るための原料
とする。Cu塊の一部については更に1×10−5Tor
rの真空中約1500゜Cで1時間、黒鉛坩堝中で加熱し
指向性凝固を行い溶浸用Cuの一部とする。Cu粉、C
u塊のいずれもAl,Si,V,Ca,O,Nなど
微量不純物元素の種類とその量を求め品位分けを行う。
一方、Cr粉についても複数種のCr粉を用意し、同様
に各Cr粉中に存在するAl,Si,V,Ca,O
など微量不純物元素の種類とその量を求め区別し前
述の厳選した条件を満すCr粉(原料)とする。
真空中2000゜Cで前加熱処理を与えた黒鉛製容器中に
前述した各厳選した条件を満すCr粉を収容後、真空度
約5×10−6Torr中で1200゜C×1時間焼結処理
を行いCrスケルトンを得る。Cr粉はCu量の調製の
ため必要に応じ加圧成型体を使用してもよく、またCr
粉は、前記Al,Siなど微量不純物の量を代えたもの
を適宜使用し、各不純物量の異なるCrスケルトンを得
る。
得られた各種品位のCrスケルトン又はCr−Cuスケ
ルトンと前記溶浸用Cu塊とを接触させ一体とした状態
で、前記真空中2000゜Cで前加熱処理した黒鉛容器中
に設置し、再度真空度5×10−6Torr中で1150゜
C×1時間加熱し、Crスケルトン内の空孔中にCuを
溶浸させCu−Cr合金を得る。勿論、Cu−Cr合金
中のガス量、ガスの種類の調整のためにこれらの処理の
一部又は全部を水素中で行うことも出来る。
第1表において、比較例1〜7、実施例1については、
前記のように焼結温度1200゜C、溶浸温度1150゜C
で作製したものである。実施例−2については、厳選し
た条件を満すCr粉を焼結用黒鉛容器へ収納する前に約
6トン/cm2で成型し、焼結は真空度2×10−6Torr
中で、1350゜C×1時間処理を行いCrスケルトンと
し前記厳選したCu塊をと共に真空度5×10−6Tor
r中で1150゜C×1時間加熱処理を行った。又、実施
例−3については溶浸材用の厳選した条件を有するCu
塊以外に、同等以上の品位を有するCu粉を、更に水素
中であらかじめ表面還元処理を行いCu粉として用意す
る。このCu粉と前記厳選した条件を有するCr粉とを
同量混合し、この混合粉を前記前加熱処理を施した黒鉛
容器中に収容し1200゜C×1時間、水素中加熱によつ
てCu−Crスケルトンを得て、残存空孔中を前記溶浸
材用の厳選したCu塊によって、真空度5×10−6
orr、1150゜C×1時間の加熱処理で溶浸した。
実施例−4については、99.99%のAgを更に真空
中1200゜C×1時間、黒鉛坩堝中で脱ガス加熱後指向
性凝固させ厳選した条件を満す溶浸用Ag塊とした。C
rは前記厳選した条件を満すCr粉をジルコニア坩堝中
で真空度4×10−6Torrで、1000゜C×1時間加
熱し、作製したCrスケルトンと、前記Ag塊とを一体
化しジルコニア坩堝中に収納し真空度5×10−6Tor
rで、1050゜C×1時間加熱処理を行い、Ag−Cr
合金を得た。
実施例−5については厳選した条件を満し、所定のAg
とCuの比率を有する溶浸用Ag−Cu塊を用意し、実
施例−1に準じて焼結、溶浸を行った。
Cr粒子のなかに存在するAl,Si,V,Ca,
,N量と、再点弧発生率、発弧とを第1表に対比
させて示した。
ここでAl,Si,V,Ca量は、イオンマイクロ・ア
ナライザを用いて既知量の不純物を含有させたCu−C
r合金を標準試料とし強度比較によって求めると共に、
前記Cu−Cr合金中のCr及びCuを酸などを用いて
化学的に分類しCrのみ或いはCrを除いたCu溶液と
し、Cr中或いはCu中のAl,Si,V,Ca量を夫
々発光分光法によって定量分析し、比較確認したもので
ある。
原料Cr粉には酸化アルミニウムAl、酸化ケイ
素SiO、酸化バナジウムV、酸化カルシウム
CaOなどの非金属混入物がないのは勿論である。接点
合金中のCr粒子のなかに存在するAl,Si,V,C
a量が2000ppm〜1000ppm(比較例1〜3)では
いずれも0.4%以上の高い再点弧発生確率を示してい
る。一方前記Al,Si,V,Ca量が数10〜150ppm
では、再点弧発生率が少ないにもかかわらず、発弧が、
多い傾向にある(比較例4,5,7)。尚比較例−6も
前記Al,Si,V,Ca量が前述と同様数10ppmの
範囲にあり少ないが、第1表のように酸素、窒素量が著
しく多く(5000ppm以上)、発弧、再点弧共に高い
発生頻度を示した。
これに対して実施例−1〜3に示したようにAl,S
i,V,Ca量が夫々1〜20ppm以内と低いレベルに
制御され、かつ酸素量も1000ppm未満、窒素の量も
100ppm未満と低いレベルに制御されており、これに
対応しその効果として再点弧発生頻度、発弧の両者が前
記比較例1〜7と比較して著しく向上している。しかも
この効果は実施例−1で示したCr量が約50重量%の
Cu−Cr合金のみでなく、Cr量が約80重量%(分
析値76.6%、実施例−2)及びCu量が20重量%
(実施例−3)についても同様にAl,Si,V,C
a,O,N量が同時に低く制御されたときには、効
果が見られた。
更に、前述の比較例1〜7、実施例1〜3ではCu−C
r合金について調査した結果であるが、高導電性材料が
Cuの代りにAgであっても(実施例−4)又、Cu−
Ag合金であっても(実施例−5)、同様の効果が得ら
れている。
尚、Al,Si,V,Ca量が10〜20ppm未満であ
って、かつ酸素、窒素の夫々が1000ppm未満であって
も、酸素、窒素の合計が約1400ppmを持つ比較例−8で
は、第1表のように再点弧発生頻度は低いレベルである
が、発弧が多い。
以上の実験結果から、Cr粒子のなかに存在するAl
量、V量、Ca量は夫々10ppm以下、Si量は20ppm
以下に制限することが必要で、かつ酸素量、窒素量は夫
々1000ppm以下で両者の合計量も1,000ppm以下
に制限することが必要で、これらが同時に満されること
が必要である。上、下限量はAl,Si,V,Caの合
計量として管理すべきで、上限は前記制限値の総量が目
安となるが、下限量は計測精度並びに除去技術に制約さ
れるが、その値は1ppmが現実的な目安となる。
以上Cu−Cr合金中のCrについて検討を加え厳選し
た条件を満すCr粉を確認したが、他の構成元素である
Cu又は/及びAgについてもCrに対する制約条件を
適用することが出来、Cu−Cr合金の信頼性の立場か
ら、不可欠である。
[発明の効果] 以上述べた本発明によれば、再点弧発生頻度を飛躍的に
低減し、これによって真空バルブの信頼性が向上する真
空バルブ用接点材料を提供できる。
【図面の簡単な説明】
第1図は、本発明の真空バルブ用接点材料が適用される
真空バルブの断面図であり、第2図は、接点部の拡大断
面図である。 1…しゃ断室、2…絶縁容器、3a,3b…封止金具、
4a,4b…蓋体、5,6…導電棒、7…電極(固定電
極)、8……電極(可動電極)、9…ベローズ、10,
11…アークシールド、12…ロウづけ部、13a,1
3b…接点、14…ロウづけ取付け部。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01H 33/66 B 8121−5G

