JPH06120416A - 電子音響集積回路とその製造方法 - Google Patents

電子音響集積回路とその製造方法

Info

Publication number
JPH06120416A
JPH06120416A JP26615892A JP26615892A JPH06120416A JP H06120416 A JPH06120416 A JP H06120416A JP 26615892 A JP26615892 A JP 26615892A JP 26615892 A JP26615892 A JP 26615892A JP H06120416 A JPH06120416 A JP H06120416A
Authority
JP
Japan
Prior art keywords
substrate
lithium borate
silicon
integrated circuit
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26615892A
Other languages
English (en)
Other versions
JP2589634B2 (ja
Inventor
Kazuo Eda
和生 江田
Yutaka Taguchi
豊 田口
Akihiro Kanahoshi
章大 金星
Tetsuyoshi Ogura
哲義 小掠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26615892A priority Critical patent/JP2589634B2/ja
Priority to KR1019930020388A priority patent/KR0158898B1/ko
Priority to NO19933534A priority patent/NO310996B1/no
Priority to EP93116068A priority patent/EP0591918B1/en
Priority to DE69325763T priority patent/DE69325763T2/de
Priority to US08/182,561 priority patent/US5747857A/en
Publication of JPH06120416A publication Critical patent/JPH06120416A/ja
Priority to US08/473,932 priority patent/US5668057A/en
Application granted granted Critical
Publication of JP2589634B2 publication Critical patent/JP2589634B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

