JPH06102536A - Thin film transistor array - Google Patents

Thin film transistor array

Info

Publication number
JPH06102536A
JPH06102536A JP25251692A JP25251692A JPH06102536A JP H06102536 A JPH06102536 A JP H06102536A JP 25251692 A JP25251692 A JP 25251692A JP 25251692 A JP25251692 A JP 25251692A JP H06102536 A JPH06102536 A JP H06102536A
Authority
JP
Japan
Prior art keywords
line
gate
thin film
drain
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25251692A
Other languages
Japanese (ja)
Inventor
Shinzo Matsumoto
信三 松本
Kuniyuki Matsunaga
邦之 松永
Shunichi Kumaoka
俊一 熊岡
Yukihiro Sato
幸宏 佐藤
Junichi Owada
淳一 大和田
Hironori Kondo
裕則 近藤
Norio Tsukii
教男 月井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25251692A priority Critical patent/JPH06102536A/en
Publication of JPH06102536A publication Critical patent/JPH06102536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To remedy a line defect due to a short circuit between a data line and a gate line to prevent a spot defect, and to disable the line defect to be remedied owing to the irradiation of a semiconductor layer for intersection insulation with light, and also to adapt the thin film transistor array to a monochromatic display device by maintaining a high opening rate and approximating a pixel shape to a square. CONSTITUTION:Branch paths DL1 and DL2 which branch a data line DL at the part of intersection with a gate line GL and are connected in parallel are provided. An electric conductor DL3 to a drain electrode SD2 is branched from the common bus part of the data line DL. Semiconductor layers AS1 and AS2 inserted into the intersection of the data line DL and gate line GL are separated by branch paths DL1 and DL2. The branch paths DL1 and DL2, thin film transistors TFT1 and TFT2, and a holding capacitor Cadd are arranged in a straight line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜トランジスタアレ
イに係り、特に、薄膜トランジスタを使用したアクティ
ブ・マトリクス方式の表示装置、なかでも液晶表示装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor array, and more particularly to an active matrix type display device using thin film transistors, and more particularly to a liquid crystal display device.

【0002】[0002]

【従来の技術】アクティブ・マトリクス方式の液晶表示
装置は、マトリクス状に配列された複数の画素電極のそ
れぞれに対応して非線形素子(スイッチング素子)を設
けたものである。各画素における液晶は理論的には常時
駆動(デューティ比 1.0)されているので、時分割駆動
方式を採用している、いわゆる単純マトリクス方式と比
べてアクティブ方式はコントラストが良く、特にカラー
液晶表示装置では欠かせない技術となりつつある。スイ
ッチング素子として代表的なものとしては薄膜トランジ
スタ(TFT)がある。
2. Description of the Related Art An active matrix type liquid crystal display device is provided with a non-linear element (switching element) corresponding to each of a plurality of pixel electrodes arranged in a matrix. Since the liquid crystal in each pixel is theoretically always driven (duty ratio 1.0), the active system has better contrast than the so-called simple matrix system, which employs the time-division driving system, and especially the color liquid crystal display device. Then it is becoming an indispensable technology. A typical example of the switching element is a thin film transistor (TFT).

【0003】なお、薄膜トランジスタを使用したアクテ
ィブ・マトリクス方式の液晶表示装置は、例えば特開昭
63−309921号公報や、「冗長構成を採用した1
2.5型アクティブ・マトリクス方式カラー液晶ディスプ
レイ」、日経エレクトロニクス、頁193〜210、1986年12
月15日、日経マグロウヒル社発行、で知られている。
An active matrix type liquid crystal display device using a thin film transistor is disclosed in, for example, Japanese Patent Laid-Open No. 63-309921 and "1.
2.5-inch active matrix color LCD ", Nikkei Electronics, pages 193-210, 1986 12
Known on the 15th of March, published by Nikkei McGraw-Hill, Inc.

【0004】このようなアクティブ・マトリクス方式の
液晶表示装置を製造する際に生じる欠陥の一つとして、
トランジスタ部のゲート−ドレイン短絡や配線部のゲー
ト線−ドレイン線短絡があり、このような欠陥は、大面
積になるに従ってその確率が著しく増え、線状の欠陥と
なって目につきやすくなるので、深刻である。このよう
な線状の欠陥を救済する方法としてドレイン線又はゲー
ト線の一方をそれらの交差部で並列に分岐させること
が、例えば特開昭58−88985号公報、同61−2
49078号公報、実開昭61−181号公報で知られ
ている。
As one of the defects that occur when manufacturing such an active matrix type liquid crystal display device,
There is a gate-drain short circuit in the transistor part and a gate line-drain line short circuit in the wiring part.The probability of such defects increases remarkably as the area increases, and it becomes a linear defect that is easily noticeable. Serious. As a method of repairing such a linear defect, it is possible to branch one of the drain line and the gate line in parallel at their intersections, for example, Japanese Patent Laid-Open Nos. 58-88985 and 61-2.
It is known from Japanese Patent Publication No. 49078 and Japanese Utility Model Publication No. 61-181.

【0005】[0005]

【発明が解決しようとする課題】本発明の一つの目的
は、線欠陥や点欠陥を救済できる薄膜トランジスタアレ
イを提供することである。
SUMMARY OF THE INVENTION One object of the present invention is to provide a thin film transistor array capable of relieving line defects and point defects.

【0006】本発明の他の目的は、レーザ修正による救
済が簡単にできる薄膜トランジスタアレイを提供するこ
とである。
Another object of the present invention is to provide a thin film transistor array which can be easily repaired by laser correction.

【0007】本発明の他の目的は、開口率の高い薄膜ト
ランジスタアレイを提供することである。
Another object of the present invention is to provide a thin film transistor array having a high aperture ratio.

【0008】本発明の更に他の目的は、信頼性の高い薄
膜トランジスタアレイを提供することである。
Still another object of the present invention is to provide a highly reliable thin film transistor array.

【0009】[0009]

【課題を解決するための手段】本発明の一実施例によれ
ば、ドレイン線にゲート線との交差部で共通のバス部分
から並列に枝分かれする分岐パスを設け、上記共通のバ
ス部分から枝分かれしてドレイン電極に接続される別の
分岐配線を設けた薄膜トランジスタアレイ液晶表示装置
が提供される。
According to one embodiment of the present invention, a drain path is provided with a branch path that branches in parallel from a common bus portion at an intersection with a gate line, and branches from the common bus portion. Then, a thin film transistor array liquid crystal display device provided with another branch wiring connected to the drain electrode is provided.

【0010】[0010]

【作用】ドレイン線とゲート線の短絡による線欠陥は、
該当する分岐パスを切断することにより救済され、その
際、ドレイン電極につながる配線は分岐パスからでなく
共通のバス部分から枝分かれしているため影響されず、
点欠陥の副作用を未然に防止できる。
[Function] Line defects caused by a short circuit between the drain line and the gate line
It is relieved by cutting the corresponding branch path, and at that time, the wiring connected to the drain electrode is not affected because it is branched from the common bus part instead of the branch path,
The side effects of point defects can be prevented.

【0011】[0011]

【実施例】本発明、本発明の更に他の目的及び本発明の
更に他の特徴は図面を参照した以下の説明から明らかと
なるであろう。
The invention, further objects of the invention and further features of the invention will be apparent from the following description with reference to the drawings.

【0012】《アクティブ・マトリクス液晶表示装置》
以下、アクティブ・マトリクス方式のカラー液晶表示装
置にこの発明を適用した実施例を説明する。なお、以下
説明する図面で、同一機能を有するものは同一符号を付
け、その繰り返しの説明は省略する。
<< Active Matrix Liquid Crystal Display Device >>
An embodiment in which the present invention is applied to an active matrix type color liquid crystal display device will be described below. In the drawings described below, components having the same function are designated by the same reference numeral, and repeated description thereof will be omitted.

【0013】《マトリクス部の概要》図2はこの発明が
適用されるアクティブ・マトリクス方式カラー液晶表示
装置の一画素とその周辺を示す平面図、図3は図2の3
−3切断線における断面を示す図、図4は図2の4−4
切断線における断面図である。
<< Outline of Matrix Unit >> FIG. 2 is a plan view showing one pixel and its periphery of an active matrix type color liquid crystal display device to which the present invention is applied, and FIG.
-3 is a view showing a section taken along a cutting line, and FIG.
It is sectional drawing in a cutting line.

【0014】図2に示すように、各画素は隣接する2本
の走査信号線(ゲート信号線または水平信号線)GL
と、隣接する2本の映像信号線(ドレイン信号線または
垂直信号線)DLとの交差領域内(4本の信号線で囲ま
れた領域内)に配置されている。各画素は薄膜トランジ
スタTFT、透明画素電極ITO1および保持容量素子
Caddを含む。走査信号線GLは図では左右方向に延在
し、上下方向に複数本配置されている。映像信号線DL
は上下方向に延在し、左右方向に複数本配置されてい
る。
As shown in FIG. 2, each pixel has two adjacent scanning signal lines (gate signal lines or horizontal signal lines) GL.
And an adjacent two video signal lines (drain signal line or vertical signal line) DL are intersected with each other (in a region surrounded by four signal lines). Each pixel includes a thin film transistor TFT, a transparent pixel electrode ITO1 and a storage capacitor element Cadd. The scanning signal lines GL extend in the left-right direction in the figure, and a plurality of scanning signal lines GL are arranged in the vertical direction. Video signal line DL
Extend in the up-down direction and are arranged in the left-right direction.

【0015】図3に示すように、液晶層LCを基準にし
て下部透明ガラス基板SUB1側には薄膜トランジスタ
TFTおよび透明画素電極ITO1が形成され、上部透
明ガラス基板SUB2側には遮光用ブラックマトリクス
パターンBMが形成されている。透明ガラス基板SUB
1、SUB2の両面にはディップ処理等によって形成さ
れた酸化シリコン膜SIOが設けられている。
As shown in FIG. 3, a thin film transistor TFT and a transparent pixel electrode ITO1 are formed on the lower transparent glass substrate SUB1 side with respect to the liquid crystal layer LC, and a light-shielding black matrix pattern BM is formed on the upper transparent glass substrate SUB2 side. Are formed. Transparent glass substrate SUB
Silicon oxide films SIO formed by dip processing or the like are provided on both surfaces of 1 and SUB2.

【0016】上部透明ガラス基板SUB2の内側(液晶
LC側)の表面には、遮光膜BM、保護膜PSV2、共
通透明画素電極ITO2(COM)および上部配向膜O
RI2が順次積層して設けられている。
On the inner surface (liquid crystal LC side) of the upper transparent glass substrate SUB2, the light shielding film BM, the protective film PSV2, the common transparent pixel electrode ITO2 (COM) and the upper alignment film O are formed.
RI2 is sequentially stacked.

【0017】《マトリクス周辺の概要》図5は上下のガ
ラス基板SUB1,SUB2を含む表示パネルPNLの
マトリクス(AR)周辺の要部平面を、図6はその周辺
部を更に誇張した平面を、図7は図5及び図6のパネル
左上角部に対応するシール部SL付近の拡大平面を示す
図である。また、図8は図3の断面を中央にして、左側
に図7の8a−8a切断線における断面を、右側に映像
信号駆動回路が接続されるべき外部接続端子DTM付近
の断面を示す図である。同様に図9は、左側に走査回路
が接続されるべき外部接続端子GTM付近の断面を、右
側に外部接続端子が無いところのシール部付近の断面を
示す図である。
<< Outline of Matrix Periphery >> FIG. 5 is a plan view of a main part around a matrix (AR) of a display panel PNL including upper and lower glass substrates SUB1 and SUB2, and FIG. 7 is a diagram showing an enlarged plane near the seal portion SL corresponding to the upper left corner of the panel in FIGS. 5 and 6. Further, FIG. 8 is a diagram showing a cross section taken along a cutting line 8a-8a in FIG. 7 on the left side and a cross section near the external connection terminal DTM to which the video signal drive circuit is to be connected on the right side with the cross section of FIG. 3 as the center. is there. Similarly, FIG. 9 is a diagram showing a cross section near the external connection terminal GTM to which the scanning circuit is to be connected on the left side and a cross section near the seal portion where there is no external connection terminal on the right side.

【0018】このパネルの製造では、小さいサイズであ
ればスループット向上のため1枚のガラス基板で複数個
分のデバイスを同時に加工してから分割し、大きいサイ
ズであれば製造設備の共用のためどの品種でも標準化さ
れた大きさのガラス基板を加工してから各品種に合った
サイズに小さくし、いずれの場合も一通りの工程を経て
からガラスを切断する。図5〜図7は後者の例を示すも
ので、図5、図6の両図とも上下基板SUB1,SUB
2の切断後を、図7は切断前を表しており、LNは両基
板の切断前の縁を、CT1とCT2はそれぞれ基板SU
B1,SUB2の切断すべき位置を示す。いずれの場合
も、完成状態では外部接続端子群Tg,Td(添字略)
が存在する(図で上下辺と左辺の)部分はそれらを露出
するように上側基板SUB2の大きさが下側基板SUB
1よりも内側に制限されている。端子群Tg,Tdはそ
れぞれ後述する走査回路接続用端子GTM、映像信号回
路接続用端子DTMとそれらの引出配線部を集積回路チ
ップCHIが搭載されたテープキャリアパッケージTC
P(図18、図19)の単位に複数本まとめて名付けた
ものである。各群のマトリクス部から外部接続端子部に
至るまでの引出配線は、両端に近づくにつれ傾斜してい
る。これは、パッケージTCPの配列ピッチ及び各パッ
ケージTCPにおける接続端子ピッチに表示パネルPN
Lの端子DTM,GTMを合わせるためである。
[0018] Any For this panel In the manufacture of, if small size divided from simultaneously processing a plurality fraction of the device in one glass substrate for increased throughput, manufacturing facilities if large size shared In each type of product, a standardized glass substrate is processed, and then the size is reduced to a size suitable for each product. In each case, the glass is cut after going through one step. 5 to 7 show an example of the latter case. In both of FIGS. 5 and 6, the upper and lower substrates SUB1 and SUB are shown.
2 shows the state after cutting, and FIG. 7 shows the state before cutting. LN is the edge of both substrates before cutting, and CT1 and CT2 are the substrate SU.
The positions where B1 and SUB2 should be cut are shown. In either case, in the completed state, the external connection terminal groups Tg, Td (subscripts omitted)
Are present (on the upper and lower sides and the left side in the figure), the size of the upper substrate SUB2 is such that the lower substrate SUB2 is exposed.
It is restricted to the inside of 1. The terminal groups Tg and Td are a tape carrier package TC in which a scanning circuit connection terminal GTM, a video signal circuit connection terminal DTM, and their lead-out wiring portions, which will be described later, are mounted on an integrated circuit chip CHI.
A plurality of Ps (FIGS. 18 and 19) are collectively named. The lead wiring from the matrix portion of each group to the external connection terminal portion is inclined toward both ends. This is due to the arrangement pitch of the package TCP and the connection terminal pitch of each package TCP on the display panel PN.
This is for matching the L terminals DTM and GTM.