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】銅Cu又は/及び銀Agより選ばれた高導
    電性材料とクロームCrよりなる耐火性材料との合金で
    あって、前記Crが前記合金中に20〜80重量%を占
    めたCr−Cu又は/及びAg合金において、前記Cr
    は合金中に粒状で一様に分散しその平均粒径が5〜15
    0μmの範囲にあり、かつ前記Cr中に不純物として存
    在するアルミニウムAl成分の量が10ppm以下、前記
    Cr中に不純物として存在するシリコンSi成分の量が
    20ppm以下、前記Cr中に不純物として存在するバナ
    ジウムV成分の量が10ppm以下、前記Cr中に不純物
    として存在するカルシウムCa成分の量が10ppm以下
    であり、しかも前記Cr中の酸素が1000ppm以下、窒素
    が1000ppm以下でかつCr中の酸素と窒素の合計量が100
    0ppm以下で、さらにCu又は/及びAg中の酸素が1000
    ppm以下、窒素が100ppm以下でかつCu又は/及びA
    g中の酸素と窒素の合計量が100ppm以下であること
    を特徴とする真空バルブ用接点材料。
  2. 【請求項2】銅Cu又は/及び銀Agより選ばれた高導
    電性材料とクロームCrよりなる耐火性材料との合金で
    あって、前記Crが前記合金中に20〜80重量%を占
    めたCr−Cu又は/及びAg合金において、前記Cr
    は合金中に粒状で一様に分散しその平均粒径が5〜15
    0μmの範囲にあり、かつ前記Cu又は/及びAg中に
    不純物として存在するアルミニウムAl成分の量が10
    ppm以下、前記Cu又は/及びAg中に不純物として存
    在するシリコンSi成分の量が20ppm以下、前記Cu
    又は/及びAg中に不純物として存在するバナジウムV
    成分の量が10ppm以下、前記Cu又は/及びAg中に
    不純物として存在するカルシウムCa成分の量が10ppm
    以下であり、しかも前記Cr中の酸素が1000ppm以下、
    窒素が1000ppm以下でかつCr中の酸素と窒素の合計量
    が1000ppm以下で、さらにCu又は/及びAg中の酸素
    が100ppm以下、窒素が100ppm以下でかつCu又は
    /及びAg中の酸素と窒素の合計量が100ppm以下で
    あることを特徴とする真空バルブ用接点材料。
JP60216647A 1985-09-30 1985-09-30 真空バルブ用接点材料 Expired - Lifetime JPH0612646B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60216647A JPH0612646B2 (ja) 1985-09-30 1985-09-30 真空バルブ用接点材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60216647A JPH0612646B2 (ja) 1985-09-30 1985-09-30 真空バルブ用接点材料