(57)【要約】 【目的】 小型,軽量,高性能,量産性に優れた各種高
周波装置、例えば電圧制御発振器や、高周波受信装置な
どに適した硼酸リチウム基板を用いた表面弾性波素子や
バルク型振動素子などの電気音響素子を半導体基板に集
積化した電子音響集積回路の構成とその製造方法を提供
することである。 【構成】 半導体基板1上に、硼酸リチウム単結晶圧電
基板からなる表面弾性波素子2やバルク型振動素子その
ものを、直接または珪素または珪素化合物によって接合
し、半導体基板1上に一体に集積化するようにしたもの
である。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、半導体素子と表面弾性
波素子やバルク型振動素子などの電気音響素子を一体に
集積した電子音響集積回路の構成とその製造方法に関す
るもので、特に電圧制御発振器などの高周波装置の小型
化,軽量化,高性能化,製造の容易さを目的とするもの
である。
【0002】
【従来の技術】従来、電気音響素子、例えばニオブ酸リ
チウム(LiNbO3)またはタンタル酸リチウム(LiTaO
3)などを用いた表面弾性波素子(フィルタや共振子等)
や、水晶などのバルク型振動素子を用いた電子回路、例
えば電圧制御発振器(VCO)や高周波受信装置などは、
発振や増幅のための能動素子としてのトランジスタ、お
よび希望の周波数で発振ないしは共振させるための表面
弾性波素子やバルク型振動素子、および若干のコンデン
サや抵抗などの電気部品などにより構成される。
【0003】ここに用いられる表面弾性波素子やバルク
型振動素子は、その振動あるいは共振周波数として、所
定の値を持ち、その性能が十分長期間安定であるよう
に、金属容器などの容器に密封されている。そのため表
面弾性波素子やバルク型振動素子の形状寸法が振動ない
しは共振部分そのものの大きさの数倍になり、自動車電
話、携帯電話など小型であることが極めて重要な装置に
おいては、その小型化が極めて重要な課題となってい
る。
【0004】小型化を図るためには、トランジスタなど
を有する半導体素子と電気音響素子を集積化することが
望ましい。このような例として、例えばSi基板上に圧
電体である窒化アルミニウム(AlN)膜をエピタキシャ
ル成長させ、そこに表面弾性波(SAW)デバイスを形成
したことが報告されている。良好な振動または共振特性
を得るためには、エピタキシャル成長ないしは特定の結
晶軸方向に配向した膜が必要である。しかしながらエピ
タキシャル成長や配向できる膜は、AlNや酸化亜鉛(Z
nO)などの一部の材料に制約されている。
【0005】またバルク型振動素子の場合、例えば水晶
振動子では、自動車電話,携帯電話などで用いられる80
0MHzから1.9GHzといった準マイクロ波帯で使用できる高
周波の振動子を得るためには、水晶振動子の厚みを研磨
あるいはエッチングにより薄板化することが必要であ
る。例えば、精密研磨技術により厚み10μm程度まで水
晶を研磨し、数百MHzで発振したことが報告されてい
る。
【0006】しかし、10μm以下に水晶素板を薄く加工
して振動子として用いるのは、保持や取り扱い上の機械
的強度の問題から、量産まで考えると極めて困難な状況
にある。したがって、実質的に水晶振動子の基本振動モ
ードを使用して、500MHzを越えるような高周波の電圧制
御発振器を得ることは極めて困難であった。高次の振動
モードを用いると、共振のQが低下するため、高性能で
安定な発振器を得るのはやはり困難であった。
【0007】電圧制御発振器の小型・軽量化と、発振周
波数の高周波化を同時に達成する方法の一つとして、例
えば、Grudkowski らによる、”Fundamental-mode VHF/
UHFMinature Acoustic Resonators and Filters on Sil
icon Applied PhysicsLetters Vol.37(11)(1980) pp.99
3-995 に、シリコン基板上にZnO薄膜共振子を形成
し、準マイクロ波帯の共振子を作成する方法が報告され
ている。この場合、膜厚数μmの共振子を容易に形成で
きるため、準マイクロ波帯の共振子を得ることが可能と
なる。しかしZnO薄膜振動素子は共振周波数の温度依
存性や共振のQが水晶などのバルク型振動素子に比べて
劣るため、性能的に十分なものでない。
【0008】これらの課題を解決する方法として、半導
体基板に表面弾性波共振素子として優れた性質を示すニ
オブ酸リチウムやタンタル酸リチウム、あるいはバルク
型振動素子として優れた性質を示す水晶を接合し、エッ
チングなどの加工によって、集積化および圧電体の薄板
化および量産化を図る方法がある。しかしニオブ酸リチ
ウムやタンタル酸リチウム、また水晶は、化学的にかな
り安定な物質であるため、エッチング可能な物質の種類
が非常に限定される。具体的には弗酸を主成分とする強
酸性のエッチング液が用いられる。
【0009】さらに弗酸系エッチング液を用いてもエッ
チング速度は遅いため、エッチングすべき深さが深い場
合、エッチング時間として数時間を必要とする。弗酸系
エッチング液は半導体基板を極めて容易に侵食するた
め、エッチング時に半導体基板の所定の部所を保護膜で
覆う必要がある。しかしながら弗酸系エッチング液に長
時間安定でかつ微細加工の可能な保護膜として有効なも
のがなく、前記圧電体のエッチング加工は、特に精密な
形状加工を行おうとする場合、製造歩留まりおよび製造
時間の面から生産が容易でないという課題がある。
【0010】
【発明が解決しようとする課題】上記の如く、容器に収
納した表面弾性波素子やバルク型振動素子とトランジス
タおよび関連部品を個別に基板上に接続する方法で構成
した高周波装置では、大きくかつ重くなるため、自動車
電話,携帯電話など小型,軽量を最も重要な要素とする
装置においては好ましくない。また圧電特性に優れたニ
オブ酸リチウムやタンタル酸リチウム,水晶を基板に接
合して、エッチングにより形状加工する方法の場合、前
記材料が化学的に安定なため、基板材料の選択に制限が
加わる、エッチング時の保護膜作成が難しい、エッチン
グに時間がかかる、精度の高い微細加工が困難などの種
々の製造上の課題があった。
【0011】本発明は上記従来の問題を解決し、特に電
圧制御発振器などの高周波装置の小型・軽量化,製造の
容易を目的とするものである。
【0012】
【課題を解決するための手段】本発明は、上記課題を解
決するため、半導体基板上に、硼酸リチウム単結晶圧電
基板からなる表面弾性波素子やバルク型振動素子を、直
接または珪素または珪素化合物によって接合し、半導体
基板上に一体に集積化するようにして電子音響集積回路
を構成し、硼酸リチウム単結晶圧電基板の形状加工を弱
酸性エッチング液で行うようにしたものである。
【0013】
【作用】上記のような構成および製造方法を用いること
により、小型,軽量,高性能,およびエッチング加工が
極めて容易で、製造の容易な電子音響集積回路が得られ
る。
【0014】
【実施例】以下本発明の各実施例の電子音響集積回路、
特に電圧制御発振器に適用した場合の構成とその製造方
法について、図面を参照しながら説明する。
【0015】(実施例1)図1は本発明の第1の実施例
の電圧制御発振器の構成を示す模式断面図であり、図1
において、1は半導体基板で、この場合シリコン(Si)
基板で構成される。2はSi基板1の上に接合された硼
酸リチウム単結晶圧電基板(以下、単に硼酸リチウム基
板という)で表面に表面弾性波素子を有し、この場合に
は表面弾性波共振子が形成されている。3はSi基板1
上に形成された電界効果トランジスタ(FET)、4は電
圧により静電容量の変化する可変容量ダイオードチッ