【0019】透明ガラス基板SUB1、SUB2の間に
はその縁に沿って、液晶封入口INJを除き、液晶LC
を封止するようにシールパターンSLが形成される。シ
ール材は例えばエポキシ樹脂から成る。上部透明ガラス
基板SUB2側の共通透明画素電極ITO2は、少なく
とも一箇所において、本実施例ではパネルの4角で銀ペ
ースト材AGPによって下部透明ガラス基板SUB1側
に形成されたその引出配線INTに接続されている。こ
の引出配線INTは後述するゲート端子GTM、ドレイ
ン端子DTMと同一製造工程で形成される。
Between the transparent glass substrates SUB1 and SUB2, along the edge thereof, except for the liquid crystal sealing port INJ, the liquid crystal LC
A seal pattern SL is formed so as to seal the. The sealing material is made of epoxy resin, for example. The common transparent pixel electrode ITO2 on the upper transparent glass substrate SUB2 side is connected to at least one of the lead wirings INT formed on the lower transparent glass substrate SUB1 side by the silver paste material AGP at four corners of the panel in this embodiment. ing. The lead wiring INT is formed in the same manufacturing process as a gate terminal GTM and a drain terminal DTM described later.

【0020】配向膜ORI1、ORI2、透明画素電極
ITO1、共通透明画素電極ITO2、それぞれの層
は、シールパターンSLの内側に形成される。偏光板P
OL1、POL2はそれぞれ下部透明ガラス基板SUB
1、上部透明ガラス基板SUB2の外側の表面に形成さ
れている。液晶LCは液晶分子の向きを設定する下部配
向膜ORI1と上部配向膜ORI2との間でシールパタ
ーンSLで仕切られた領域に封入されている。下部配向
膜ORI1は下部透明ガラス基板SUB1側の保護膜P
SV1の上部に形成される。
The orientation films ORI1 and ORI2, the transparent pixel electrode ITO1 and the common transparent pixel electrode ITO2, and the respective layers are formed inside the seal pattern SL. Polarizing plate P
OL1 and POL2 are lower transparent glass substrates SUB, respectively.
1. Formed on the outer surface of the upper transparent glass substrate SUB2. The liquid crystal LC is enclosed in a region partitioned by a seal pattern SL between a lower alignment film ORI1 and an upper alignment film ORI2 that set the orientation of liquid crystal molecules. The lower alignment film ORI1 is a protective film P on the lower transparent glass substrate SUB1 side.
It is formed on top of SV1.

【0021】この液晶表示装置は、下部透明ガラス基板
SUB1側、上部透明ガラス基板SUB2側で別個に種
々の層を積み重ね、シールパターンSLを基板SUB2
側に形成し、下部透明ガラス基板SUB1と上部透明ガ
ラス基板SUB2とを重ね合わせ、シール材SLの開口
部INJから液晶LCを注入し、注入口INJをエポキ
シ樹脂などで封止し、上下基板を切断することによって
組み立てられる。
In this liquid crystal display device, various layers are separately stacked on the lower transparent glass substrate SUB1 side and the upper transparent glass substrate SUB2 side, and the seal pattern SL is provided on the substrate SUB2.
Formed on the side, the lower transparent glass substrate SUB1 and the upper transparent glass substrate SUB2 are overlapped, the liquid crystal LC is injected from the opening INJ of the sealing material SL, and the injection port INJ is sealed with epoxy resin or the like to form the upper and lower substrates. It is assembled by cutting.

【0022】《実施例の特徴点》次に、図1及び図2を
参照して実施例の特徴点、要点を説明するが、個々の具
体的な構成や他の部分との関連性等は《薄膜トランジス
タTFT》以降の説明を参照されたい。なお、図2の一
部分を拡大し、線欠陥や点欠陥を救済するためにレーザ
ビームにより切断する箇所A〜Hを示したのが、図1で
ある。
<< Characteristics of the Embodiment >> Next, the characteristics and the main points of the embodiment will be described with reference to FIGS. 1 and 2. However, the specific configuration of each embodiment and the relevance to other parts will be described. << Thin Film Transistor TFT >> Please refer to the following description. It is to be noted that FIG. 1 shows a part of FIG. 2 enlarged to show points A to H cut by a laser beam in order to repair line defects and point defects.

【0023】ドレイン線DLは、ゲート線GLと交差す
る部分で並列に枝分かれする部分DL1、DL2を有す
る。従って、もしデータライン分岐線DL1とゲートラ
インGLとが短絡した場合は、図のA及びCの箇所を切
断すればデータラインDLとゲートラインGLとの短絡
は解消され、交差部を挟んで上下のデータラインは他方
の分岐線DL2を通じて電気的接続が維持される。逆
に、データライン分岐線DL2とゲートラインGLとが
短絡した場合は、図のB及びDの箇所を切断すれば良
く、同様に線欠陥が救済される。
The drain line DL has portions DL1 and DL2 branching in parallel at a portion intersecting with the gate line GL. Therefore, if the data line branch line DL1 and the gate line GL are short-circuited, the short circuit between the data line DL and the gate line GL can be eliminated by cutting the points A and C in the figure, and the upper and lower parts can be sandwiched at the intersection. The data line is electrically connected to the other branch line DL2. On the contrary, when the data line branch line DL2 and the gate line GL are short-circuited, the points B and D in the figure may be cut, and the line defect is similarly relieved.

【0024】薄膜トランジスタのドレイン電極SD2へ
の配線DL3は、前述した公開公報に記載されているよ
うな並列分岐配線部DL1、DL2の一つから分岐する
のではなく、その根本(共通バス部分)から分岐してい
る。従って、線欠陥救済のため分岐線DL1、DL2を
切断しても、ドレイン分岐線DL3は切断箇所A−C、
B−Dの間から分岐せず根本(共通バスライン)から分
岐しているので、前記従来技術のような点欠陥を招く副
作用は未然に防止される。
The wiring DL3 to the drain electrode SD2 of the thin film transistor is not branched from one of the parallel branch wiring portions DL1 and DL2 as described in the above-mentioned publication, but from its root (common bus portion). It is branched. Therefore, even if the branch lines DL1 and DL2 are cut for line defect relief, the drain branch line DL3 is cut at the cut points A-C.
Since it is branched from the root (common bus line) without being branched from between B and D, the side effect that causes the point defect as in the above-mentioned conventional technique is prevented in advance.

【0025】薄膜トランジスタ部での欠陥は次のように
して救済される。
Defects in the thin film transistor section are relieved as follows.

【0026】ソース、ドレイン電極SD1、SD2はト
ランジスタのチャンネル幅を決定する部分(半導体層A
S上)では広い幅で形成され、画素電極ITO1、ドレ
イン分岐線SD3につながる部分L〜Pは細い幅で形成
され切断箇所E〜Hの領域が形成される。ドレイン電極
SD2とゲート電極GTが短絡した場合はE及び/又は
Fの箇所を切断して線欠陥を救済できる。ソース電極S
D1とゲート電極GTが短絡した場合はG又はHの箇所
を切断すれば点欠陥を救済できる。
The source and drain electrodes SD1 and SD2 are portions (semiconductor layer A) that determine the channel width of the transistor.
The upper part (S) is formed to have a wide width, and the parts L to P connected to the pixel electrode ITO1 and the drain branch line SD3 are formed to have a narrow width to form cut regions E to H. When the drain electrode SD2 and the gate electrode GT are short-circuited, the line defect can be relieved by cutting the E and / or F portions. Source electrode S
When D1 and the gate electrode GT are short-circuited, the point defect can be remedied by cutting the location of G or H.

【0027】データライン分岐線DL1、DL2及びソ
ース、ドレイン電極への接続部L〜Pは並行に配置され
ているので、図中ハッチで示したレーザ照射領域A〜H
の長方形の方向を同一にしたり、更には図に示すように
その大きさまでをも同一とすることが可能である。この
ようにレーザ照射領域の形状や大きさを同じようにでき
るレイアウトにすれば、レーザ修正装置のレーザ光通過
スリットの形状の変更幅を小さくしたり、不要とするこ
とができ、手動修正の場合は大幅な労力低減を、自動の
場合はスループット向上をもたらす。
Since the data line branch lines DL1 and DL2 and the connection parts L to P to the source and drain electrodes are arranged in parallel, the laser irradiation regions A to H shown by hatching in the figure.
It is possible to make the directions of the rectangles the same, or even the sizes up to the same as shown in the figure. By arranging the laser irradiation area so that the shape and size of the laser irradiation area are the same, it is possible to reduce the change width of the shape of the laser beam passage slit of the laser correction device, or to eliminate the need for this. Results in a significant reduction in labor and, in the automatic case, improved throughput.

【0028】また、データライン分岐線DL1、DL2
及びソース、ドレイン電極への接続部L〜Pの並行部は
図で左右一直線に位置する箇所があるので、前述した労
力低減やスループット向上効果は更に大きくなる。
Data line branch lines DL1 and DL2 are also provided.
Also, since the parallel portions of the connection portions L to P to the source and drain electrodes are located in a straight line on the left and right in the figure, the above-mentioned labor reduction and throughput improvement effects are further enhanced.

【0029】図1、2に示すように、データライン分岐
部DL1、DL2、薄膜トランジスタTFT1、TFT
2及び付加容量Caddは横方向にほぼ一直線に配列さ
れているので、このような配置は開口率を高く維持で
き、また、一画素や画素電極の形状もほぼ正方形にまと
めることができるので特にモノクロ表示デバイスで効果
的である。
As shown in FIGS. 1 and 2, the data line branch portions DL1 and DL2, the thin film transistors TFT1 and TFT.
2 and the additional capacitance Cadd are arranged in a straight line in the horizontal direction, such an arrangement can maintain a high aperture ratio, and the shape of one pixel or pixel electrode can be grouped into a substantially square shape. Effective in display devices.

【0030】データラインDLとゲートラインGLとの
交差部に挿入されたi型半導体層AS1、AS2は両者
間の短絡を防止する目的で設けられているが、それぞれ
をデータライン分岐部DL1、DL2ごとに分離して形
成しているのは、半導体層に光があたるといわゆる光導
通現象が起き分岐部DL1、DL2間が半導体層により
導通してしまうという不具合を未然に防止するためであ
る。なお、この交差部には基板SUB2側からの光は遮
光膜BMによって遮られるが、基板SUB1側からの光
を遮る層は設けられていない。
The i-type semiconductor layers AS1 and AS2 inserted at the intersections of the data lines DL and the gate lines GL are provided for the purpose of preventing a short circuit between them, but the respective data line branch portions DL1 and DL2 are provided. The reason why the semiconductor layers are formed separately is to prevent inconvenience that a so-called photoconduction phenomenon occurs when the semiconductor layer is exposed to light and the branch portions DL1 and DL2 are electrically connected by the semiconductor layer. Although the light from the substrate SUB2 side is blocked by the light blocking film BM at this intersection, a layer that blocks light from the substrate SUB1 side is not provided.

【0031】i型半導体層AS1、AS2の形状を単純
な矩形にしていないのは次の狙いがあるからである。、
例えば半導体層AS1は、その輪郭線がデータ線DLと
重なる部分が上側で4直線分ある。従って、上方からの
データ線DLが半導体層AS1の段差を乗り越える方向
は、上側、左側及び右側からの3方向となり、製造プロ
セス条件等により段差部におけるステップカバレッジの
善し悪しに方向依存性がある場合、断線の確率を減らす
ことができる。
The reason why the shape of the i-type semiconductor layers AS1 and AS2 is not a simple rectangle is because of the following aim. ,
For example, the semiconductor layer AS1 has four straight lines whose contour lines overlap the data lines DL. Therefore, the direction in which the data line DL from above crosses the step of the semiconductor layer AS1 is three directions from the upper side, the left side, and the right side, and if the step coverage in the step portion depends on the manufacturing process conditions and the like, The probability of disconnection can be reduced.

【0032】付加容量Cadd部に設けられた補助導電
層d2、d3の構成及び役目については《保持容量素子
Caddの構造》の節で後述する。
The structure and function of the auxiliary conductive layers d2 and d3 provided in the additional capacitance Cadd portion will be described later in the section <Structure of the storage capacitor element Cadd>.