Publications (2)

Publication Number Publication Date
JPS6276219A JPS6276219A (ja) 1987-04-08
JPH0612646B2 true JPH0612646B2 (ja) 1994-02-16

Family

ID=16691716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60216647A Expired - Lifetime JPH0612646B2 (ja) 1985-09-30 1985-09-30 真空バルブ用接点材料

Country Status (1)

Country Link
JP (1) JPH0612646B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705998B2 (ja) * 1990-08-02 1998-01-28 株式会社明電舎 電気接点材料の製造方法
JP2908073B2 (ja) * 1991-07-05 1999-06-21 株式会社東芝 真空バルブ用接点合金の製造方法
JP2005310608A (ja) * 2004-04-23 2005-11-04 Shibafu Engineering Corp 真空バルブ
CN110748396B (zh) 2018-07-23 2021-09-07 本田技研工业株式会社 发动机的通风器结构
CN114134362A (zh) * 2021-11-18 2022-03-04 昆明理工大学 一种大尺寸高强度的三级复合多孔镁银合金的制备方法

Also Published As

Publication number Publication date
JPS6276219A (ja) 1987-04-08

Similar Documents

Publication Publication Date Title
EP0435655B1 (en) Silver-metal oxide composite material and process for producing the same
US4743718A (en) Electrical contacts for vacuum interrupter devices
JP2908073B2 (ja) 真空バルブ用接点合金の製造方法
JPH0612646B2 (ja) 真空バルブ用接点材料
US5286441A (en) Silver-metal oxide composite material and process for producing the same
EP0668599B1 (en) Contact material for vacuum valve and method of manufacturing the same
JP2937620B2 (ja) 真空バルブ用接点合金の製造方法
US4229631A (en) Vacuum-type circuit breaker
JPH0682532B2 (ja) 真空バルブ用接点合金の製造方法
JPH079777B2 (ja) 真空バルブ用接点材料
JPH07320608A (ja) 接点材料の製造方法
EP0097906B1 (en) Contacts for vacuum switches
JP3251779B2 (ja) 真空バルブ用接点材料の製造方法
JP3833519B2 (ja) 真空遮断器
JP4619821B2 (ja) 接点材料および真空バルブ
JPH01258330A (ja) 真空バルブ用接点材料の製造方法
JP2006032036A (ja) 真空バルブ用接点材料
US4249944A (en) Method of making electrical contact material
JP2653467B2 (ja) 真空バルブ用接点合金の製造方法
JP2511043B2 (ja) 真空バルブ用接点合金の製造方法
JP2000188045A (ja) 真空遮断器及びそれに用いる真空バルブとその電極
JP2511019B2 (ja) 真空バルブ用接点材料
JPH05101752A (ja) 真空バルブ用接点の製造方法
JPH0347931A (ja) 真空バルブ用接点材料
JPH08239725A (ja) 銀−錫酸化物複合材料

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term