プ、5はコンデンサやインダクタ、抵抗などの受動チッ
プ部品、6は表面弾性波共振子の電極であり、図では表
示されていないが、Si基板1上の各部品と表面弾性波
共振子の電極とは電圧制御発振器になるように配線接続
されている。
【0016】また、硼酸リチウム基板2とSi基板1は
直接接合されている。さらに、このように一体に集積化
された電圧制御発振器を密封容器に収納する。電界効果
トランジスタ3と可変容量ダイオード4と各種受動チッ
プ部品5ならびに表面弾性波共振子(硼酸リチウム基板
2)により発振器が構成され、可変容量ダイオードチッ
プ4に加わる電圧を変えることにより、静電容量を変
え、発振周波数を変えることができる。
【0017】このような構成とすることにより、発振回
路部と表面弾性波共振子を一体として集積化しているた
め、従来よりも大幅な小型化が可能となる。また、表面
弾性波共振子を容器に密閉したものを個別につけたもの
に比べ、体積で約1/10、重量で約1/5にすることは容易
である。
【0018】本実施例では、可変容量ダイオード4や各
種受動チップ部品5をSi基板1上に個別に実装してい
るが、半導体基板に同時に作り込むことも可能である。
【0019】半導体基板と電気音響素子との接合を一般
の樹脂などの接着剤を用いて行うと、耐熱性の面から、
その後は半導体プロセスが行えない、高温まで使用でき
ないなどの問題点があるが、本実施例を用いれば、Si
基板1と硼酸リチウム基板2は直接接合されたものであ
る。したがって界面に他の物質が介在せず、そのような
問題が大幅に改善される。
【0020】また樹脂などの接着剤を用いて接着する
と、Si基板1とその上に貼り付けた硼酸リチウム基板
2の平行度が悪くなり、その後に硼酸リチウム基板上
に、ホトリソグラフィーで形成する表面弾性波素子用の
櫛型電極の寸法精度が悪くなる。例えば、共振周波数が
1GHz程度になると、電極寸法は約1μmのラインおよび
スペース幅となる。したがって平行度が悪いと、準マイ
クロ波帯の表面弾性波共振子を形成することはできな
い。しかし本実施例の方法では、直接接合しているた
め、それぞれの基板の表面形状の精度で決まることにな
るが、これはいずれも単結晶であることから極めて高精
度で加工することができる。この効果は特に高周波で大
きい。
【0021】また樹脂の接着剤を用いた場合、熱に弱い
問題や、熱膨張係数が有機物である樹脂と無機のSi基
板や硼酸リチウム基板とで大きく異なることによる、機
械的歪による長期信頼性の問題などがあったが、本実施
例のように、無機材料で接着することにより、そのよう
な問題も解決される。
【0022】また硼酸リチウム基板のエッチング加工は
弱酸性エッチング液で行うことができるため、生産が極
めて容易である。
【0023】硼酸リチウムは、電気機械結合係数が水晶
よりも大きく、温度依存性は水晶とほぼ同じ程度に良好
で、室温周辺でほぼ温度依存性0の条件があり、表面弾
性波素子として用いた場合、極めて優れた性能を示す。
したがって薄膜で集積化したものよりも共振子、発振子
としてより優れた性能を示す。
【0024】(実施例2)図2は本発明の第2の実施例
の電圧制御発振器の構成を示す模式図であり、図2にお
いて、前記図1と同じ各構成要素1〜6には同じ符号を
付し、その機能は実施例1と同様である。7はSi基板
1および硼酸リチウム基板2の接合に用いられた珪素ま
たは酸化珪素などの珪素化合物膜で、これによりSi基
板1と硼酸リチウム基板2は直接接合されている。それ
以外の構成は前記実施例1と同様であり、電圧制御発振
器を形成した場合の小型・軽量化の効果も同様である。
【0025】また本実施例では、Si基板1と硼酸リチ
ウム基板2の接合を珪素または酸化珪素などの珪素化合
物膜7で行っているが、耐熱性の効果は、珪素または酸
化珪素などの珪素化合物が無機物で、高温まで熱的に安
定であることから、実施例1と同様の効果が得られる。
また基板加工のための平行度の問題も、珪素や酸化珪素
など珪素化合物膜7の形成は一般にnmの程度で制御で
きるため、実施例1と同様解決される。また硼酸リチウ
ム基板を用いているため、エッチングによる形状の微細
加工の容易さも実施例1と同様である。
【0026】(実施例3)図1に示した本発明の電圧制
御発振器の製造方法の第1の実施例を以下説明する。
【0027】まず、図1に示すところの半導体基板であ
るSi基板1と硼酸リチウム基板2の表面を極めて清浄
にした後、それぞれの表面を親水処理する。具体的に
は、Si基板表面は弗酸系エッチング液で、硼酸リチウ
ム基板表面は、非常に希釈したバッファード弗酸系エッ
チング液で軽く表面のエッチング処理を行う。
【0028】次に純水で十分洗浄し、すぐに一様に重ね
合わせると、それぞれの基板表面に吸着した水の構成成
分、例えば水酸基によって、容易に直接接合が得られ
る。この状態で100から300℃の低温で熱処理を行う。こ
の低温熱処理により接合の強度が強まる。
【0029】次に弱酸性エッチング液、例えば酢酸を純
水で希釈したエッチング液を用い、硼酸リチウム基板2
の必要部分、すなわち表面弾性波共振子を形成する部分
(図面で右側)のみを残して他の部品はエッチング除去す
る。硼酸リチウムは弱酸性溶液で極めて容易にエッチン
グされるため、硼酸リチウム基板2の厚みが通常のウェ
ーハとしての標準的厚み、例えば400μm程度あっても極
めて容易にエッチングすることができる。例えば、酢酸
を希釈したエッチング液を用いた場合のエッチング速度
は、pH4.5程度で10μm/h、pH3程度で100μm/h程度
であり、十分な速度を有している。また酢酸のような弱
酸エッチング液ではSi基板表面はほとんどエッチング
されないので、Si基板表面が損傷を受けることもな
い。これにより、硼酸リチウム基板2を島状、例えば2
×1.5mm角の矩形に加工する。
【0030】次にこの状態で、必要に応じ更に最初の熱
処理温度よりも高い温度で熱処理を行うと、その接合は
更に強化される。熱処理温度が高い場合、Si基板1と
硼酸リチウム基板2の熱膨張率の差があるため、形状,
寸法などに多少の制約が加えられる。そのため大きいウ
ェーハでは高温の熱処理が困難であるが、本実施例のよ
うに小さい島状に形状加工しておくと容易に高温での熱
処理が可能で、接合強度,耐熱性ともに向上し、その後
の高温プロセス処理が可能となる。
【0031】また接合ムラなども小面積の方が発生しに
くいため製造歩留まりが向上する。この後電界効果トラ
ンジスタ3などの形成に必要な各種プロセス処理や配線
に必要な各種電極形成などを実施し、前記実施例1(図
1)で説明した素子の構成の電圧制御発振器が得られ
る。
【0032】また、電極6はアルミニウムやクロムを下
地にした金などが用いられる。接合強化の熱処理効果
は、例えば、200℃で、1時間程度保持するだけでも接
合強度は数倍に上がり、数十kg/cm2の強度が得られる。
実質的には100℃以上で効果がある。800℃以上に温度を
上げると、硼酸リチウム基板表面からリチウムが抜けて
いくため表面の特性劣化が大きく表面弾性波共振子とし
ての性能が劣化するので、接合熱処理温度は800℃以下
が好ましい。
【0033】直接接合のメカニズムは、それぞれの基板
表面に吸着した水酸基などのファンデアワールス力によ
り初期の接合が起こり、その後熱処理することによっ
て、接合界面から水の構成成分である水素などが抜けて
いき、Si基板表面の珪素、および硼酸リチウム基板中
の酸素が結合して、接合強度が上がるものと考えられ
る。また接合部に電圧を加えることによって接合温度を
下げることも可能である。
【0034】硼酸リチウムは、エッチングに酢酸などの
弱酸を用いても、高速でエッチング可能であるため本実