【0033】《薄膜トランジスタTFT》次に、図2、
図3を中心に、TFT基板SUB1側の構成を詳しく説
明する。
<< Thin Film Transistor TFT >> Next, referring to FIG.
The configuration on the TFT substrate SUB1 side will be described in detail with reference to FIG.

【0034】薄膜トランジスタTFTは、ゲート電極G
Tに正のバイアスを印加すると、ソース−ドレイン間の
チャネル抵抗が小さくなり、バイアスを零にすると、チ
ャネル抵抗は大きくなるように動作する。
The thin film transistor TFT has a gate electrode G
When a positive bias is applied to T, the channel resistance between the source and the drain decreases, and when the bias is zero, the channel resistance increases.

【0035】各画素には複数(2つ)の薄膜トランジス
タTFT1、TFT2が冗長して設けられる。薄膜トラ
ンジスタTFT1、TFT2のそれぞれは、実質的に同
一サイズ(チャネル長、チャネル幅が同じ)で構成さ
れ、ゲート電極GT、ゲート絶縁膜GI、i型(真性、
intrinsic、導電型決定不純物がドープされていない)
非晶質シリコン(Si)からなるi型半導体層AS、一
対のソース電極SD1、ドレイン電極SD2を有す。な
お、ソース、ドレインは本来その間のバイアス極性によ
って決まるもので、この液晶表示装置の回路ではその極
性は動作中反転するので、ソース、ドレインは動作中入
れ替わると理解されたい。しかし、以下の説明では、便
宜上一方をソース、他方をドレインと固定して表現す
る。
A plurality of (two) thin film transistors TFT1 and TFT2 are redundantly provided in each pixel. Each of the thin film transistors TFT1 and TFT2 has substantially the same size (channel length and channel width are the same), and has a gate electrode GT, a gate insulating film GI, and an i-type (intrinsic,
intrinsic, conductivity type determination impurities are not doped)
It has an i-type semiconductor layer AS made of amorphous silicon (Si), a pair of source electrodes SD1 and a drain electrode SD2. It should be understood that the source and drain are originally determined by the bias polarity between them, and the polarity is inverted during operation in the circuit of this liquid crystal display device, so it should be understood that the source and drain are switched during operation. However, in the following description, for convenience, one is fixed as the source and the other is fixed as the drain.

【0036】《ゲート電極GT》ゲート電極GTは走査
信号線GLの幅を広げた(ドレイン線DLとの交差部に
比べ)部分で構成されている。ゲート電極GTは薄膜ト
ランジスタTFT1、TFT2のそれぞれの能動領域を
越えるよう突出している。薄膜トランジスタTFT1、
TFT2のそれぞれのゲート電極GTは、一体に(共通
のゲート電極として)構成されており、走査信号線GL
と兼用されている。本例では、ゲート電極GTは、単層
の第2導電膜g2で形成されている。第2導電膜g2と
しては例えばスパッタで形成されたアルミニウム(A
l)膜が用いられ、その上にはAlの陽極酸化膜AOF
が設けられている。
<< Gate Electrode GT >> The gate electrode GT is composed of a portion where the width of the scanning signal line GL is widened (compared to the intersection with the drain line DL). The gate electrode GT projects so as to extend beyond the respective active regions of the thin film transistors TFT1 and TFT2. Thin film transistor TFT1,
The respective gate electrodes GT of the TFT2 are integrally configured (as a common gate electrode), and the scanning signal line GL is formed.
It is also used as. In this example, the gate electrode GT is formed of the single-layer second conductive film g2. As the second conductive film g2, for example, aluminum (A
l) a film is used, on which an anodized film AOF of Al is formed.
Is provided.

【0037】このゲート電極GTはi型半導体層ASを
完全に覆うよう(下方からみて)それより大き目に形成
され、i型半導体層ASに外光やバックライト光が当た
らないよう工夫されている。
The gate electrode GT is formed larger than the i-type semiconductor layer AS so as to completely cover the i-type semiconductor layer AS (when viewed from below), and is devised so that the i-type semiconductor layer AS is not exposed to external light or backlight light. .

【0038】《走査信号線GL》走査信号線GLは第2
導電膜g2で構成されている。この走査信号線GLの第
2導電膜g2はゲート電極GTの第2導電膜g2と同一
製造工程で形成され、かつ一体に構成されている。ま
た、走査信号線GL上にもAlの陽極酸化膜AOFが設
けられている。
<< Scanning Signal Line GL >> The scanning signal line GL is the second
It is composed of a conductive film g2. The second conductive film g2 of the scanning signal line GL is formed in the same manufacturing process as the second conductive film g2 of the gate electrode GT, and is integrally formed. Also, an Al anodic oxide film AOF is provided on the scanning signal line GL.

【0039】《絶縁膜GI》絶縁膜GIは、薄膜トラン
ジスタTFT1、TFT2において、ゲート電極GTと
共に半導体層ASに電界を与えるためのゲート絶縁膜と
して使用される。絶縁膜GIはゲート電極GTおよび走
査信号線GLの上層に形成されている。絶縁膜GIとし
ては例えばプラズマCVDで形成された窒化シリコン膜
が選ばれ、1200〜2700Åの厚さに(本実施例で
は、2000Å程度)形成される。ゲート絶縁膜GIは
図7に示すように、マトリクス部ARの全体を囲むよう
に形成され、周辺部は外部接続端子DTM,GTMを露
出するよう除去されている。絶縁膜GIは走査信号線G
Lと映像信号線DLの電気的絶縁にも寄与している。
<< Insulating Film GI >> The insulating film GI is used as a gate insulating film for applying an electric field to the semiconductor layer AS in the thin film transistors TFT1 and TFT2 together with the gate electrode GT. The insulating film GI is formed on the gate electrode GT and the scanning signal line GL. As the insulating film GI, for example, a silicon nitride film formed by plasma CVD is selected and is formed to a thickness of 1200 to 2700Å (in this embodiment, about 2000Å). As shown in FIG. 7, the gate insulating film GI is formed so as to surround the entire matrix portion AR, and the peripheral portion is removed so as to expose the external connection terminals DTM and GTM. The insulating film GI is a scanning signal line G
It also contributes to the electrical insulation between L and the video signal line DL.

【0040】《i型半導体層AS》i型半導体層AS
は、本例では薄膜トランジスタTFT1、TFT2のそ
れぞれに独立した島となるよう形成され、非晶質シリコ
ンで、200〜2200Åの厚さに(本実施例では、2
000Å程度の膜厚)で形成される。層d0はオーミッ
クコンタクト用のリン(P)をドープしたN(+)型非晶
質シリコン半導体層であり、下側にi型半導体層ASが
存在し、上側に導電層d2(d3)が存在するところの
みに残されている i型半導体層は走査信号線GLと映像信号線DLとの交
差部(クロスオーバ部)の両者間にも設けられている。
この交差部のi型半導体層AS1、AS2は交差部にお
ける走査信号線GLと映像信号線DLとの短絡を低減す
る。
<< i-type semiconductor layer AS >> i-type semiconductor layer AS
In this example, each of the thin film transistors TFT1 and TFT2 is formed as an independent island, and is made of amorphous silicon and has a thickness of 200 to 2200Å (2 in this example.
The film thickness is about 000Å). The layer d0 is a phosphorus (P) -doped N (+)-type amorphous silicon semiconductor layer for ohmic contact, the i-type semiconductor layer AS exists on the lower side, and the conductive layer d2 (d3) exists on the upper side. The i-type semiconductor layer which is left only in the area where it is formed is also provided between both the intersections (crossover portions) of the scanning signal lines GL and the video signal lines DL.
The i-type semiconductor layers AS1 and AS2 at the intersection reduce the short circuit between the scanning signal line GL and the video signal line DL at the intersection.

【0041】《透明画素電極ITO1》透明画素電極I
TO1は液晶表示部の画素電極の一方を構成する。
<< Transparent Pixel Electrode ITO1 >> Transparent Pixel Electrode I
TO1 constitutes one of the pixel electrodes of the liquid crystal display section.

【0042】透明画素電極ITO1は薄膜トランジスタ
TFT1のソース電極SD1および薄膜トランジスタT
FT2のソース電極SD1の両方に接続されている。こ
のため、薄膜トランジスタTFT1、TFT2のうちの
1つに欠陥が発生しても、その欠陥が副作用をもたらす
場合はレーザ光等によって適切な箇所(図1ではG,
H)を切断し、そうでない場合は他方の薄膜トランジス
タが正常に動作しているので放置すれば良い。透明画素
電極ITO1は第1導電膜d1によって構成されてお
り、この第1導電膜d1はスパッタリングで形成された
透明導電膜(Indium-Tin-Oxide ITO:ネサ膜)から
なり、1000〜2000Åの厚さに(本実施例では、
1400Å程度の膜厚)形成される。
The transparent pixel electrode ITO1 is the source electrode SD1 of the thin film transistor TFT1 and the thin film transistor T.
It is connected to both source electrodes SD1 of FT2. Therefore, even if a defect occurs in one of the thin film transistors TFT1 and TFT2, if the defect causes a side effect, an appropriate place (G in FIG. 1, G,
H) is cut off, and if not, the other thin film transistor is operating normally and may be left as it is. The transparent pixel electrode ITO1 is composed of a first conductive film d1, and the first conductive film d1 is made of a transparent conductive film (Indium-Tin-Oxide ITO: Nesa film) formed by sputtering and has a thickness of 1000 to 2000Å. Sani (In this example,
A film thickness of about 1400Å) is formed.

【0043】《ソース電極SD1、ドレイン電極SD
2》ソース電極SD1、ドレイン電極SD2のそれぞれ
は、N(+)型半導体層d0に接触する第2導電膜d2と
その上に形成された第3導電膜d3とから構成されてお
り、図1に示すように映像信号線DLに、そこから枝分
かれしたドレイン分岐線DL3を介して接続されてい
る。ドレイン分岐線DL3は少しふくらんだ部分Kがあ
るが、これは少しでも断線の確率を減らす狙いで設けら
れている。
<< Source Electrode SD1, Drain Electrode SD
2 >> Each of the source electrode SD1 and the drain electrode SD2 is composed of a second conductive film d2 in contact with the N (+) type semiconductor layer d0 and a third conductive film d3 formed thereon. As shown in (4), the video signal line DL is connected via a drain branch line DL3 branched from the video signal line DL. The drain branch line DL3 has a slightly bulged portion K, which is provided for the purpose of reducing the probability of disconnection.

【0044】第2導電膜d2はスパッタで形成したクロ
ム(Cr)膜を用い、500〜1000Åの厚さに(本
実施例では、600Å程度)で形成される。Cr膜は膜
厚を厚く形成するとストレスが大きくなるので、200
0Å程度の膜厚を越えない範囲で形成する。Cr膜はN
(+)型半導体層d0との接着性を良好にし、第3導電膜
d3のAlがN(+)型半導体層d0に拡散することを防
止する(いわゆるバリア層の)目的で使用される。第2
導電膜d2として、Cr膜の他に高融点金属(Mo、T
i、Ta、W)膜、高融点金属シリサイド(MoS
2、TiSi2、TaSi2、WSi2)膜を用いてもよ
い。
The second conductive film d2 is a chromium (Cr) film formed by sputtering and is formed to a thickness of 500 to 1000 Å (in this embodiment, about 600 Å). If the Cr film is formed thicker, the stress increases.
It is formed within a range not exceeding the film thickness of 0Å. Cr film is N
It is used for the purpose of improving adhesion to the (+) type semiconductor layer d0 and preventing Al of the third conductive film d3 from diffusing into the N (+) type semiconductor layer d0 (so-called barrier layer). Second
As the conductive film d2, in addition to the Cr film, refractory metal (Mo, T
i, Ta, W) film, refractory metal silicide (MoS
An i 2 , TiSi 2 , TaSi 2 , WSi 2 ) film may be used.

【0045】第3導電膜d3はAlのスパッタリングで
3000〜5000Åの厚さに(本実施例では、400
0Å程度)形成される。Al膜はCr膜に比べてストレ
スが小さく、厚い膜厚に形成することが可能で、ソース
電極SD1、ドレイン電極SD2および映像信号線DL
の抵抗値を低減したり、ゲート電極GTやi型半導体層
ASに起因する段差乗り越えを確実にする(ステップカ
バーレッジを良くする)働きがある。
The third conductive film d3 is formed by sputtering Al to a thickness of 3000 to 5000 Å (400 in this embodiment).
0 Å) formed. The Al film has less stress than the Cr film and can be formed to have a large film thickness, and the source electrode SD1, the drain electrode SD2 and the video signal line DL can be formed.
Of the gate electrode GT and the i-type semiconductor layer AS are ensured (step coverage is improved).

【0046】第2導電膜d2、第3導電膜d3を同じマ
スクパターンでパターニングした後、同じマスクを用い
て、あるいは第2導電膜d2、第3導電膜d3をマスク
として、N(+)型半導体層d0が除去される。つまり、
i型半導体層AS上に残っていたN(+)型半導体層d0
は第2導電膜d2、第3導電膜d3以外の部分がセルフ
アラインで除去される。このとき、N(+)型半導体層d
0はその厚さ分は全て除去されるようエッチングされる
ので、i型半導体層ASも若干その表面部分がエッチン
グされるが、その程度はエッチング時間で制御すればよ
い。
After patterning the second conductive film d2 and the third conductive film d3 with the same mask pattern, an N (+) type film is formed by using the same mask or by using the second conductive film d2 and the third conductive film d3 as a mask. The semiconductor layer d0 is removed. That is,
The N (+) type semiconductor layer d0 remaining on the i type semiconductor layer AS
The portions other than the second conductive film d2 and the third conductive film d3 are removed by self-alignment. At this time, the N (+) type semiconductor layer d
Since 0 is etched so that the entire thickness thereof is removed, the surface portion of the i-type semiconductor layer AS is also slightly etched, but the degree may be controlled by the etching time.

【0047】《映像信号線DL》映像信号線DLはソー
ス電極SD1、ドレイン電極SD2と同層の第2導電膜
d2、第3導電膜d3で構成されている。映像信号線D
Lはゲート線GLとの交差部で並列に枝分かれし、分岐
線DL1、DL2を形成している。
<Video Signal Line DL> The video signal line DL is composed of a second conductive film d2 and a third conductive film d3 in the same layer as the source electrode SD1 and the drain electrode SD2. Video signal line D
L branches in parallel at the intersection with the gate line GL to form branch lines DL1 and DL2.

【0048】《保護膜PSV1》薄膜トランジスタTF
Tおよび透明画素電極ITO1上には保護膜PSV1が
設けられている。保護膜PSV1は主に薄膜トランジス
タTFTを湿気等から保護するために形成されており、
透明性が高くしかも耐湿性の良いものを使用する。保護
膜PSV1はたとえばプラズマCVD装置で形成した酸
化シリコン膜や窒化シリコン膜で形成されており、1μ
m程度の膜厚で形成する。
<< Protective Film PSV1 >> Thin Film Transistor TF
A protective film PSV1 is provided on the T and the transparent pixel electrode ITO1. The protective film PSV1 is formed mainly for protecting the thin film transistor TFT from moisture and the like,
Use one with high transparency and good moisture resistance. The protective film PSV1 is formed of, for example, a silicon oxide film or a silicon nitride film formed by a plasma CVD apparatus, and has a thickness of 1 μm.
It is formed with a film thickness of about m.

【0049】保護膜PSV1は図7に示すように、マト
リクス部ARの全体を囲むように形成され、周辺部は外
部接続端子DTM,GTMを露出するよう除去され、ま
た上基板側SUB2の共通電極COMを下側基板SUB
1の外部接続端子接続用引出配線INTに銀ペーストA
GPで接続する部分も除去されている。保護膜PSV1
とゲート絶縁膜GIの厚さ関係に関しては、前者は保護
効果を考え厚くされ、後者はトランジスタの相互コンダ
クタンスgmを薄くされる。従って図7に示すように、
保護効果の高い保護膜PSV1は周辺部もできるだけ広
い範囲に亘って保護するようゲート絶縁膜GIよりも大
きく形成されている。
As shown in FIG. 7, the protective film PSV1 is formed so as to surround the entire matrix portion AR, the peripheral portion is removed so as to expose the external connection terminals DTM and GTM, and the common electrode of the upper substrate side SUB2 is formed. COM to the lower substrate SUB
Silver paste A on the lead wire INT for connecting the external connection terminal 1
The part connected by GP is also removed. Protective film PSV1
Regarding the thickness relationship between the gate insulating film GI and the gate insulating film GI, the former is made thicker in consideration of the protection effect, and the latter is made thin in the transconductance gm of the transistor. Therefore, as shown in FIG.
The protective film PSV1 having a high protective effect is formed so as to be larger than the gate insulating film GI so as to protect the peripheral portion over as wide a range as possible.

【0050】《遮光膜BM》上部透明ガラス基板SUB
2側には、外部光又はバックライト光がi型半導体層A
Sに入射しないよう遮光膜BMが設けられている。図2
に示す遮光膜BMの閉じた多角形の輪郭線は、その内側
が遮光膜BMが形成されない開口を示している。遮光膜
BMは光に対する遮蔽性が高いたとえばアルミニウム膜
やクロム膜等で形成されており、本実施例ではクロム膜
がスパッタリングで1300Å程度の厚さに形成され
る。
<< Light-shielding film BM >> Upper transparent glass substrate SUB
On the second side, external light or backlight is exposed to the i-type semiconductor layer A.
A light shielding film BM is provided so as not to enter S. Figure 2
The closed polygonal contour line of the light-shielding film BM shown in (3) indicates an opening inside which the light-shielding film BM is not formed. The light-shielding film BM is formed of, for example, an aluminum film or a chromium film having a high light-shielding property, and in this embodiment, the chromium film is formed by sputtering to a thickness of about 1300Å.

【0051】従って、薄膜トランジスタTFT1、TF
T2のi型半導体層ASは上下にある遮光膜BMおよび
大き目のゲート電極GTによってサンドイッチにされ、
外部の自然光やバックライト光が当たらなくなる。遮光
膜BMは各画素の周囲に格子状に形成され(いわゆるブ
ラックマトリクス)、この格子で1画素の有効表示領域
が仕切られている。従って、各画素の輪郭が遮光膜BM
によってはっきりとし、コントラストが向上する。つま
り、遮光膜BMはi型半導体層ASに対する遮光とブラ
ックマトリクスとの2つの機能をもつ。
Therefore, the thin film transistors TFT1 and TF
The i-type semiconductor layer AS of T2 is sandwiched by the upper and lower light-shielding films BM and the large gate electrode GT,
External natural light or backlight does not hit. The light-shielding film BM is formed in a lattice shape around each pixel (so-called black matrix), and the effective display area of one pixel is partitioned by this lattice. Therefore, the outline of each pixel is the light-shielding film BM.
Improves clarity and contrast. That is, the light blocking film BM has two functions of blocking the i-type semiconductor layer AS and serving as a black matrix.

【0052】透明画素電極ITO1のラビング方向の根
本側のエッジ部分(図2右下部分)も遮光膜BMによっ
て遮光されているので、上記部分にドメインが発生した
としても、ドメインが見えないので、表示特性が劣化す
ることはない。
Since the edge portion of the transparent pixel electrode ITO1 on the base side in the rubbing direction (the lower right portion in FIG. 2) is also shielded by the light shielding film BM, even if a domain occurs in the above portion, the domain cannot be seen. The display characteristics do not deteriorate.

【0053】遮光膜BMは図6に示すように周辺部にも
額縁状に形成され、そのパターンはドット状に複数の開
口を設けた図2に示すマトリクス部のパターンと連続し
て形成されている。周辺部の遮光膜BMは図6〜図9に
示すように、シール部SLの外側に延長され、パソコン
等の実装機に起因する反射光等の漏れ光がマトリクス部
に入り込むのを防いでいる。他方、この遮光膜BMは基
板SUB2の縁よりも約0.3〜1.0mm程内側に留
められ、基板SUB2の切断領域を避けて形成されてい
る。
As shown in FIG. 6, the light-shielding film BM is also formed in a frame shape in the peripheral portion, and its pattern is formed continuously with the pattern of the matrix portion shown in FIG. There is. As shown in FIGS. 6 to 9, the light-shielding film BM in the peripheral portion is extended to the outside of the seal portion SL to prevent leak light such as reflected light caused by a mounting machine such as a personal computer from entering the matrix portion. . On the other hand, the light-shielding film BM is retained inside about 0.3 to 1.0 mm from the edge of the substrate SUB2, and is formed so as to avoid the cut region of the substrate SUB2.

【0054】《保護膜PSV2》保護膜PSV2はたと
えばアクリル樹脂、エポキシ樹脂等の透明樹脂材料で形
成されている。
<< Protective Film PSV2 >> The protective film PSV2 is made of a transparent resin material such as acrylic resin or epoxy resin.

【0055】《共通透明画素電極ITO2》共通透明画
素電極ITO2は、下部透明ガラス基板SUB1側に画
素ごとに設けられた透明画素電極ITO1に対向し、液
晶LCの光学的な状態は各画素電極ITO1と共通透明
画素電極ITO2との間の電位差(電界)に応答して変
化する。この共通透明画素電極ITO2にはコモン電圧
Vcomが印加されるように構成されている。本実施例で
は、コモン電圧Vcomは映像信号線DLに印加される最
小レベルの駆動電圧Vdminと最大レベルの駆動電圧V
dmaxとの中間直流電位に設定されるが、映像信号駆動
回路で使用される集積回路の電源電圧を約半分に低減し
たい場合は、交流電圧を印加すれば良い。なお、共通透
明画素電極ITO2の平面形状は図6、図7を参照され
たい。
<< Common Transparent Pixel Electrode ITO2 >> The common transparent pixel electrode ITO2 faces the transparent pixel electrode ITO1 provided for each pixel on the lower transparent glass substrate SUB1 side, and the optical state of the liquid crystal LC is the pixel electrode ITO1. And the common transparent pixel electrode ITO2 change in response to a potential difference (electric field). A common voltage Vcom is applied to the common transparent pixel electrode ITO2. In this embodiment, the common voltage Vcom is the minimum level drive voltage Vdmin and the maximum level drive voltage V applied to the video signal line DL.
Although it is set to an intermediate DC potential with respect to dmax, an AC voltage may be applied if it is desired to reduce the power supply voltage of the integrated circuit used in the video signal drive circuit to about half. For the planar shape of the common transparent pixel electrode ITO2, see FIGS. 6 and 7.

【0056】《保持容量素子Caddの構造》透明画素電
極ITO1は、薄膜トランジスタTFTと接続される端
部と反対側の端部において、隣りの走査信号線GLと重
なるように形成されている。この重ね合わせは、図4か
らも明らかなように、透明画素電極ITO1を一方の電
極PL2とし、隣りの走査信号線GLを他方の電極PL
1とする保持容量素子(静電容量素子)Caddを構成す
る。この保持容量素子Caddの誘電体膜は、薄膜トラン
ジスタTFTのゲート絶縁膜として使用される絶縁膜G
Iおよび陽極酸化膜AOFで構成されている。
<< Structure of Storage Capacitance Element Cadd >> The transparent pixel electrode ITO1 is formed so as to overlap the adjacent scanning signal line GL at the end opposite to the end connected to the thin film transistor TFT. In this superposition, as is clear from FIG. 4, the transparent pixel electrode ITO1 is used as one electrode PL2 and the adjacent scanning signal line GL is used as the other electrode PL.
A holding capacitance element (electrostatic capacitance element) Cadd which is 1 is configured. The dielectric film of the storage capacitor Cadd is an insulating film G used as a gate insulating film of the thin film transistor TFT.
I and the anodic oxide film AOF.

【0057】保持容量素子Caddは走査信号線GLの第
2導電膜g2の幅を広げた部分に形成されている。な
お、映像信号線DLと交差する部分の第2導電膜g2は
映像信号線DLとの短絡の確率を小さくするため細くさ
れている。
The storage capacitor element Cadd is formed in a portion where the width of the second conductive film g2 of the scanning signal line GL is widened. The second conductive film g2 at the portion intersecting the video signal line DL is thinned in order to reduce the probability of short circuit with the video signal line DL.

【0058】保持容量素子Caddの電極PL1の段差部
において透明画素電極ITO1が断線しても、その段差
をまたがるように形成された第2導電膜d2および第3
導電膜d3で構成された島領域によってその不良は補償
される。また、その段差部は図2に示すように上記島領
域で完全に覆われている。これはCr導電膜d2および
Al導電膜d3のエッチング時間が長過ぎたりしたとき
に、Al導電膜d3と透明画素電極ITO1の間で電池
反応が起こ透明画素電極ITO1が溶けるという不良を
防止するためである。
Even if the transparent pixel electrode ITO1 is broken at the step portion of the electrode PL1 of the storage capacitor Cadd, the second conductive film d2 and the third conductive film d2 formed so as to cross the step.
The defect is compensated by the island region formed of the conductive film d3. The stepped portion is completely covered with the island region as shown in FIG. This is to prevent a defect that a cell reaction occurs between the Al conductive film d3 and the transparent pixel electrode ITO1 and the transparent pixel electrode ITO1 is melted when the etching time of the Cr conductive film d2 and the Al conductive film d3 is too long. Is.

【0059】《ゲート端子部》図10は表示マトリクス
の走査信号線GLからその外部接続端子GTMまでの接
続構造を示す図であり、(A)は平面であり(B)は
(A)のB−B切断線における断面を示している。な
お、同図は図7下方付近に対応し、斜め配線の部分は便
宜状一直線状で表した。
<< Gate Terminal Portion >> FIG. 10 is a diagram showing a connection structure from the scanning signal line GL of the display matrix to its external connection terminal GTM. (A) is a plane and (B) is B of (A). -B shows a cross section taken along the line B. It should be noted that the figure corresponds to the lower part of FIG. 7, and the diagonal wiring portions are shown in a straight line for convenience.

【0060】AOは写真処理用のマスクパターン、言い
換えれば選択的陽極酸化のホトレジストパターンであ
る。従って、このホトレジストは陽極酸化後除去され、
図に示すパターンAOは完成品としては残らないが、ゲ
ート配線GLには断面図に示すように酸化膜AOFが選
択的に形成されるのでその軌跡が残る。平面図におい
て、ホトレジストの境界線AOを基準にして左側はレジ
ストで覆い陽極酸化をしない領域、右側はレジストから
露出され陽極酸化される領域である。陽極酸化されたA
L層g2は表面にその酸化物Al23膜AOFが形成さ
れ下方の導電部は体積が減少する。勿論、陽極酸化はそ
の導電部が残るように適切な時間、電圧などを設定して
行われる。マスクパターンAOは走査線GLに単一の直
線では交差せず、クランク状に折れ曲がって交差させて
いる。
AO is a mask pattern for photographic processing, in other words, a photoresist pattern for selective anodic oxidation. Therefore, this photoresist is removed after anodization,
The pattern AO shown in the figure does not remain as a finished product, but since the oxide film AOF is selectively formed on the gate line GL as shown in the cross-sectional view, its locus remains. In the plan view, with respect to the photoresist boundary line AO, the left side is a region covered with the resist and not anodized, and the right side is a region exposed from the resist and anodized. Anodized A
The oxide Al 2 O 3 film AOF is formed on the surface of the L layer g2, and the volume of the conductive portion therebelow is reduced. Of course, the anodic oxidation is performed by setting an appropriate time and voltage so that the conductive portion remains. The mask pattern AO does not intersect with the scanning line GL by a single straight line, but is bent in a crank shape and intersects.