施例の構成の素子の製造に極めて都合が良い。水晶やニ
オブ酸リチウム、タンタル酸リチウムは100%の弗酸な
いしは弗硝酸などの強酸を用いてもそのエッチング速度
は1時間あたりでもμmオーダーと極めて遅く、また、
これに耐えられる微細加工可能な保護膜に良いものがな
いとか、エッチング中に半導体基板が先に侵食されるな
どの問題があるが、本実施例で用いた酢酸などの弱酸に
よるエッチングであればそのような問題は一挙に解決さ
れる。
【0035】(実施例4)図2に示した本発明の電圧制
御発振器の製造方法の第2の実施例を以下説明する。
【0036】まず、半導体基板であるSi基板1および
硼酸リチウム基板2の基板表面上に化学気相成長法(C
VD)などにより珪素化合物膜(酸化珪素膜)7を形成す
る。膜厚は0.1−3μm程度であり、この厚みの実現なら
びに均一性の制御はCVDなどの製造方法を用いれば容
易である。もちろんスパッタリングや真空蒸着でも可能
である。その後、珪素化合物膜表面を親水処理した後、
純水で洗浄して、すぐに一様に重ね合わせると、表面に
吸着した水の構成成分、例えば水酸基によって、容易に
直接接合が得られる。この状態で100から300℃の低温で
熱処理を行う。この低温熱処理により接合の強度が強ま
る。この後、前記実施例3(製造方法の第1の実施例)と
同様にして、弱酸性エッチング液によるエッチング形状
加工、その後の必要に応じた熱処理、各種プロセス処理
を行うことにより前記実施例2(図2)で説明した素子の
構成の電圧制御発振器を得る。これにより前記実施例3
で述べたと同様の各種効果、特に製造の容易さの効果が
得られる。
【0037】直接接合のメカニズムは、実施例3とほぼ
同様で、珪素化合物膜(酸化珪素)表面に吸着した水酸基
などのファンデアワールス力により初期の接合が起こ
り、その後熱処理することによって、接合界面から水の
構成成分である水素などが抜けていき、酸化珪素の珪素
と酸素、およびSi基板表面の珪素、および硼酸リチウ
ム基板中の酸素が結合して、接合強度が上がるものと考
えられる。したがってこの場合、一方の基板、例えば硼
酸リチウム基板の表面にのみ、あるいはSi基板表面に
のみ非晶質珪素膜を形成した場合でも、直接接合は可能
である。また接合部に電圧を加えることによって接合温
度を下げることも可能である。
【0038】(実施例5)図2に示した本発明の電圧制
御発振器の製造方法の第3の実施例を以下説明する。
【0039】前記実施例4(製造方法の第2の実施例)と
同様にして、半導体基板としてのSi基板1および硼酸
リチウム基板2の表面に、非晶質珪素の珪素化合物膜7
を、プラズマCVDなどにより形成する。形成する非晶
質珪素の珪素化合物膜厚は、実施例4の場合とほぼ同
様、0.1−3μm程度である。その後、実施例4と同様
に、非晶質珪素の珪素化合物膜表面を極めて清浄にし、
純水で十分洗浄して、すぐに一様に重ね合わせることに
より、表面に吸着した水の構成成分、例えば水酸基によ
って容易に直接接合が得られる。この状態で100から300
℃の低温で熱処理を行う。この低温熱処理により接合の
強度が強まる。この後、実施例3(製造方法の第1の実
施例)と同様にして、弱酸性エッチング液によるエッチ
ング形状加工、その後の必要に応じた熱処理、各種プロ
セス処理を行うことにより実施例2(図2)で説明した素
子の構成の電圧制御発振器を得る。これにより前記実施
例3で述べたと同様の各種効果、特に製造の容易さの効
果を得られる。本実施例においても接合部に電圧を加え
ることによって接合温度を下げることも可能である。
【0040】直接接合のメカニズムは、実施例3とほぼ
同様で、非晶質珪素の珪素化合物膜表面に吸着した水酸
基などのファンデアワールス力により初期の接合が起こ
り、その後熱処理することによって、接合界面から水の
構成成分である水素などが抜けていき、非晶質珪素中の
珪素と表面の酸素、およびSi基板表面の珪素、および
硼酸リチウム基板中の酸素が結合して、接合強度が上が
るものと考えられる。したがってこの場合も実施例4と
同様、一方の基板、例えば硼酸リチウム基板の表面にの
み、あるいはSi基板表面にのみ非晶質珪素の珪素化合
物膜を形成した場合でも、直接接合は可能である。また
接合部に電圧を加えることによって接合温度を下げるこ
とも可能である。
【0041】(実施例6)図3は本発明の電圧制御発振
器の構成を示す第3の実施例の模式断面図である。図3
において、1は半導体基板であるSi基板、11はSi基板
1の上に接合された硼酸リチウムバルク型振動素子、そ
の他図1と同じ各構成要素3〜5には同じ符号を付し、
その機能は実施例1と同様である。12は硼酸リチウムバ
ルク型振動素子の上電極、13は同下電極であり、下電極
13とSi基板1上の配線とは、図では表示されていない
が、バイアホール(基板に貫通孔を設け、その内部を導
体で被い、基板の上下を電気的に接続したもの)などで
接続されている。
【0042】さらにSi基板1上の各部品と硼酸リチウ
ムバルク型振動素子11の上下電極12,13とは、図ではや
はり表示されていないが、電圧制御発振器になるように
配線接続されている。Si基板1と硼酸リチウムバルク
型振動素子11は直接接合されている。さらに、このよう
に一体に集積化された電圧制御発振器を密封容器に収納
する。電界効界トランジスタ3と可変容量ダイオード4
や各種受動チップ部品5ならびに硼酸リチウムバルク型
振動素子11により発振器が構成されている。
【0043】ここで、可変容量ダイオード4に加わる電
圧を変えることにより、静電容量を変え、発振周波数を
変えることができる。このような構造とすることによ
り、発振回路部と水晶振動子を一体として集積化してい
るため、従来よりも大幅な小型化が可能となる。また、
硼酸リチウムバルク型振動素子11を容器に密閉したもの
を個別につけたものに比べ、体積で約1/10、重量で約1/
5にすることは容易である。
【0044】本実施例では、接合をSi基板と硼酸リチ
ウム基板の直接接合で行っており、耐熱性,耐環境性,
微細加工性などすべて前記実施例1で述べたと同じ効果
が得られるものである。
【0045】また、硼酸リチウムは、水晶よりも電気機
械結合係数が大きく、かつ温度依存性は水晶と同程度に
良好であることから、薄膜でバルク型振動素子を形成し
たものよりもはるかに優れた性能が得られる。
【0046】(実施例7)図4は本発明の電圧制御発振
器の構成を示す第4の実施例の模式断面図である。図4
において、7を除く各構成素子1〜5,11〜13は前記図
3に示す実施例6と同様である。7はSi基板1と硼酸
リチウム基板に有するバルク型振動素子11の接合に用い
られた珪素または酸化珪素などの珪素化合物膜で、これ
によりSi基板1と硼酸リチウムバルク型振動素子11は
直接接合されている。それ以外の構成は実施例6(図3)
と同様であり、電圧制御発振器を形成した場合の小型軽
量化の効果も同様である。
【0047】また本実施例では、Si基板と硼酸リチウ
ムバルク型振動子11の接合を珪素または酸化珪素などの
珪素化合物膜7で行っているが、耐熱性の効果は、珪素
または酸化珪素などの珪素化合物が無機物で、高温まで
熱的に安定であることから、実施例1(図1)と同様の効
果が得られる。また基板加工のための平行度の問題も、
珪素や酸化珪素などの珪素化合物膜の形成は一般にnm
の程度で制御できるため、実施例1と同様解決される。
また硼酸リチウム基板を用いているため、エッチングに
よる形状の微細加工の容易さも実施例1と同様である。
【0048】(実施例8)図3で示した本発明の電圧制
御発振器の製造方法の第4の実施例を以下説明する。
【0049】硼酸リチウムバルク型振動素子11を形成す