【0061】図中AL層g2は、判り易くするためハッ
チを施してあるが、陽極化成されない領域は櫛状にパタ
ーニングされている。これは、Al層の幅が広いと表面
にホイスカが発生するので、1本1本の幅は狭くし、そ
れらを複数本並列に束ねた構成とすることにより、ホイ
スカの発生を防ぎつつ、断線の確率や導電率の犠牲を最
低限に押さえる狙いである。従って、本例では櫛の根本
に相当する部分もマスクAOに沿ってずらしている。
In the figure, the AL layer g2 is hatched for easy understanding, but the region which is not anodized is patterned in a comb shape. This is because whiskers are generated on the surface when the width of the Al layer is wide. Therefore, by narrowing the width of each one and arranging a plurality of them in parallel, whiskers can be prevented and wire breakage can be prevented. The aim is to minimize the probability of and the sacrifice of conductivity. Therefore, in this example, the portion corresponding to the base of the comb is also displaced along the mask AO.

【0062】ゲート端子GTMは酸化珪素SIO層と接
着性が良くAl等よりも耐電触性の高いCr層g1と、
更にその表面を保護し画素電極ITO1と同レベル(同
層、同時形成)の透明導電層d1とで構成されている。
なお、ゲート絶縁膜GI上及びその側面部に形成された
導電層d2及びd3は、導電層d3やd2のエッチング
時ピンホール等が原因で導電層g2やg1が一緒にエッ
チングされないようその領域をホトレジストで覆ってい
た結果として残っているものである。又、ゲート絶縁膜
GIを乗り越えて右方向に延長されたITO層d1は同
様な対策を更に万全とさせたものである。
The gate terminal GTM has a Cr layer g1 which has good adhesion to the silicon oxide SIO layer and which has a higher electrical contact resistance than Al or the like.
Further, the surface thereof is protected and is composed of a transparent conductive layer d1 of the same level (same layer, simultaneously formed) as the pixel electrode ITO1.
In addition, the conductive layers d2 and d3 formed on the gate insulating film GI and on the side surfaces thereof have their regions so that the conductive layers g2 and g1 are not etched together due to pinholes or the like during the etching of the conductive layers d3 and d2. It remains as a result of being covered with photoresist. In addition, the ITO layer d1 which extends over the gate insulating film GI and extends rightward is one in which the same measures are taken more thoroughly.

【0063】平面図において、ゲート絶縁膜GIはその
境界線よりも右側に、保護膜PSV1もその境界線より
も右側に形成されており、左端に位置する端子部GTM
はそれらから露出し外部回路との電気的接触ができるよ
うになっている。図では、ゲート線GLとゲート端子の
一つの対のみが示されているが、実際はこのような対が
図7に示すように上下に複数本並べられ端子群Tg(図
6、図7)が構成され、ゲート端子の左端は、製造過程
では、基板の切断領域CT1を越えて延長され配線SH
gによって短絡される。製造過程におけるこのような短
絡線SHgは陽極化成時の給電と、配向膜ORI1のラ
ビング時等の静電破壊防止に役立つ。
In the plan view, the gate insulating film GI is formed on the right side of the boundary line and the protective film PSV1 is formed on the right side of the boundary line, and the terminal portion GTM located at the left end.
Are exposed from them to allow electrical contact with external circuitry. In the figure, only one pair of the gate line GL and the gate terminal is shown, but in reality, a plurality of such pairs are arranged vertically as shown in FIG. 7 to form the terminal group Tg (FIGS. 6 and 7). In the manufacturing process, the left end of the gate terminal is extended beyond the cutting region CT1 of the substrate to form the wiring SH.
shorted by g. Such a short-circuit line SHg in the manufacturing process is useful for supplying power during anodization and preventing electrostatic breakdown during rubbing of the alignment film ORI1.

【0064】《ドレイン端子DTM》図11は映像信号
線DLからその外部接続端子DTMまでの接続を示す図
であり、(A)はその平面を示し、(B)は(A)のB
−B切断線における断面を示す。なお、同図は図7右上
付近に対応し、図面の向きは便宜上変えてあるが右端方
向が基板SUB1の上端部(又は下端部)に該当する。
<< Drain Terminal DTM >> FIG. 11 is a diagram showing the connection from the video signal line DL to the external connection terminal DTM, (A) shows its plane, and (B) shows B of (A).
-B shows a cross section taken along the line B. 7 corresponds to the vicinity of the upper right of FIG. 7, and although the orientation of the drawing is changed for convenience, the right end direction corresponds to the upper end (or lower end) of the substrate SUB1.

【0065】TSTdは検査端子でありここには外部回
路は接続されないが、プローブ針等を接触できるよう配
線部より幅が広げられている。同様に、ドレイン端子D
TMも外部回路との接続ができるよう配線部より幅が広
げられている。検査端子TSTdと外部接続ドレイン端
子DTMは上下方向に千鳥状に複数交互に配列され、検
査端子TSTdは図に示すとおり基板SUB1の端部に
到達することなく終端しているが、ドレイン端子DTM
は、図7に示すように端子群Td(添字省略)を構成し
基板SUB1の切断線CT1を越えて更に延長され、製
造過程中は静電破壊防止のためその全てが互いに配線S
Hdによって短絡される。検査端子TSTdが存在する
映像信号線DLのマトリクスを挟んで反対側にはドレイ
ン接続端子が接続され、逆にドレイン接続端子DTMが
存在する映像信号線DLのマトリクスを挟んで反対側に
は検査端子が接続される。
TSTd is an inspection terminal, which is not connected to an external circuit, but is wider than the wiring portion so that a probe needle or the like can come into contact therewith. Similarly, the drain terminal D
The width of the TM is also wider than that of the wiring portion so that the TM can be connected to an external circuit. The inspection terminals TSTd and the external connection drain terminals DTM are alternately arranged in a zigzag pattern in the vertical direction, and the inspection terminals TSTd terminate without reaching the end portion of the substrate SUB1 as shown in the figure, but the drain terminal DTM.
7 further extend beyond the cutting line CT1 of the substrate SUB1 to form a terminal group Td (subscripts omitted) as shown in FIG. 7, all of which are interconnected to each other to prevent electrostatic breakdown during the manufacturing process.
Shorted by Hd. The drain connection terminal is connected to the opposite side of the matrix of the video signal lines DL in which the inspection terminals TSTd are present, and conversely the inspection terminal is placed on the opposite side of the matrix of the video signal lines DL in which the drain connection terminals DTM are present. Are connected.

【0066】ドレイン接続端子DTMは前述したゲート
端子GTMと同様な理由でCr層g1及びITO層d1
の2層で形成されており、ゲート絶縁膜GIを除去した
部分で映像信号線DLと接続されている。ゲート絶縁膜
GIの端部上に形成された半導体層ASはゲート絶縁膜
GIの縁をテーパ状にエッチングするためのものであ
る。端子DTM上では外部回路との接続を行うため保護
膜PSV1は勿論のこと取り除かれている。AOは前述
した陽極酸化マスクでありその境界線はマトリクス全体
をを大きく囲むように形成され、図ではその境界線から
左側がマスクで覆われるが、この図で覆われない部分に
は層g2が存在しないのでこのパターンは直接は関係し
ない。
The drain connection terminal DTM has the Cr layer g1 and the ITO layer d1 for the same reason as the above-mentioned gate terminal GTM.
Is formed of two layers, and is connected to the video signal line DL at a portion where the gate insulating film GI is removed. The semiconductor layer AS formed on the end portion of the gate insulating film GI is for etching the edge of the gate insulating film GI in a tapered shape. The protective film PSV1 is, of course, removed on the terminal DTM to connect to an external circuit. AO is the anodizing mask described above, and its boundary line is formed so as to largely surround the entire matrix. In the figure, the left side of the boundary line is covered with the mask, but the layer g2 is covered in the part not covered in this figure. This pattern is not directly relevant as it does not exist.

【0067】マトリクス部からドレイン端子部DTMま
での引出配線は図8の(C)部にも示されるように、ド
レイン端子部DTMと同じレベルの層d1,g1のすぐ
上に映像信号線DLと同じレベルの層d2,d3がシー
ルパターンSLの途中まで積層された構造になっている
が、これは断線の確率を最小限に押さえ、電触し易いA
l層d3を保護膜PSV1やシールパターンSLででき
るだけ保護する狙いである。
The lead wiring from the matrix portion to the drain terminal portion DTM is, as shown in FIG. 8C, a video signal line DL immediately above the layers d1 and g1 at the same level as the drain terminal portion DTM. Although the layers d2 and d3 of the same level are laminated part way up to the middle of the seal pattern SL, this minimizes the probability of disconnection and facilitates electrical contact.
The purpose is to protect the l layer d3 as much as possible with the protective film PSV1 and the seal pattern SL.

【0068】《表示装置全体等価回路》表示マトリクス
部の等価回路とその周辺回路の結線図を図12に示す。
同図は回路図ではあるが、実際の幾何学的配置に対応し
て描かれている。ARは複数の画素を二次元状に配列し
たマトリクス・アレイである。
<< Equivalent Circuit of Entire Display Device >> FIG. 12 shows a connection diagram of an equivalent circuit of the display matrix portion and its peripheral circuits.
Although the figure is a circuit diagram, it is drawn corresponding to the actual geometrical arrangement. AR is a matrix array in which a plurality of pixels are two-dimensionally arranged.

【0069】図中、Xは映像信号線DLを意味する。Y
は走査信号線GLを意味し、添字1,2,3,…,end
は走査タイミングの順序に従って付加されている。
In the figure, X means the video signal line DL. Y
Means the scanning signal line GL, and the subscripts 1, 2, 3, ..., End
Are added according to the order of scanning timing.

【0070】映像信号線X(添字省略)は交互に上側
(または奇数)映像信号駆動回路He、下側(または偶
数)映像信号駆動回路Hoに接続されている。
The video signal lines X (subscripts omitted) are alternately connected to the upper (or odd) video signal drive circuit He and the lower (or even) video signal drive circuit Ho.

【0071】走査信号線Y(添字省略)は垂直走査回路
Vに接続されている。
The scanning signal line Y (subscript omitted) is connected to the vertical scanning circuit V.

【0072】SUPは1つの電圧源から複数の分圧した
安定化された電圧源を得るための電源回路やホスト(上
位演算処理装置)からのCRT(陰極線管)用の情報を
TFT液晶表示装置用の情報に交換する回路を含む回路
である。
The SUP is a TFT liquid crystal display device for displaying information for a CRT (cathode ray tube) from a power supply circuit for obtaining a plurality of divided and stabilized voltage sources from one voltage source and a host (upper processing unit). It is a circuit including a circuit for exchanging information for use.

【0073】《保持容量素子Caddの働き》保持容量素
子Caddは、薄膜トランジスタTFTがスイッチングす
るとき、中点電位(画素電極電位)Vlcに対するゲート
電位変化ΔVgの影響を低減するように働く。この様子
を式で表すと、次のようになる。
<< Function of Storage Capacitance Element Cadd >> The storage capacitance element Cadd functions to reduce the influence of the gate potential change ΔVg on the midpoint potential (pixel electrode potential) Vlc when the thin film transistor TFT switches. This situation is expressed by the following equation.

【0074】 ΔVlc={Cgs/(Cgs+Cadd+Cpix)}×ΔVg ここで、Cgsは薄膜トランジスタTFTのゲート電極G
Tとソース電極SD1との間に形成される寄生容量、C
pixは透明画素電極ITO1(PIX)と共通透明画素
電極ITO2(COM)との間に形成される容量、ΔV
lcはΔVgによる画素電極電位の変化分を表わす。この
変化分ΔVlcは液晶LCに加わる直流成分の原因となる
が、保持容量Caddを大きくすればする程、その値を小
さくすることができる。また、保持容量素子Caddは放
電時間を長くする作用もあり、薄膜トランジスタTFT
がオフした後の映像情報を長く蓄積する。液晶LCに印
加される直流成分の低減は、液晶LCの寿命を向上し、
液晶表示画面の切り替え時に前の画像が残るいわゆる焼
き付きを低減することができる。
ΔVlc = {Cgs / (Cgs + Cadd + Cpix)} × ΔVg Here, Cgs is the gate electrode G of the thin film transistor TFT.
Parasitic capacitance formed between T and source electrode SD1, C
pix is a capacitance formed between the transparent pixel electrode ITO1 (PIX) and the common transparent pixel electrode ITO2 (COM), ΔV
lc represents a change amount of the pixel electrode potential due to ΔVg. This variation ΔVlc causes a direct current component applied to the liquid crystal LC, but the value can be reduced as the holding capacitance Cadd is increased. Further, the storage capacitor element Cadd also has the function of prolonging the discharge time, and thus the thin film transistor TFT
Accumulates video information for a long time after is turned off. The reduction of the direct current component applied to the liquid crystal LC improves the life of the liquid crystal LC,
It is possible to reduce so-called burn-in in which the previous image remains when the liquid crystal display screen is switched.

【0075】前述したように、ゲート電極GTはi型半
導体層ASを完全に覆うよう大きくされている分、ソー
ス電極SD1、ドレイン電極SD2とのオーバラップ面
積が増え、従って寄生容量Cgsが大きくなり、中点電位
Vlcはゲート(走査)信号Vgの影響を受け易くなると
いう逆効果が生じる。しかし、保持容量素子Caddを設
けることによりこのデメリットも解消することができ
る。
As described above, since the gate electrode GT is made large enough to completely cover the i-type semiconductor layer AS, the overlap area with the source electrode SD1 and the drain electrode SD2 is increased, and thus the parasitic capacitance Cgs is increased. The reverse effect is that the midpoint potential Vlc is easily affected by the gate (scanning) signal Vg. However, this demerit can be eliminated by providing the storage capacitor element Cadd.

【0076】保持容量素子Caddの保持容量は、画素の
書込特性から、液晶容量Cpixに対して4〜8倍(4・C
pix<Cadd<8・Cpix)、寄生容量Cgsに対して8〜3
2倍(8・Cgs<Cadd<32・Cgs)程度の値に設定す
る。
The storage capacitance of the storage capacitance element Cadd is 4 to 8 times (4.C
pix <Cadd <8 · Cpix), 8 to 3 for parasitic capacitance Cgs
Set to a value about twice (8 · Cgs <Cadd <32 · Cgs).

【0077】保持容量電極線としてのみ使用される初段
の走査信号線GL(Y0)は共通透明画素電極ITO2
(Vcom)と同じ電位にする。図7の例では、初段の走
査信号線は端子GT0、引出線INT、端子DT0及び
外部配線を通じて共通電極COMに短絡される。或い
は、初段の保持容量電極線Y0は最終段の走査信号線Ye
ndに接続、Vcom以外の直流電位点(交流接地点)に接
続するかまたは垂直走査回路Vから1つ余分に走査パル
スY0を受けるように接続してもよい。
The first-stage scanning signal line GL (Y 0 ) used only as the storage capacitor electrode line is the common transparent pixel electrode ITO2.
Set to the same potential as (Vcom). In the example of FIG. 7, the scanning signal line at the first stage is short-circuited to the common electrode COM through the terminal GT0, the lead wire INT, the terminal DT0 and the external wiring. Alternatively, the storage capacitor electrode line Y 0 in the first stage is the scanning signal line Ye in the last stage.
It may be connected to nd, connected to a DC potential point (AC ground point) other than Vcom, or connected to receive one extra scanning pulse Y 0 from the vertical scanning circuit V.

【0078】《製造方法》つぎに、上述した液晶表示装
置の基板SUB1側の製造方法について図13〜図15
を参照して説明する。なお同図において、中央の文字は
工程名の略称であり、左側は図3に示す画素部分、右側
は図10に示すゲート端子付近の断面形状でみた加工の
流れを示す。工程Dを除き工程A〜工程Iは各写真処理
に対応して区分けしたもので、各工程のいずれの断面図
も写真処理後の加工が終わりフォトレジストを除去した
段階を示している。なお、写真処理とは本説明ではフォ
トレジストの塗布からマスクを使用した選択露光を経て
それを現像するまでの一連の作業を示すものとし、繰返
しの説明は避ける。以下区分けした工程に従って、説明
する。
<< Manufacturing Method >> Next, a manufacturing method of the substrate SUB1 side of the above-described liquid crystal display device will be described with reference to FIGS.
Will be described with reference to. In the figure, the letters in the center are abbreviations of process names, the left side shows the pixel portion shown in FIG. 3, and the right side shows the processing flow as seen in the sectional shape near the gate terminal shown in FIG. Except for the step D, steps A to I are divided corresponding to each photographic process, and all the cross-sectional views of each process show the stage after the photo process is finished and the photoresist is removed. In this description, the photographic processing means a series of operations from the application of the photoresist to the selective exposure using the mask to the development thereof, and the repetitive description will be omitted. A description will be given below according to the divided steps.

【0079】工程A、図13 7059ガラス(商品名)からなる下部透明ガラス基板
SUB1の両面に酸化シリコン膜SIOをディップ処理
により設けたのち、500℃、60分間のベークを行な
う。下部透明ガラス基板SUB1上に膜厚が1100Å
のクロムからなる第1導電膜g1をスパッタリングによ
り設け、写真処理後、エッチング液として硝酸第2セリ
ウムアンモニウム溶液で第1導電膜g1を選択的にエッ
チングする。それによって、ゲート端子GTM、ドレイ
ン端子DTM、ゲート端子GTMを接続する陽極酸化バ
スラインSHg、ドレイン端子DTMを短絡するバスラ
インSHd、陽極酸化バスラインSHgに接続された陽
極酸化パッド(図示せず)を形成する。
Step A, FIG. 13 A silicon oxide film SIO is formed on both surfaces of a lower transparent glass substrate SUB1 made of 7059 glass (trade name) by dip processing, and then baked at 500 ° C. for 60 minutes. The film thickness is 1100Å on the lower transparent glass substrate SUB1.
The first conductive film g1 made of chromium is provided by sputtering, and after the photographic processing, the first conductive film g1 is selectively etched with a cerium ammonium nitrate solution as an etching solution. Thereby, the gate terminal GTM, the drain terminal DTM, the anodized bus line SHg connecting the gate terminal GTM, the bus line SHd shorting the drain terminal DTM, and the anodized pad (not shown) connected to the anodized bus line SHg. To form.

【0080】工程B、図13 膜厚が2800ÅのAl−Pd、Al−Si、Al−S
i−Ti、Al−Si−Cu等からなる第2導電膜g2
をスパッタリングにより設ける。写真処理後、リン酸と
硝酸と氷酢酸との混酸液で第2導電膜g2を選択的にエ
ッチングする。
Step B, FIG. 13 Al-Pd, Al-Si, Al-S having a film thickness of 2800Å
The second conductive film g2 made of i-Ti, Al-Si-Cu, or the like
Are provided by sputtering. After the photographic processing, the second conductive film g2 is selectively etched with a mixed acid solution of phosphoric acid, nitric acid and glacial acetic acid.

【0081】工程C、図13 写真処理後(前述した陽極酸化マスクAO形成後)、3
%酒石酸をアンモニアによりPH6.25±0.05に調
整した溶液をエチレングリコール液で1:9に稀釈した
液からなる陽極酸化液中に基板SUB1を浸漬し、化成
電流密度が0.5mA/cm2になるように調整する(定
電流化成)。次に所定のAl23膜厚が得られるのに必
要な化成電圧125Vに達するまで陽極酸化を行う。そ
の後この状態で数10分保持することが望ましい(定電
圧化成)。これは均一なAl23膜を得る上で大事なこ
とである。それによって、導電膜g2を陽極酸化され、
走査信号線GL、ゲート電極GTおよび電極PL1上に
膜厚が1800Åの陽極酸化膜AOFが形成される 工程D、図14 プラズマCVD装置にアンモニアガス、シランガス、窒
素ガスを導入して、膜厚が2000Åの窒化Si膜を設
け、プラズマCVD装置にシランガス、水素ガスを導入
して、膜厚が2000Åのi型非晶質Si膜を設けたの
ち、プラズマCVD装置に水素ガス、ホスフィンガスを
導入して、膜厚が300ÅのN(+)型非晶質Si膜を設
ける。
Step C, FIG. 13 After photographic processing (after forming the above-described anodizing mask AO), 3
Substrate SUB1 is immersed in an anodizing solution consisting of a solution prepared by diluting 1% of tartaric acid with ammonia to pH 6.25 ± 0.05 with ethylene glycol solution, and the formation current density is 0.5 mA / cm. 2 so as to adjust (constant current Kasei). Next, anodic oxidation is performed until the formation voltage 125 V required to obtain a predetermined Al 2 O 3 film thickness is reached. After that, it is desirable to hold this state for several tens of minutes (constant voltage formation). This is important for obtaining a uniform Al 2 O 3 film. Thereby, the conductive film g2 is anodized,
An anodic oxide film AOF having a thickness of 1800Å is formed on the scanning signal line GL, the gate electrode GT, and the electrode PL1. Process D, FIG. 14 Ammonia gas, silane gas, and nitrogen gas are introduced into the plasma CVD apparatus to reduce the film thickness. A 2000 Å Si nitride film is provided, and silane gas and hydrogen gas are introduced into the plasma CVD device to form an i-type amorphous Si film with a film thickness of 2000 Å, then hydrogen gas and phosphine gas are introduced into the plasma CVD device. Then, an N (+) type amorphous Si film having a film thickness of 300Å is provided.

【0082】工程E、図14 写真処理後、ドライエッチングガスとしてSF6、CC
4を使用してN(+)型非晶質Si膜、i型非晶質Si
膜を選択的にエッチングすることにより、i型半導体層
ASの島を形成する。
Step E, FIG. 14 After photoprocessing, SF 6 and CC are used as dry etching gas.
Use l 4 N (+) type amorphous Si film, i-type amorphous Si
The island of the i-type semiconductor layer AS is formed by selectively etching the film.

【0083】工程F、図14 写真処理後、ドライエッチングガスとしてSF6を使用
して、窒化Si膜を選択的にエッチングする。
Step F, FIG. 14 After the photographic process, SF 6 is used as a dry etching gas to selectively etch the Si nitride film.

【0084】工程G、図15 膜厚が1400ÅのITO膜からなる第1導電膜d1を
スパッタリングにより設ける。写真処理後、エッチング
液として塩酸と硝酸との混酸液で第1導電膜d1を選択
的にエッチングすることにより、ゲート端子GTM、ド
レイン端子DTMの最上層および透明画素電極ITO1
を形成する。
Step G, FIG. 15 A first conductive film d1 made of an ITO film having a film thickness of 1400Å is provided by sputtering. After the photographic processing, the first conductive film d1 is selectively etched with a mixed acid solution of hydrochloric acid and nitric acid as an etching solution, whereby the uppermost layers of the gate terminal GTM and the drain terminal DTM and the transparent pixel electrode ITO1.
To form.

【0085】工程H、図15 膜厚が600ÅのCrからなる第2導電膜d2をスパッ
タリングにより設け、さらに膜厚が4000ÅのAl−
Pd、Al−Si、Al−Si−Ti、Al−Si−C
u等からなる第3導電膜d3をスパッタリングにより設
ける。写真処理後、第3導電膜d3を工程Bと同様な液
でエッチングし、第2導電膜d2を工程Aと同様な液で
エッチングし、映像信号線DL、ソース電極SD1、ド
レイン電極SD2を形成する。つぎに、ドライエッチン
グ装置にCCl4、SF6を導入して、N(+)型非晶質S
i膜をエッチングすることにより、ソースとドレイン間
のN(+)型半導体層d0を選択的に除去する。
Step H, FIG. 15: A second conductive film d2 made of Cr having a film thickness of 600 Å is provided by sputtering, and an Al- film having a film thickness of 4000 Å is formed.
Pd, Al-Si, Al-Si-Ti, Al-Si-C
A third conductive film d3 made of u or the like is provided by sputtering. After the photographic processing, the third conductive film d3 is etched with the same liquid as the process B, and the second conductive film d2 is etched with the same liquid as the process A to form the video signal line DL, the source electrode SD1, and the drain electrode SD2. To do. Next, by introducing CCl 4 and SF 6 into the dry etching apparatus, N (+) type amorphous S
By etching the i film, the N (+) type semiconductor layer d0 between the source and the drain is selectively removed.

【0086】工程I、図15 プラズマCVD装置にアンモニアガス、シランガス、窒
素ガスを導入して、膜厚が1μmの窒化Si膜を設け
る。写真処理後、ドライエッチングガスとしてSF6
使用した写真蝕刻技術で窒化Si膜を選択的にエッチン
グすることによって、保護膜PSV1を形成する。
Step I, FIG. 15 Ammonia gas, silane gas, and nitrogen gas are introduced into the plasma CVD apparatus to form a Si nitride film having a thickness of 1 μm. After the photo processing, the protective film PSV1 is formed by selectively etching the Si nitride film by a photo-etching technique using SF 6 as a dry etching gas.

【0087】《液晶表示モジュールの全体構成》図16
は、液晶表示モジュールMDLの各構成部品を示す分解
斜視図である。
<< Overall Structure of Liquid Crystal Display Module >> FIG.
[Fig. 3] is an exploded perspective view showing each component of the liquid crystal display module MDL.

【0088】SHDは金属板から成る枠状のシールドケ
ース(メタルフレーム)、LCWその表示窓、PNLは
液晶表示パネル、SPBは光拡散板、MFRは中間フレ
ーム、BLはバックライト、BLSはバックライト支持
体、LCAは下側ケースであり、図に示すような上下の
配置関係で各部材が積み重ねられてモジュールMDLが
組み立てられる。
SHD is a frame-shaped shield case (metal frame) made of a metal plate, LCW display window, PNL is a liquid crystal display panel, SPB is a light diffusion plate, MFR is an intermediate frame, BL is a backlight, and BLS is a backlight. The support and the LCA are the lower case, and the modules MDL are assembled by stacking the respective members in a vertical arrangement relationship as shown in the figure.

【0089】モジュールMDLは、シールドケースSH
Dに設けられた爪CLとフックFKによって全体が固定
されるようになっている。
The module MDL is a shield case SH.
The whole is fixed by the claw CL and the hook FK provided on D.

【0090】中間フレームMFRは表示窓LCWに対応
する開口が設けられるように枠状に形成され、その枠部
分には拡散板SPB、バックライト支持体BLS並びに
各種回路部品の形状や厚みに応じた凹凸や、放熱用の開
口が設けられている。
The intermediate frame MFR is formed in a frame shape so as to have an opening corresponding to the display window LCW, and the frame portion has a diffuser plate SPB, a backlight support BLS, and various circuit components in accordance with their shapes and thicknesses. There are irregularities and openings for heat dissipation.

【0091】下側ケースLCAはバックライト光の反射
体も兼ねており、効率のよい反射ができるよう、蛍光管
BLに対応して反射山RMが形成されている。
The lower case LCA also serves as a reflector for backlight light, and a reflection mountain RM is formed corresponding to the fluorescent tube BL so as to efficiently reflect light.