べき部所の半導体基板であるSi基板1に貫通部1aを予
め形成しておく。次にSi基板1と硼酸リチウム基板で
なるバルク型振動素子11の表面を極めて清浄にし、それ
ぞれの表面を親水処理する。具体的には、Si基板表面
は弗酸系エッチング液で、硼酸リチウム基板(硼酸リチ
ウムバルク型振動素子11)表面は、非常に希釈したバッ
ファード弗酸系エッチング液で軽く表面のエッチング処
理を行う。
【0050】次に純水で十分洗浄し、すぐに一様に重ね
合わせると、それぞれの基板表面に吸着した水の構成成
分、例えば水酸基によって容易に直接接合が得られる。
この状態で100から300℃の低温で熱処理を行う。この低
温熱処理により接合の強度が強まる。次に弱酸性エッチ
ング液、例えば酢酸を純水で希釈したエッチング液を用
い、硼酸リチウム基板の必要部分、すなわちバルク型振
動素子11を形成する部分で、これは予めSi基板に貫通
部1aを設けた部分に対応するが、ここの必要部分のみ
を残して他の部分はエッチング除去する。
【0051】硼酸リチウムは弱酸性溶液で極めて容易に
エッチングされるため、硼酸リチウム基板の厚みが通常
のウェーハの厚み、500μm程度あっても極めて容易にエ
ッチングすることができる。またこのようなエッチング
液ではSi基板表面はほとんどエッチングされないの
で、Si基板が損傷を受けることもない。これにより硼
酸リチウム基板を島状、例えば1.5×1mm角の矩形に加
工する。この状態で、必要に応じて更に、最初の熱処理
温度よりも高い温度で熱処理を行うと、この接合は更に
強化される。熱処理温度が高い場合、Si基板と硼酸リ
チウム基板の熱膨張率に差があるため、形状,寸法など
に多少の制約が加えられる。
【0052】そのため大きいウェーハでは高温の熱処理
が困難であるが、本実施例のように小さい島状に形状加
工しておくと容易に高温での熱処理が可能で、接合強
度、耐熱性ともに向上し、その後の高温プロセス処理が
可能となる。また接合ムラなども小面積の方が発生しに
くいため製造歩留まりが向上する。
【0053】さらにこの後、矩形状に残した硼酸リチウ
ム基板の薄板化処理を行う。エッチング液は先ほどの弱
酸性エッチング液を用いる。弱酸性エッチング液ではS
i基板表面はほとんど損傷を受けないので、とくにSi基
板部に保護膜の形成を必要としない。またエッチング速
度は十分速いので、厚みを5μm以下にエッチング加工
することは容易である。これにより硼酸リチウム基板を
薄板化する。この後トランジスタなどの形成に必要な各
種プロセス処理や配線に必要な各種電極形成などを実施
する。
【0054】バルク型振動素子11の部分には上下には電
極12,13を形成する。この部分はSi基板貫通部1aに形
成されているのでバルク振動が可能となる。効果的に振
動が起こるように、電極によるエネルギー閉じこめ構造
にしたり、振動部のみをさらにエッチングにより形状加
工することによって、形状的にエネルギー閉じこめを行
ったり、Si基板との接合部の形状をできるだけ応力の
入らないような形にすることにより、バルク型振動に悪
影響がでないような処理を行う。下電極13は、ビアホー
ルなどによって半導体基板上面に導かれ電気的に接続さ
れる。これにより前記実施例6(図3)で説明した素子の
構成の電圧制御発振器が得られる。
【0055】また、電極12,13はアルミニウムやクロム
を下地にした金などが用いられる。接合強化の熱処理効
果は、例えば、200℃で、1時間程度保持するだけでも
接合強度は数倍に上がり、数十kg/cm2の強度が得られ
る。実質的には100℃以上で効果がある。800℃以上に温
度を上げると、硼酸リチウム基板表面からリチウムが抜
けていくため表面の特性劣化が大きく振動子としての性
能が劣化するので、接合熱処理温度は800℃以下が好ま
しい。
【0056】直接接合のメカニズムは、実施例1(図1)
と同様であり、効果も同様の効果が得られる。本実施例
の場合には、厚み5μm以下のバルク型振動素子が容易
に作成できるという製造上の効果も得られる。これによ
りGHz帯の超高周波振動素子を得ることができる。
【0057】(実施例9)図2に示した本発明の電圧制
御発振器の製造方法の第5の実施例を以下説明する。
【0058】実施例4(製造方法の第2の実施例)と同様
にして、半導体基板としてのSi基板表面および硼酸リ
チウム基板表面に、酸化珪素膜を、CVDなどにより形
成し、酸化珪素によるSi基板と硼酸リチウム基板の接
合膜を形成する。その後は実施例8(製造方法の第4の
実施例)と同様にして、Si基板上に薄板の硼酸リチウム
バルク型振動素子を酸化珪素により接合した実施例4の
図2に示した構成の電圧制御発振器を得る。これにより
実施例8で述べたと同様の各種効果、特に製造の容易さ
の効果が得られる。
【0059】(実施例10)図2に示した本発明の電圧制
御発振器の製造方法の第6の実施例を以下説明する。
【0060】実施例5(製造方法の第3の実施例)と同様
にして、半導体基板としてのSi基板表面および硼酸リ
チウム基板表面に、非晶質珪素の珪素化合物膜7を、プ
ラズマCVDなどにより形成し、非晶質珪素によるSi
基板と硼酸リチウム基板の接合膜を形成する。その後、
実施例8(製造方法の第4の実施例)と同様にして、Si
基板1上に薄板の硼酸リチウムバルク型振動素子11を非
晶質珪素により接合した実施例4の図2に示した構成の
電圧制御発振器を得る。これにより実施例8で述べたと
同様の各種効果、特に製造の容易さの効果が得られる。
【0061】(実施例11)図5は本発明の電圧制御発振
器の構成を示す第5の実施例の模式断面図である。図5
において、14はIII−V化合物半導体基板であるGaAs
基板、2はGaAs基板14の上に接合された硼酸リチウム
基板であって表面弾性波素子を有し、この場合には表面
弾性波共振子が形成されている。その他7を除く各構成
要素3〜6は、前記実施例1(図1)と同様である。7は
GaAs基板14と硼酸リチウム基板2を接合している珪素
または珪素化合物膜である。回路構成は実施例1と同様
で、電圧制御発振器になるように配線接続されている。
このように一体に集積化された電圧制御発振器を密封容
器に収納することにより、実施例1と同様、小型・軽量
化面で実施例1と同様の効果が得られる。
【0062】本実施例では、GaAs基板と硼酸リチウム
基板の接合を珪素または珪素化合物膜で行っており、耐
熱性,耐環境性,微細加工性などすべて実施例1で述べ
たと同じ効果が得られるものである。
【0063】GaAs,InP,InGaAsなどのIII−V
化合物半導体は一般にSiより電子移動度が大きい。Ga
Asの場合、Siよりも約6倍電子移動度が大きい。その
ためIII−V化合物半導体を用いれば、一般に高速のト
ランジスタの形成が可能である。トランジスタとして数
十Hzで動作するものをつくることが容易であり、Si基
板に集積したものよりもより高周波での動作が可能とな
る。
【0064】(実施例12)図6は本発明の電圧制御発振
器の構成を示す第6の実施例の模式断面図である。図6
において、各構成要素は前記実施例7(図4)および実施
例11(図5)と同様である。すなわちこの構成は、実施例
7において半導体基板にSi基板1のかわりにIII−V化
合物半導体であるGaAs基板14を用いた点が異なるだけ
であり、その機能,効果は実施例7および実施例11とほ
ぼ同様である。すなわち実施例7よりもさらに高周波で
の動作に適している。
【0065】(実施例13)図5に示した本発明の電圧制
御発振器の製造方法の第7の実施例を以下説明する。
【0066】実施例4(製造方法の第2の実施例)と同様
にして、III−V化合物半導体基板としてのGaAs基板1