【0092】《表示パネルPNLと駆動回路基板PCB
1》図17は、図5等に示した表示パネルPNLに映像
信号駆動回路He、Hoと垂直走査回路Vを接続した状
態を示す上面図である。
<< Display Panel PNL and Drive Circuit Board PCB
1 >> FIG. 17 is a top view showing a state in which the video signal drive circuits He and Ho and the vertical scanning circuit V are connected to the display panel PNL shown in FIG.

【0093】CHIは表示パネルPNLを駆動させる駆
動ICチップ(下側の3個は垂直走査回路側の駆動IC
チップ、左右の6個ずつは映像信号駆動回路側の駆動I
Cチップ)である。TCPは図18、図19で後述する
ように駆動用ICチップCHIがテープ・オートメイテ
ィド・ボンディング法(TAB)により実装されたテー
プキャリアパッケージ、PCB1は上記TCPやコンデ
ンサCDS等が実装された駆動回路基板で、3つに分割
されている。FGPはフレームグランドパッドであり、
シールドケースSHDに切り込んで設けられたバネ状の
破片FGが半田付けされる。FCは下側の駆動回路基板
PCB1と左側の駆動回路基板PCB1、および下側の
駆動回路基板PCB1と右側の駆動回路基板PCB1と
を電気的に接続するフラットケーブルである。フラット
ケーブルFCとしては図に示すように、複数のリード線
(りん青銅の素材にSn鍍金を施したもの)をストライ
プ状のポリエチレン層とポリビニルアルコール層とでサ
ンドイッチして支持したものを使用する。
CHI is a driving IC chip for driving the display panel PNL (the lower three are driving ICs on the vertical scanning circuit side).
Chips, 6 each on the left and right are drive I on the video signal drive circuit side
C chip). TCP is a tape carrier package in which a driving IC chip CHI is mounted by a tape automated bonding method (TAB), as will be described later with reference to FIGS. 18 and 19, and PCB1 is a drive in which the TCP, the capacitor CDS and the like are mounted. It is divided into three parts on the circuit board. FGP is a frame ground pad,
A spring-like fragment FG provided by cutting into the shield case SHD is soldered. FC is a flat cable that electrically connects the lower drive circuit board PCB1 and the left drive circuit board PCB1, and the lower drive circuit board PCB1 and the right drive circuit board PCB1. As the flat cable FC, as shown in the figure, a plurality of lead wires (phosphor bronze material plated with Sn) sandwiched between a striped polyethylene layer and a polyvinyl alcohol layer are used.

【0094】《TCPの接続構造》図18は走査信号駆
動回路Vや映像信号駆動回路He,Hoを構成する、集
積回路チップCHIがフレキシブル配線基板に搭載され
たテープキャリアパッケージTCPの断面構造を示す図
であり、図19はそれを液晶表示パネルの、本例では映
像信号回路用端子DTMに接続した状態を示す要部断面
図である。
<< TCP Connection Structure >> FIG. 18 shows a sectional structure of a tape carrier package TCP in which an integrated circuit chip CHI, which constitutes the scanning signal driving circuit V and the video signal driving circuits He and Ho, is mounted on a flexible wiring board. FIG. 19 is a cross-sectional view of essential parts showing a state in which it is connected to the liquid crystal display panel, in this example, the video signal circuit terminal DTM.

【0095】同図において、TTBは集積回路CHIの
入力端子・配線部であり、TTMは集積回路CHIの出
力端子・配線部であり、例えばCuから成り、それぞれ
の内側の先端部(通称インナーリード)には集積回路C
HIのボンディングパッドPADがいわゆるフェースダ
ウンボンディング法により接続される。端子TTB,T
TMの外側の先端部(通称アウターリード)はそれぞれ
半導体集積回路チップCHIの入力及び出力に対応し、
半田付け等によりCRT/TFT変換回路・電源回路S
UPに、異方性導電膜ACFによって液晶表示パネルP
NLに接続される。パッケージTCPは、その先端部が
パネルPNL側の接続端子DTMを露出した保護膜PS
V1を覆うようにパネルに接続されており、従って、外
部接続端子DTM(GTM)は保護膜PSV1かパッケ
ージTCPの少なくとも一方で覆われるので電触に対し
て強くなる。
In the figure, TTB is an input terminal / wiring portion of the integrated circuit CHI, and TTM is an output terminal / wiring portion of the integrated circuit CHI, which is made of, for example, Cu and has inner end portions (commonly called inner leads). ) Is the integrated circuit C
The HI bonding pad PAD is connected by a so-called face-down bonding method. Terminals TTB, T
Outer end portions (commonly called outer leads) of TM correspond to the input and output of the semiconductor integrated circuit chip CHI,
CRT / TFT conversion circuit / power supply circuit S by soldering, etc.
A liquid crystal display panel P is formed on the UP by an anisotropic conductive film ACF.
Connected to NL. The package TCP has a protective film PS whose front end exposes the connection terminal DTM on the panel PNL side.
Since it is connected to the panel so as to cover V1, and therefore the external connection terminal DTM (GTM) is covered by at least one of the protective film PSV1 and the package TCP, it is strong against electric contact.

【0096】BF1はポリイミド等からなるベースフィ
ルムであり、SRSは半田付けの際半田が余計なところ
へつかないようにマスクするためのソルダレジスト膜で
ある。シールパターンSLの外側の上下ガラス基板の隙
間は洗浄後エポキシ樹脂EPX等により保護され、パッ
ケージTCPと上側基板SUB2の間には更にシリコー
ン樹脂SILが充填され保護が多重化されている。
BF1 is a base film made of polyimide or the like, and SRS is a solder resist film for masking the solder so that it will not stick to an unnecessary place during soldering. The gap between the upper and lower glass substrates outside the seal pattern SL is protected by an epoxy resin EPX or the like after cleaning, and a silicone resin SIL is further filled between the package TCP and the upper substrate SUB2 for multiple protection.

【0097】《駆動回路基板PCB2》中間フレームM
FRに保持・収納される液晶表示部LCDの駆動回路基
板PCB2は、図31に示すように、L字形をしてお
り、IC、コンデンサ、抵抗等の電子部品が搭載されて
いる。この駆動回路基板PCB2には、1つの電圧源か
ら複数の分圧した安定化された電圧源を得るための電源
回路や、ホスト(上位演算処理装置)からのCRT(陰
極線管)用の情報をTFT液晶表示装置用の情報に変換
する回路を含む回路SUPが搭載されている。CJは外
部と接続される図示しないコネクタが接続されるコネク
タ接続部である。駆動回路基板PCB2とインバータ回
路基板PCB3とはバックライトケーブルにより中間フ
レームMFRに設けたコネクタ穴を介して電気的に接続
される。
<< Drive Circuit Board PCB2 >> Intermediate Frame M
As shown in FIG. 31, the drive circuit board PCB2 of the liquid crystal display unit LCD which is held / stored in the FR is L-shaped, and has electronic parts such as ICs, capacitors and resistors mounted thereon. This drive circuit board PCB2 is provided with a power supply circuit for obtaining a plurality of divided and stabilized voltage sources from one voltage source, and information for a CRT (cathode ray tube) from a host (upper processing unit). A circuit SUP including a circuit for converting into information for a TFT liquid crystal display device is mounted. CJ is a connector connecting portion to which a connector (not shown) connected to the outside is connected. The drive circuit board PCB2 and the inverter circuit board PCB3 are electrically connected by a backlight cable through a connector hole provided in the intermediate frame MFR.

【0098】駆動回路基板PCB1と駆動回路基板PC
B2とは折り曲げ可能なフラットケーブルFCにより電
気的に接続されている。組立て時、駆動回路基板PCB
2は、フラットケーブルFCを180°折り曲げることに
より駆動回路基板PCB1の裏側に重ねられ、中間フレ
ームMFRの所定の凹部に嵌合される以上、本発明を実
施例に沿って説明したが本発明はこれらに限定されるも
のではなく、例えば、本発明は薄膜トランジスタを使用
したエレクトロルミネセント表示装置にも適用できる。
Drive circuit board PCB1 and drive circuit board PC
B2 is electrically connected by a foldable flat cable FC. When assembled, drive circuit board PCB
2 is overlapped with the back side of the drive circuit board PCB1 by bending the flat cable FC by 180 ° and fitted into a predetermined concave portion of the intermediate frame MFR. As described above, the present invention has been described with reference to the embodiment. For example, the present invention is not limited to these, and can be applied to an electroluminescent display device using a thin film transistor.

【0099】また、実施例ではドレイン線をゲート線と
の交差部で分岐させたが、同様な考え方でゲート線をド
レイン線との交差部で並列に分岐させ、ゲート電極への
配線をバス共通部分から分岐させるようにしてもよい。
更には、並列分岐数は2つに限らず3つ以上でもよい。
Although the drain line is branched at the intersection with the gate line in the embodiment, the gate line is branched in parallel at the intersection with the drain line in the same way, and the wiring to the gate electrode is shared by the buses. You may make it branch from a part.
Furthermore, the number of parallel branches is not limited to two and may be three or more.

【0100】[0100]

【発明の効果】本発明の一実施例によれば、ドレイン線
をゲート線との交差部で並列に分岐させ、ドレイン電極
への配線をバス共通部分から分岐させているので、線欠
陥を救済でき、そのために点欠陥が生じるという副作用
も未然に防止できる。
According to one embodiment of the present invention, since the drain line is branched in parallel at the intersection with the gate line and the wiring to the drain electrode is branched from the common bus portion, line defects are relieved. It is possible to prevent the side effect of causing point defects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す平面図である。FIG. 1 is a plan view showing an embodiment of the present invention.

【図2】この発明が適用されるアクティブ・マトリック
ス方式のカラー液晶表示装置の液晶表示部の一画素とそ
の周辺を示す要部平面図である。
FIG. 2 is a main-portion plan view showing one pixel and its periphery of a liquid crystal display portion of an active matrix type color liquid crystal display device to which the present invention is applied.

【図3】図2の3−3切断線における1画素とその周辺
を示す断面図である。
FIG. 3 is a cross-sectional view showing one pixel and its periphery taken along the section line 3-3 in FIG.

【図4】図2の4−4切断線における付加容量Caddの
断面図である。
FIG. 4 is a cross-sectional view of the additional capacitance Cadd taken along the line 4-4 in FIG.

【図5】表示パネルのマトリクス周辺部の構成を説明す
るための平面図である。
FIG. 5 is a plan view for explaining the configuration of the matrix peripheral portion of the display panel.

【図6】図5の周辺部をやや誇張し更に具体的に説明す
るためのパネル平面図である。
FIG. 6 is a panel plan view for slightly exaggerating the peripheral portion of FIG. 5 to explain it more specifically.

【図7】上下基板の電気的接続部を含む表示パネルの角
部の拡大平面図である。
FIG. 7 is an enlarged plan view of a corner portion of a display panel including electrical connection portions of upper and lower substrates.

【図8】マトリクスの画素部を中央に、両側にパネル角
付近と映像信号端子部付近を示す断面図である。
FIG. 8 is a cross-sectional view showing the vicinity of a panel angle and the vicinity of a video signal terminal portion on both sides, with the pixel portion of the matrix at the center.

【図9】左側に走査信号端子、右側に外部接続端子の無
いパネル縁部分を示す断面図である。
FIG. 9 is a cross-sectional view showing a scan signal terminal on the left side and a panel edge portion without an external connection terminal on the right side.

【図10】ゲート端子GTMとゲート配線GLの接続部
近辺を示す平面と断面の図である。
FIG. 10 is a plan view and a cross-sectional view showing the vicinity of a connecting portion between a gate terminal GTM and a gate wiring GL.

【図11】ドレイン端子DTMと映像信号線DLとの接
続部付近を示す平面と断面の図である。
FIG. 11 is a plan view and a cross-sectional view showing the vicinity of a connection portion between a drain terminal DTM and a video signal line DL.

【図12】アクティブ・マトリックス方式のカラー液晶
表示装置のマトリクス部とその周辺を含む回路図であ
る。
FIG. 12 is a circuit diagram including a matrix portion and its periphery of an active matrix type color liquid crystal display device.

【図13】基板SUB1側の工程A〜Cの製造工程を示
す画素部とゲート端子部の断面図のフローチャートであ
る。
FIG. 13 is a flowchart of a cross-sectional view of a pixel portion and a gate terminal portion showing a manufacturing process of steps A to C on the substrate SUB1 side.

【図14】基板SUB1側の工程D〜Fの製造工程を示
す画素部とゲート端子部の断面図のフローチャートであ
る。
FIG. 14 is a flow chart of a cross-sectional view of a pixel portion and a gate terminal portion showing a manufacturing process of processes D to F on the side of the substrate SUB1.

【図15】基板SUB1側の工程G〜Iの製造工程を示
す画素部とゲート端子部の断面図のフローチャートであ
る。
FIG. 15 is a flow chart of a cross-sectional view of a pixel portion and a gate terminal portion showing manufacturing steps of steps GI on the side of the substrate SUB1.

【図16】液晶表示モジュールの分解斜視図である。FIG. 16 is an exploded perspective view of a liquid crystal display module.

【図17】液晶表示パネルに周辺の駆動回路を実装した
状態を示す上面図である。
FIG. 17 is a top view showing a state in which a peripheral drive circuit is mounted on a liquid crystal display panel.

【図18】駆動回路を構成する集積回路チップCHIが
フレキシブル配線基板に搭載されたテープキャリアパッ
ケージTCPの断面構造を示す図である。
FIG. 18 is a diagram showing a cross-sectional structure of a tape carrier package TCP in which an integrated circuit chip CHI forming a drive circuit is mounted on a flexible wiring board.

【図19】テープキャリアパッケージTCPを液晶表示
パネルPNLの映像信号回路用端子DTMに接続した状
態を示す要部断面図である。
FIG. 19 is a cross-sectional view of essential parts showing a state in which the tape carrier package TCP is connected to the video signal circuit terminal DTM of the liquid crystal display panel PNL.

【図20】周辺駆動回路基板PCB1(上面が見える)
と電源回路回路基板PCB2(下面が見える)との接続
状態を示す上面図である。
FIG. 20: Peripheral drive circuit board PCB1 (top surface visible)
It is a top view which shows the connection state of power supply circuit circuit board PCB2 (a lower surface is visible).

【符号の説明】[Explanation of symbols]

SUB…透明ガラス基板、GL…走査信号線、DL…映
像信号線、GI…絶縁膜、GT…ゲート電極、AS…i
型半導体層、SD…ソース電極またはドレイン電極、P
SV…保護膜、BM…遮光膜、LC…液晶、TFT…薄
膜トランジスタ、ITO…透明画素電極、g,d…導電
膜、Cadd…保持容量素子、AOF…陽極酸化膜、AO
…陽極酸化マスク、GTM…ゲート端子、DTM…ドレ
イン端子、SHD…シールドケース、PNL…液晶表示
パネル、SPB…光拡散板、MFR…中間フレーム、B
L…バックライト、BLS…バックライト支持体、LC
A…下側ケース、RM…バックライト光反射山、(以上
添字省略)。
SUB ... Transparent glass substrate, GL ... Scan signal line, DL ... Video signal line, GI ... Insulating film, GT ... Gate electrode, AS ... i
-Type semiconductor layer, SD ... Source electrode or drain electrode, P
SV ... Protective film, BM ... Light-shielding film, LC ... Liquid crystal, TFT ... Thin film transistor, ITO ... Transparent pixel electrode, g, d ... Conductive film, Cadd ... Storage capacitor element, AOF ... Anodized film, AO
... Anodizing mask, GTM ... Gate terminal, DTM ... Drain terminal, SHD ... Shield case, PNL ... Liquid crystal display panel, SPB ... Light diffusion plate, MFR ... Intermediate frame, B
L ... Backlight, BLS ... Backlight support, LC
A ... Lower case, RM ... Backlight light reflection mountain (above suffix omitted).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 幸宏 千葉県茂原市早野3300番地 株式会社日立 製作所茂原工場内 (72)発明者 大和田 淳一 千葉県茂原市早野3300番地 株式会社日立 製作所茂原工場内 (72)発明者 近藤 裕則 千葉県茂原市早野3300番地 株式会社日立 製作所茂原工場内 (72)発明者 月井 教男 千葉県茂原市早野3300番地 株式会社日立 製作所茂原工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yukihiro Sato 3300 Hayano, Mobara-shi, Chiba Hitachi Mobara factory (72) Inventor Junichi Owada 3300, Hayano Mobara, Chiba Hitachi Ltd. Mobara factory ( 72) Inventor Hironori Kondo 3300 Hayano, Mobara-shi, Chiba Hitachi Mobara factory (72) Inventor Norio Tsuki 3300 Hayano, Mobara-shi Chiba Hitachi Mobara plant, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】各々が半導体層から成る第一群の島と、ソ
ース、ドレイン及びゲートを有す複数の薄膜トランジス
タと、上記複数のドレインを電気的に接続する複数のド
レイン線と、上記複数のゲートを電気的に接続し、上記
複数のドレイン線と絶縁層を介してほぼ直交する複数の
ゲート線とを具備して成り、上記ドレイン線及びゲート
線の一方を複数のパスに並列に分岐させて他方と交差さ
せ、上記パスの各々と上記他方との間に、上記半導体層
から成りそれぞれが分離された複数の第二群の島を挿入
して成ることを特徴とする薄膜トランジスタアレイ。
1. A first group of islands each comprising a semiconductor layer, a plurality of thin film transistors having a source, a drain and a gate, a plurality of drain lines electrically connecting the plurality of drains, and a plurality of the plurality of drain lines. A gate is electrically connected, and a plurality of drain lines and a plurality of gate lines that are substantially orthogonal to each other through an insulating layer are provided, and one of the drain line and the gate line is branched in parallel to a plurality of paths. A thin film transistor array, wherein a plurality of second group islands made of the semiconductor layer and separated from each other are inserted between each of the paths and the other path.
【請求項2】各々がソース電極、ドレイン電極及びゲー
ト電極を有する複数の薄膜トランジスタと、上記複数の
ドレインを電気的に接続する複数のドレイン線と、上記
複数のゲートを電気的に接続し、上記複数のドレイン線
と絶縁層を介してほぼ直交する複数のゲート線とを具備
して成り、上記ドレイン線は共通のバス部分と、上記ゲ
ート線との交差部で並列に枝分かれする第一及び第二の
分岐部分と、上記バス部分から枝分かれし上記ドレイン
電極に接続される第三の分岐部分とを有し、上記第一、
第二及び第三の分岐部分は共に並行の関係に有る箇所を
有することを特徴とする薄膜トランジスタアレイ。
2. A plurality of thin film transistors each having a source electrode, a drain electrode and a gate electrode, a plurality of drain lines electrically connecting the plurality of drains, and a plurality of gates electrically connected to each other, A plurality of drain lines and a plurality of gate lines that are substantially orthogonal to each other with an insulating layer in between, wherein the drain lines are a first bus line and a first bus line that branches in parallel at a common bus portion and an intersection of the gate lines. A second branch portion, and a third branch portion branched from the bus portion and connected to the drain electrode, the first,
A thin film transistor array, characterized in that the second and third branch portions both have a parallel relationship.
【請求項3】上記並行の関係に有る箇所は一直線状に位
置することを特徴とする請求項2記載の薄膜トランジス
タアレイ。
3. The thin film transistor array according to claim 2, wherein the portions having the parallel relationship are located in a straight line.
【請求項4】上記ゲート線は上記ゲート電極及びコンデ
ンサの電極をも兼ねており、上記ゲート線の走る方向で
隣合う画素の上記交差部を結ぶ直線上には上記トランジ
スタの半導体層と上記コンデンサが配置されていること
を特徴とする請求項2記載の薄膜トランジスタアレイ。
4. The gate line also serves as the gate electrode and the capacitor electrode, and the semiconductor layer of the transistor and the capacitor are arranged on a straight line connecting the intersections of adjacent pixels in the running direction of the gate line. 3. The thin film transistor array according to claim 2, wherein:
【請求項5】各々がソース電極、ドレイン電極及びゲー
ト電極を有する複数の薄膜トランジスタと、上記複数の
ドレインを電気的に接続する複数のドレイン線と、上記
複数のゲートを電気的に接続し、上記複数のドレイン線
と絶縁層を介してほぼ直交する複数のゲート線とを具備
して成り、上記ゲート線は共通のバス部分と、上記ドレ
イン線との交差部で並列に枝分かれする第一及び第二の
分岐部分と、上記バス部分から枝分かれし上記ゲート電
極に接続される第三の分岐部分とを有し、上記第一、第
二及び第三の分岐部分は共に並行の関係に有る箇所を有
することを特徴とする薄膜トランジスタアレイ。
5. A plurality of thin film transistors each having a source electrode, a drain electrode and a gate electrode, a plurality of drain lines electrically connecting the plurality of drains, and a plurality of gates electrically connected to each other. A plurality of drain lines and a plurality of gate lines that are substantially orthogonal to each other with an insulating layer interposed therebetween, wherein the gate lines include a common bus portion and a first and a first branch that branch in parallel at an intersection of the drain lines. It has a second branch portion and a third branch portion branched from the bus portion and connected to the gate electrode, and the first, second and third branch portions both have a parallel relationship. A thin film transistor array having.
JP25251692A 1992-09-22 1992-09-22 Thin film transistor array Pending JPH06102536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25251692A JPH06102536A (en) 1992-09-22 1992-09-22 Thin film transistor array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25251692A JPH06102536A (en) 1992-09-22 1992-09-22 Thin film transistor array

Publications (1)

Publication Number Publication Date
JPH06102536A true JPH06102536A (en) 1994-04-15

Family

ID=17238459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25251692A Pending JPH06102536A (en) 1992-09-22 1992-09-22 Thin film transistor array

Country Status (1)

Country Link
JP (1) JPH06102536A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990024910A (en) * 1997-09-09 1999-04-06 윤종용 How to remove pixel defects
KR20010103431A (en) * 2000-05-10 2001-11-23 구본준, 론 위라하디락사 method for fabricating liquid crystal display device
JP2005175109A (en) * 2003-12-10 2005-06-30 Fujitsu Display Technologies Corp Thin film transistor, display unit board equipped therewith, liquid crystal display unit using this board and defect correcting method
KR100483379B1 (en) * 1997-01-28 2005-08-01 삼성전자주식회사 LCD panel reduces open line of data
KR100517135B1 (en) * 1997-10-27 2005-11-29 삼성전자주식회사 Thin film transistor substrate
US7026648B2 (en) * 2003-03-31 2006-04-11 Au Optronics Corporation Pixel structure
JP2006235612A (en) * 2005-01-31 2006-09-07 Semiconductor Energy Lab Co Ltd Display device and electronic equipment
JP2007114477A (en) * 2005-10-20 2007-05-10 Toshiba Matsushita Display Technology Co Ltd Display apparatus
JP2012048264A (en) * 2005-01-31 2012-03-08 Semiconductor Energy Lab Co Ltd Display device
KR20170062587A (en) * 2015-11-27 2017-06-08 엘지디스플레이 주식회사 Horizontal electric field type liquid crystal display device
JP2018097386A (en) * 2009-03-26 2018-06-21 株式会社半導体エネルギー研究所 Display device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483379B1 (en) * 1997-01-28 2005-08-01 삼성전자주식회사 LCD panel reduces open line of data
KR19990024910A (en) * 1997-09-09 1999-04-06 윤종용 How to remove pixel defects
KR100517135B1 (en) * 1997-10-27 2005-11-29 삼성전자주식회사 Thin film transistor substrate
KR20010103431A (en) * 2000-05-10 2001-11-23 구본준, 론 위라하디락사 method for fabricating liquid crystal display device
US7026648B2 (en) * 2003-03-31 2006-04-11 Au Optronics Corporation Pixel structure
JP4689161B2 (en) * 2003-12-10 2011-05-25 シャープ株式会社 THIN FILM TRANSISTOR, DISPLAY DEVICE SUBSTRATE HAVING THE SAME, LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME, AND DEFECT CORRECTION METHOD
JP2005175109A (en) * 2003-12-10 2005-06-30 Fujitsu Display Technologies Corp Thin film transistor, display unit board equipped therewith, liquid crystal display unit using this board and defect correcting method
US8629440B2 (en) 2005-01-31 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Display device with defective pixels correction structure
US10700156B2 (en) 2005-01-31 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2012048264A (en) * 2005-01-31 2012-03-08 Semiconductor Energy Lab Co Ltd Display device
JP2006235612A (en) * 2005-01-31 2006-09-07 Semiconductor Energy Lab Co Ltd Display device and electronic equipment
US9257453B2 (en) 2005-01-31 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Display device including first to sixth transistors and light-emitting element
US9613988B2 (en) 2005-01-31 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Display device having narrower wiring regions
US11910676B2 (en) 2005-01-31 2024-02-20 Semiconductor Energy Laboratory Co., Ltd. Display device
US11362165B2 (en) 2005-01-31 2022-06-14 Semiconductor Energy Laboratory Co., Ltd. Display device
US10573705B2 (en) 2005-01-31 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Display device with defective pixel correction
JP2007114477A (en) * 2005-10-20 2007-05-10 Toshiba Matsushita Display Technology Co Ltd Display apparatus
KR20180120649A (en) * 2009-03-26 2018-11-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
US10964281B2 (en) 2009-03-26 2021-03-30 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, driving method of the same, and electronic device including the same
JP2018097386A (en) * 2009-03-26 2018-06-21 株式会社半導体エネルギー研究所 Display device
US11514871B2 (en) 2009-03-26 2022-11-29 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, driving method of the same, and electronic device including the same
KR20170062587A (en) * 2015-11-27 2017-06-08 엘지디스플레이 주식회사 Horizontal electric field type liquid crystal display device

Similar Documents

Publication Publication Date Title
JP3184853B2 (en) Liquid crystal display
JPH07146481A (en) Liquid crystal display substrate
JPH06102534A (en) Thin-film transistor array
JPH06102536A (en) Thin film transistor array
JPH0794744A (en) Mis transistor
JPH05232494A (en) Liquid crystal display device
JPH06250221A (en) Production of liquid crystal display substrate
JPH06347825A (en) Liquid crystal display device and its production
JPH06265922A (en) Liquid crystal display device
JP3311838B2 (en) Liquid crystal display
JPH07333636A (en) Liquid crystal display device
JPH0792489A (en) Liquid crystal display device
JPH06258667A (en) Liquid crystal display device
JPH06308529A (en) Thin-film transistor substrate, liquid crystal display panel and liquid crystal display device
JPH0850268A (en) Production of liquid crystal display substrate
JPH06268218A (en) Manufacture of thin film transistor
JPH06265919A (en) Liquid crystal display device
JPH06242465A (en) Liquid crystal display substrate
JPH0736052A (en) Substrate provided with al alloy layer as wiring layer and its production
JPH08136950A (en) Liquid crystal display substrate
JPH07239478A (en) Semiconductor device
JPH06258666A (en) Liquid crystal display device
JPH0720464A (en) Liquid crystal display device
JPH06265934A (en) Liquid crystal display device
JPH0882808A (en) Production of liquid crystal display substrate