4および硼酸リチウム基板2の各表面に、珪素化合物膜
(酸化珪素膜)7を、CVDなどにより形成し、酸化珪素
によるGaAs基板14と硼酸リチウム基板2の接合膜を形
成する。その後は実施例4と同様にして、GaAs基板上
に硼酸リチウム表面弾性波素子を酸化珪素により接合し
た実施例11(図5)の構成の電圧制御発振器を得る。これ
により実施例4で述べたと同様の各種効果、特に製造の
容易さの効果が得られる。
【0067】直接接合のメカニズムは、実施例4とほぼ
同様であり、したがって、両基板表面に酸化珪素膜を形
成するか、あるいはGaAs基板表面にのみに酸化珪素膜
を形成した場合でも、直接接合は可能である。
【0068】(実施例14)図5に示した本発明の電圧制
御発振器の製造方法の第8の実施例を以下説明する。
【0069】前記実施例13と同様にして、III−V化合
物半導体基板としてのGaAs基板14および硼酸リチウム
基板2の表面に、非晶質珪素の珪素化合物膜7を、プラ
ズマCVDなどにより形成し、非晶質珪素によるGaAs
基板と硼酸リチウム基板の接合膜を形成する。その後、
実施例5(製造方法の第3の実施例)と同様にして、Ga
As基板上に硼酸リチウム表面弾性波素子を非晶質珪素
により接合した実施例11(図5)の構成の電圧制御発振器
を得る。これにより実施例5で述べたと同様の各種効
果、特に製造の容易さの効果が得られる。
【0070】直接接合のメカニズムは、実施例5とほぼ
同様であり、したがって、両基板表面に非晶質珪素膜を
形成するか、あるいはGaAs基板表面にのみに非晶質珪
素膜を形成した場合でも、直接接合は可能である。
【0071】(実施例15)図6で示した本発明の電圧制
御発振器の製造方法の第9の実施例を以下説明する。
【0072】実施例4(製造方法の第2および第5の実
施例)と同様にして、III−V化合物半導体基板としての
GaAs基板14および硼酸リチウム基板2の表面に、酸化
珪素膜7を、CVDなどにより形成し、酸化珪素による
GaAs基板と硼酸リチウム基板の接合膜を形成する。そ
の後は実施例9と同様にして、GaAs基板上に硼酸リチ
ウムバルク型振動素子を酸化珪素により接合した実施例
12(図6)の構成の電圧制御発振器を得る。これにより実
施例9で述べたと同様の各種効果、特に製造の容易さの
効果が得られる。
【0073】直接接合のメカニズムは、実施例4とほぼ
同様であり、したがって、両基板表面に酸化珪素膜を形
成するか、あるいはGaAs基板表面にのみに酸化珪素膜
を形成した場合でも、直接接合は可能である。
【0074】(実施例16)図6に示した本発明の電圧制
御発振器の製造方法の第10の実施例を以下説明する。
【0075】実施例5および9(製造方法の第3の実施
例および第5の実施例)と同様にして、III−V化合物半
導体基板としてのGaAs基板14および硼酸リチウム基板
2の各表面に、非晶質珪素の珪素化合物膜を、プラズマ
CVDなどにより形成し、非晶質珪素によるGaAs基板
14と硼酸リチウム基板2の接合膜を形成する。その後、
実施例9と同様にして、GaAs基板上に硼酸リチウムバ
ルク型振動素子を非晶質珪素により接合した実施例12
(図6)の構成の電圧制御発振器を得る。これにより実施
例9で述べたと同様の各種効果、特に製造の容易さの効
果が得られる。
【0076】直接接合のメカニズムは、実施例5とほぼ
同様であり、したがって、両基板表面に非晶質珪素膜を
形成するか、あるいはGaAs基板表面のみに非晶質珪素
膜を形成した場合でも、直接接合は可能である。
【0077】珪素化合物として、本実施例ではいずれも
酸化珪素の例で示したが、CVDなどで形成した酸化珪
素はその酸素含有量が条件によって多少異なる。また窒
素も含まれる場合がある。いずれの場合も直接接合が得
られる。直接接合の可否は、その物質の結合の性質が関
与しており、珪素または酸化珪素のように共有結合的性
質を有していれば、ほぼ同様の効果が得られものと思わ
れる。
【0078】また以上説明した各実施例では、いずれも
電圧制御発振器の回路例で説明したが、基本的には、電
気音響素子と半導体素子からなる電子音響集積回路一般
に広く適用できることは明らかである。
【0079】
【発明の効果】以上説明したような本発明の電子音響集
積回路とその製造方法は、以下に記載されるような効果
を有する。
【0080】いずれの実施例においても、まず第1に、
発振や増幅を起こす基本構成要素であるトランジスタと
硼酸リチウム表面弾性波素子やバルク型振動素子などの
電気音響素子を、一体に集積しているので、電圧制御発
振器などの高周波装置を大幅に小型・軽量化する事が可
能となり、従来の容器に収納した表面弾性波素子やバル
ク型振動素子を用いる場合に比べ、容積、重さとも大幅
に少なくすることができる。
【0081】本実施例の接合方法は、半導体基板と電気
音響素子を直接または膜厚の制御された珪素系無機材料
で接合しているので、平面性が極めて良く、振動周波数
の設定に必要な、サブミクロンのホトリソグラフィーが
可能となるとともに、熱や振動などに対する信頼性も大
幅に向上するものである。
【0082】本実施例では、電圧制御発振器の構成を示
したが、基本的には電気音響素子とトランジスタなどの
能動素子を一体に集積できるものであり、電圧制御発振
器に限らず、フィルタと増幅器を集積化した高周波受信
装置など広く電子音響集積回路一般に適用できるもので
ある。
【0083】また実施例3,8等に示したように、硼酸
リチウム基板は酢酸などの弱酸性液体でエッチング形状
加工が可能であることから、本実施例で示した接合およ
び低温熱処理−硼酸リチウム基板のエッチング分離−高
温熱処理方式の製造方法をとることにより、接合ムラの
低減、より大きな半導体基板を用いての製造が可能にな
るなどから、製造歩留まりの向上など生産面での効果も
大きい。
【0084】また、5μm以下の薄板を作るような微細
加工も容易に行えることから、従来困難であった、準マ
イクロ波帯(数百MHzから数GHz)での、基本波振動による
高周波装置の製造が容易となる。これにより高性能,低
価格化が可能となる。
【0085】またIII−V化合物半導体であるGaAs基
板上に集積化した場合、シリコントランジスタと集積化
した場合よりもトランジスタとしての高周波特性が数倍
よくなり、より高周波で動作することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施例の電圧制御発振器の構成
を示す模式断面図である。
【図2】本発明の第2の実施例の電圧制御発振器の構成
を示す模式断面図である。
【図3】本発明の第3の実施例の電圧制御発振器の構成
を示す模式断面図である。
【図4】本発明の第4の実施例の電圧制御発振器の構成
を示す模式断面図である。
【図5】本発明の第5の実施例の電圧制御発振器の構成
を示す模式断面図である。
【図6】本発明の第6の実施例の電圧制御発振器の構成
を示す模式断面図である。
【符号の説明】
1…半導体(Si)基板、 2…硼酸リチウム単結晶圧電
基板(表面弾性波素子)、3…電界効果トランジスタ(F
ET)、 4…可変容量ダイオードチップ、 5…受動
チップ部品、 6…表面弾性波素子の電極、 7…珪素
または酸化珪素などの珪素化合物膜、 11…硼酸リチウ
ムバルク型振動素子、 12…上電極、 13…下電極、
14…III−V化合物半導体(GaAs)基板。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H03H 9/25 C 7259−5J (72)発明者 小掠 哲義 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

Claims (11)

    【特許請求の範囲】
  1. 【請求項1】 半導体基板に硼酸リチウム単結晶圧電基
    板が直接接合されており、前記硼酸リチウム単結晶圧電
    基板に表面弾性波素子を有することを特徴とする電子音
    響集積回路。
  2. 【請求項2】 半導体基板に硼酸リチウム単結晶圧電基
    板が直接接合されており、前記硼酸リチウム単結晶圧電
    基板にバルク型振動素子を有することを特徴とする電子
    音響集積回路。
  3. 【請求項3】 半導体基板に硼酸リチウム単結晶圧電基
    板が、珪素または珪素化合物によって直接接合されてお
    り、前記硼酸リチウム単結晶圧電基板に表面弾性波素子
    を有することを特徴とする電子音響集積回路。
  4. 【請求項4】 半導体基板に硼酸リチウム単結晶圧電基
    板が、珪素または珪素化合物によって直接接合されてお
    り、前記硼酸リチウム単結晶圧電基板にバルク型振動素
    子を有することを特徴とする電子音響集積回路。
  5. 【請求項5】 半導体基板がシリコン(Si)基板である
    ことを特徴とする請求項3または4記載の電子音響集積
    回路。
  6. 【請求項6】 半導体基板がIII−V化合物半導体基板
    であることを特徴とする請求項3または4記載の電子音
    響集積回路。
  7. 【請求項7】 III−V化合物半導体としてGaAsを用
    いたことを特徴とする請求項6記載の電子音響集積回
    路。
  8. 【請求項8】 電子音響集積回路が電圧制御発振器であ
    ることを特徴とする請求項1,2,3または4記載の電
    子音響集積回路。
  9. 【請求項9】 珪素が非晶質であることを特徴とする請
    求項3または4記載の電子音響集積回路。
  10. 【請求項10】 珪素化合物が酸化珪素であることを特
    徴とする請求項3または4記載の電子音響集積回路。
  11. 【請求項11】 半導体基板と硼酸リチウム単結晶圧電
    基板を直接接合した後、低温で熱処理を行い、その後弱
    酸性液体によるエッチングによって、硼酸リチウム単結
    晶圧電基板を島状に分離加工し、その後前記低温熱処理
    温度よりも高温で熱処理を行ったことを特徴とする請求
    項1,2,3または4記載の電子音響集積回路の製造方
    法。
JP26615892A 1991-03-13 1992-10-05 電子音響集積回路とその製造方法 Expired - Fee Related JP2589634B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP26615892A JP2589634B2 (ja) 1992-10-05 1992-10-05 電子音響集積回路とその製造方法
NO19933534A NO310996B1 (no) 1992-10-05 1993-10-04 Elektroakustisk hybrid integrert krets og fremgangsmate til fremstilling av samme
KR1019930020388A KR0158898B1 (ko) 1992-10-05 1993-10-04 전자음향집적회로와 그 제조방법
DE69325763T DE69325763T2 (de) 1992-10-05 1993-10-05 Elektroakustische Hybride integrierte Schaltung und Methode zu deren Herstellung
EP93116068A EP0591918B1 (en) 1992-10-05 1993-10-05 Electro-acoustic hybrid integrated circuit and manufacturing method thereof
US08/182,561 US5747857A (en) 1991-03-13 1994-01-18 Electronic components having high-frequency elements and methods of manufacture therefor
US08/473,932 US5668057A (en) 1991-03-13 1995-06-07 Methods of manufacture for electronic components having high-frequency elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26615892A JP2589634B2 (ja) 1992-10-05 1992-10-05 電子音響集積回路とその製造方法

Publications (2)

Publication Number Publication Date
JPH06120416A true JPH06120416A (ja) 1994-04-28
JP2589634B2 JP2589634B2 (ja) 1997-03-12

Family

ID=17427095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26615892A Expired - Fee Related JP2589634B2 (ja) 1991-03-13 1992-10-05 電子音響集積回路とその製造方法

Country Status (1)

Country Link
JP (1) JP2589634B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6789297B2 (en) 1999-04-28 2004-09-14 Murata Manufacturing Co., Ltd Method of manufacturing a surface acoustic wave element
US6995634B2 (en) 2003-01-29 2006-02-07 Seiko Epson Corporation Surface-acoustic-wave component adapted to electronic circuit and device, and manufacturing method therefor
US7005947B2 (en) 2003-03-26 2006-02-28 Seiko Epson Corporation Surface acoustic wave element, frequency filter, oscillator, electronic circuit, and electronic instrument
JP2006140271A (ja) * 2004-11-11 2006-06-01 Toshiba Corp 半導体装置
US7221920B2 (en) 2003-07-24 2007-05-22 Kabushiki Kaisha Toshiba Voltage controlled oscillator, frequency synthesizer and communication apparatus
JP2007204320A (ja) * 2006-02-02 2007-08-16 Nec Tokin Corp 複合圧電基板及びその製造方法
EP1635457B1 (en) * 2004-09-13 2011-06-15 Seiko Epson Corporation Electronic component, circuit board, electronic apparatus, and method for manufacturing the electronic component
US8453312B2 (en) * 2005-03-21 2013-06-04 Honeywell International Inc. Method of manufacturing vibrating micromechanical structures
US20130147319A1 (en) * 2011-12-12 2013-06-13 International Business Machines Corporation Loading element of a film bulk acoustic resonator
US9628048B2 (en) 2006-07-27 2017-04-18 Samsung Electronics Co., Ltd. Multi-band filter module and electronic device comprising the same
WO2019116897A1 (ja) * 2017-12-13 2019-06-20 株式会社村田製作所 電子部品
US10476471B2 (en) 2017-09-26 2019-11-12 Murata Manufacturing Co., Ltd. Composite device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679487A (en) * 1979-12-04 1981-06-30 Fuji Photo Film Co Ltd Amplefier for elastic surface wave
JPS61101200A (ja) * 1984-10-24 1986-05-20 Hitachi Ltd 超音波探触子およびその製造方法
JPS61183940A (ja) * 1985-02-08 1986-08-16 Toshiba Corp 半導体装置の製造方法
JPS61232661A (ja) * 1985-04-09 1986-10-16 Toshiba Corp シリコン結晶体の接合方法
JPH03296316A (ja) * 1990-04-13 1991-12-27 Nikko Kyodo Co Ltd 弾性表面波共振子フィルタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679487A (en) * 1979-12-04 1981-06-30 Fuji Photo Film Co Ltd Amplefier for elastic surface wave
JPS61101200A (ja) * 1984-10-24 1986-05-20 Hitachi Ltd 超音波探触子およびその製造方法
JPS61183940A (ja) * 1985-02-08 1986-08-16 Toshiba Corp 半導体装置の製造方法
JPS61232661A (ja) * 1985-04-09 1986-10-16 Toshiba Corp シリコン結晶体の接合方法
JPH03296316A (ja) * 1990-04-13 1991-12-27 Nikko Kyodo Co Ltd 弾性表面波共振子フィルタ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6810566B2 (en) 1999-04-28 2004-11-02 Murata Manufacturing Co., Ltd Method of manufacturing a surface acoustic wave element
US6789297B2 (en) 1999-04-28 2004-09-14 Murata Manufacturing Co., Ltd Method of manufacturing a surface acoustic wave element
US6995634B2 (en) 2003-01-29 2006-02-07 Seiko Epson Corporation Surface-acoustic-wave component adapted to electronic circuit and device, and manufacturing method therefor
US7005947B2 (en) 2003-03-26 2006-02-28 Seiko Epson Corporation Surface acoustic wave element, frequency filter, oscillator, electronic circuit, and electronic instrument
US7221920B2 (en) 2003-07-24 2007-05-22 Kabushiki Kaisha Toshiba Voltage controlled oscillator, frequency synthesizer and communication apparatus
EP1635457B1 (en) * 2004-09-13 2011-06-15 Seiko Epson Corporation Electronic component, circuit board, electronic apparatus, and method for manufacturing the electronic component
JP2006140271A (ja) * 2004-11-11 2006-06-01 Toshiba Corp 半導体装置
US8453312B2 (en) * 2005-03-21 2013-06-04 Honeywell International Inc. Method of manufacturing vibrating micromechanical structures
JP2007204320A (ja) * 2006-02-02 2007-08-16 Nec Tokin Corp 複合圧電基板及びその製造方法
US9628048B2 (en) 2006-07-27 2017-04-18 Samsung Electronics Co., Ltd. Multi-band filter module and electronic device comprising the same
US20130147319A1 (en) * 2011-12-12 2013-06-13 International Business Machines Corporation Loading element of a film bulk acoustic resonator
US8910355B2 (en) * 2011-12-12 2014-12-16 International Business Machines Corporation Method of manufacturing a film bulk acoustic resonator with a loading element
US10476471B2 (en) 2017-09-26 2019-11-12 Murata Manufacturing Co., Ltd. Composite device
WO2019116897A1 (ja) * 2017-12-13 2019-06-20 株式会社村田製作所 電子部品
US11502664B2 (en) 2017-12-13 2022-11-15 Murata Manufacturing Co., Ltd. Electronic component

Also Published As

Publication number Publication date
JP2589634B2 (ja) 1997-03-12

Similar Documents

Publication Publication Date Title
US5668057A (en) Methods of manufacture for electronic components having high-frequency elements
US5747857A (en) Electronic components having high-frequency elements and methods of manufacture therefor
EP0531985B1 (en) Electro-acoustic hybrid integrated circuit and manufacturing method thereof
US5884378A (en) Method of making an enhanced quality factor resonator
US5696423A (en) Temperature compenated resonator and method
JP3435789B2 (ja) 表面弾性波素子
US5446330A (en) Surface acoustic wave device having a lamination structure
JP3703773B2 (ja) 水晶振動子の製造方法
US6239536B1 (en) Encapsulated thin-film resonator and fabrication method
JP2589634B2 (ja) 電子音響集積回路とその製造方法
JP2643620B2 (ja) 電圧制御発振器とその製造方法
JP2002344279A (ja) 圧電薄膜共振子
KR0158898B1 (ko) 전자음향집적회로와 그 제조방법
JP2007189492A (ja) 圧電基板の製造方法、圧電基板、圧電振動子、及び圧電発振器
JP2001168674A (ja) 圧電共振子及び電子機器
JPH08153915A (ja) 複合圧電基板とその製造方法
JP2574612B2 (ja) 電子音響集積回路およびその製造方法
JP2002374145A (ja) 圧電薄膜共振子
Eda et al. Direct bonding of piezoelectric materials and its applications
JPH09221392A (ja) 複合圧電基板とその製造方法
JP2003273691A (ja) 表面弾性波素子
JP3860698B2 (ja) 圧電共振子
Eda et al. One-chip quartz crystal oscillator using a direct-bonding technique of quartz crystal onto silicon
JP2607199B2 (ja) ハイブリッド集積回路とその製造方法
JPH0786866A (ja) 複合単結晶圧電基板とその製造方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees