JPH05232494A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH05232494A
JPH05232494A JP3474392A JP3474392A JPH05232494A JP H05232494 A JPH05232494 A JP H05232494A JP 3474392 A JP3474392 A JP 3474392A JP 3474392 A JP3474392 A JP 3474392A JP H05232494 A JPH05232494 A JP H05232494A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
layer
crystal display
pixel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3474392A
Other languages
Japanese (ja)
Other versions
JP3125411B2 (en
Inventor
Shinzo Matsumoto
信三 松本
Yoshiyuki Tsujita
嘉之 辻田
Yukihiro Sato
幸宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP04034743A priority Critical patent/JP3125411B2/en
Publication of JPH05232494A publication Critical patent/JPH05232494A/en
Application granted granted Critical
Publication of JP3125411B2 publication Critical patent/JP3125411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To suppress the generation of electric corrosion by covering an external connecting terminals with at least either of a protective film or base film. CONSTITUTION:The Al pattern position of a terminal leading-out part is confined within a sealing pattern SL and the protective film PSV 1 is extended up to TCPF to cover the terminal leading-out part. Namely, the front ends on the outer side of the terminals TTM respectively correspond to the input and output of a semiconductor integrated circuit chip and are connected by soldering, etc., to a CRT/TFT conversion circuit and power source circuit and by an anisotropic conductive film ACF to a liquid crystal display panel. A package TCP is so connected to the panel that the front end thereof covers the protective film PSV 1 exposing the connecting terminals DTM on the panel side. Then, the external connecting terminal DTM (GTM) is coated with at least either of the protective film PSV 1 or the package TCP and is, therefore, strong to the electric corrosion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示装置、特に薄膜
トランジスタを使用したアクティブマトリクス液晶表示
デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to an active matrix liquid crystal display device using thin film transistors.

【0002】[0002]

【従来の技術】薄膜トランジスタを使用したアクティブ
マトリクス液晶表示デバイスは例えば特開昭63−30
9921号公報で知られている。
2. Description of the Related Art An active matrix liquid crystal display device using a thin film transistor is disclosed in, for example, Japanese Patent Laid-Open No. 63-30.
It is known from Japanese Patent Publication No. 9921.

【0003】アクティブマトリクス方式の液晶表示装置
は、マトリックス状に配列された複数の画素電極の各々
に対応して非線形素子(スイッチング素子)を設けたもの
である。液晶は上下の基板の隙間に封入・封止され、一
体化したセルとなる。モジュ−ル組立て工程では、異方
性導電膜ACFを使用し、セル側端子とテープキャリア
パッケージTCP側端子を接続する。従来は、一体化し
たセルに組み立てた後での超音波洗浄やモジュ−ル組立
て工程でのTCP圧着前の端子洗浄作業時にAlパタ−
ン上の保護膜(PSV1)が剥がれる問題が生じた。こ
の保護膜剥がれは、高温高湿テスト後の端子間電蝕の原
因となることがわかった。また、保護膜とTABの間に
導体パタ−ンが露出した部分があると、エポキシ樹脂E
PXやシリコーン樹脂SILを塗布しても信頼性上十分
でなく、端子間電蝕の原因となることがわかった。この
ため、端子引き出し部のAlパタ−ン位置及び保護膜位
置について規定する必要が生じた。
An active matrix type liquid crystal display device is provided with a non-linear element (switching element) corresponding to each of a plurality of pixel electrodes arranged in a matrix. The liquid crystal is sealed and sealed in the gap between the upper and lower substrates to form an integrated cell. In the module assembling process, the anisotropic conductive film ACF is used to connect the cell side terminal and the tape carrier package TCP side terminal. Conventionally, the aluminum pattern is used for ultrasonic cleaning after assembling into an integrated cell and terminal cleaning work before TCP crimping in the module assembly process.
There was a problem that the protective film (PSV1) on the screen peeled off. It was found that this peeling of the protective film causes electrolytic corrosion between terminals after the high temperature and high humidity test. Further, if there is a portion where the conductor pattern is exposed between the protective film and the TAB, the epoxy resin E
It was found that the application of PX or the silicone resin SIL was not sufficient in terms of reliability, and caused electrolytic corrosion between terminals. Therefore, it is necessary to specify the Al pattern position and the protective film position of the terminal lead portion.

【0004】また、信号線側は、絶えずビデオ信号ある
いはデジタル信号が入力され、デュ−ティが高いため、
より良好な信頼性設計が必要になる。高温高湿テスト結
果でも、信号線側が先に電蝕を生じ、走査線側は異常無
い場合が多かった。このため、本発明はとりわけ信号線
側で有効である。
Further, since the video signal or the digital signal is constantly input to the signal line side and the duty is high,
Better reliability design is needed. Even in the high-temperature and high-humidity test results, the signal line side was often electrolyzed first, and the scanning line side was not abnormal in many cases. Therefore, the present invention is particularly effective on the signal line side.

【0005】[0005]

【発明が解決しようとする課題】本発明の一つの目的は
信頼性の高い液晶表示デバイスを提供することにある。
SUMMARY OF THE INVENTION One object of the present invention is to provide a highly reliable liquid crystal display device.

【0006】本発明の他の目的は、高精細化に伴い端子
ピッチが小さくなるため、更に顕著となる高温高湿テス
ト後の端子間電蝕の不良を防止することができる液晶表
示デバイスを提供することである。
Another object of the present invention is to provide a liquid crystal display device capable of preventing the electrical corrosion between terminals after the high-temperature and high-humidity test, which becomes more conspicuous, because the terminal pitch becomes smaller as the definition becomes higher. It is to be.

【0007】[0007]

【課題を解決するための手段】本発明の一実施例によれ
ば、映像信号線に斜め配線を介して端子が接続された液
晶表示素子において、端子引き出し部のAlパタ−ン位
置はシ−ルパターンSL内におさめ、保護膜PSV1は
TCP下まで伸ばし端子引き出し部を被覆した液晶表示
デバイスが提供される。
According to one embodiment of the present invention, in a liquid crystal display device in which a terminal is connected to a video signal line through an oblique wiring, the Al pattern position of the terminal lead-out portion is a see-through position. A liquid crystal display device is provided in which the protective film PSV1 is extended to the bottom of the TCP and is covered in the pattern SL, and the terminal lead portion is covered.

【0008】[0008]

【作用】このような液晶表示デバイスによれば、液晶組
立て工程やモジュ−ル工程でのメカニカルストレスを受
けても、密着力の弱いAl材と保護膜がシ−ル内に有る
為剥がれが防止でき、また、引き出し配線が全て保護膜
で覆われる為露出した導体パタ−ンが無く、直接外気に
接触しにくくなり、高温高湿テスト信頼性が良好であ
る。
According to such a liquid crystal display device, even if mechanical stress is applied in the liquid crystal assembling process or the module process, peeling is prevented because the Al material and the protective film, which have weak adhesion, are present in the seal. In addition, since all the lead-out wiring is covered with the protective film, there is no exposed conductor pattern, it is difficult to directly contact the outside air, and the high temperature and high humidity test reliability is good.

【0009】[0009]

【実施例】本発明、本発明の更に他の目的及び本発明の
更に他の特徴は図面を参照した以下の説明から明らかと
なるであろう。
BRIEF DESCRIPTION OF THE DRAWINGS The invention, further objects of the invention and further features of the invention will become apparent from the following description with reference to the drawings.

【0010】(アクティブ・マトリクス液晶表示装置)
以下、アクティブ・マトリクス方式のカラー液晶表示装
置にこの発明を適用した実施例を説明する。なお、以下
説明する図面で、同一機能を有するものは同一符号を付
け、その繰り返しの説明は省略する。
(Active matrix liquid crystal display device)
An embodiment in which the present invention is applied to an active matrix type color liquid crystal display device will be described below. In the drawings described below, components having the same function are designated by the same reference numeral, and repeated description thereof will be omitted.

【0011】(マトリクス部の概要)図1はこの発明が
適用されるアクティブ・マトリクス方式カラー液晶表示
装置の一画素とその周辺を示す平面図、図2は図1の2
−2切断線における断面を示す図、図3は図1の3−3
切断線における断面図である。また、図4には図1に示
す画素を複数配置したときの平面図を示す。
(Outline of Matrix Section) FIG. 1 is a plan view showing one pixel and its periphery of an active matrix type color liquid crystal display device to which the present invention is applied, and FIG.
2 is a view showing a cross section taken along the line -2, and FIG. 3 is 3-3 in FIG.
It is sectional drawing in a cutting line. Further, FIG. 4 shows a plan view when a plurality of pixels shown in FIG. 1 are arranged.

【0012】図1に示すように、各画素は隣接する2本
の走査信号線(ゲート信号線または水平信号線)GL
と、隣接する2本の映像信号線(ドレイン信号線または
垂直信号線)DLとの交差領域内(4本の信号線で囲ま
れた領域内)に配置されている。各画素は薄膜トランジ
スタTFT、透明画素電極ITO1および保持容量素子
Caddを含む。走査信号線GLは列方向に延在し、行方
向に複数本配置されている。映像信号線DLは行方向に
延在し、列方向に複数本配置されている。
As shown in FIG. 1, each pixel has two adjacent scanning signal lines (gate signal lines or horizontal signal lines) GL.
And an adjacent two video signal lines (drain signal lines or vertical signal lines) DL intersect with each other (in a region surrounded by four signal lines). Each pixel includes a thin film transistor TFT, a transparent pixel electrode ITO1 and a storage capacitor element Cadd. The scanning signal lines GL extend in the column direction, and a plurality of scanning signal lines GL are arranged in the row direction. The video signal lines DL extend in the row direction and a plurality of video signal lines DL are arranged in the column direction.

【0013】図2に示すように、液晶LCを基準に下部
透明ガラス基板SUB1側には薄膜トランジスタTFT
および透明画素電極ITO1が形成され、上部透明ガラ
ス基板SUB2側にはカラーフィルタFIL、遮光用ブ
ラックマトリクスパターンBMが形成されている。下部
透明ガラス基板SUB1はたとえば1.1mm程度の厚さ
で構成されている。また、透明ガラス基板SUB1、S
UB2の両面にはディップ処理等によって形成された酸
化シリコン膜SIOが設けられている。このため、透明
ガラス基板SUB1、SUB2の表面に鋭い傷があった
としても、鋭い傷を酸化シリコン膜SIOで覆うことが
できるので、その上にデポジットされる走査信号線G
L、遮光膜BM等の膜質を均質に保つことができる。
As shown in FIG. 2, a thin film transistor TFT is provided on the lower transparent glass substrate SUB1 side based on the liquid crystal LC.
The transparent pixel electrode ITO1 is formed, and the color filter FIL and the light-shielding black matrix pattern BM are formed on the upper transparent glass substrate SUB2 side. The lower transparent glass substrate SUB1 has a thickness of, for example, about 1.1 mm. In addition, the transparent glass substrates SUB1 and S
A silicon oxide film SIO formed by dipping or the like is provided on both surfaces of the UB2. Therefore, even if there are sharp scratches on the surfaces of the transparent glass substrates SUB1 and SUB2, the sharp scratches can be covered with the silicon oxide film SIO, and the scanning signal line G deposited on the scratches can be covered.
The film quality of L, the light shielding film BM, etc. can be kept uniform.

【0014】上部透明ガラス基板SUB2の内側(液晶
LC側)の表面には、遮光膜BM、カラーフィルタFI
L、保護膜PSV2、共通透明画素電極ITO2(CO
M)および上部配向膜ORI2が順次積層して設けられ
ている。
On the inner surface (liquid crystal LC side) of the upper transparent glass substrate SUB2, a light shielding film BM and a color filter FI are provided.
L, protective film PSV2, common transparent pixel electrode ITO2 (CO
M) and the upper alignment film ORI2 are sequentially stacked.

【0015】(マトリクス周辺の概要)図16は上下の
ガラス基板SUB1,SUB2を含む表示パネルPNL
のマトリクス(AR)周辺の要部平面を、図17はその
周辺部を更に誇張した平面を、図18は図16及び図1
7のパネル左上角部に対応するシール部SL付近の拡大
平面を示す図である。また、図19は図2の断面を中央
にして、左側に図18の19a−19a切断線における
断面を、右側に映像信号駆動回路が接続されるべき外部
接続端子DTM付近の断面を示す図である。同様に図2
0は、左側に走査回路が接続されるべき外部接続端子G
TM付近の断面を、右側に外部接続端子が無いところの
シール部付近の断面を示す図である。
(Outline of Matrix Periphery) FIG. 16 shows a display panel PNL including upper and lower glass substrates SUB1 and SUB2.
17 is a plane in which a peripheral portion of the matrix (AR) is exaggerated, FIG.
7 is a diagram showing an enlarged plane near the seal portion SL corresponding to the upper left corner of the panel of FIG. Further, FIG. 19 is a diagram showing a cross section taken along a cutting line 19a-19a in FIG. 18 on the left side and a cross section near the external connection terminal DTM to which the video signal driving circuit is to be connected, on the right side, with the cross section of FIG. 2 as the center. is there. Similarly, FIG.
0 is an external connection terminal G to which the scanning circuit should be connected on the left side
It is a figure which shows the cross section near TM, and the cross section near the seal part where there is no external connection terminal on the right side.

【0016】このパネルの製造では、小さいサイズであ
ればスループット向上のため1枚のガラス基板で複数個
分のデバイスを同時に加工してから分割し、大きいサイ
ズであれば製造設備の共用のためどの品種でも標準化さ
れた大きさのガラス基板を加工してから各品種に合った
サイズに小さくし、いずれの場合も一通りの工程を経て
からガラスを切断する。図16〜図18は後者の例を示
すもので、図16、図17の両図とも上下基板SUB
1,SUB2の切断後を、図18は切断前を表してお
り、LNは両基板の切断前の縁を、CT1とCT2はそ
れぞれ基板SUB1,SUB2の切断すべき位置を示
す。いずれの場合も、完成状態では外部接続端子群T
g,Td(添字略)が存在する(図で上下辺と左辺の)
部分はそれらを露出するように上側基板SUB2の大き
さが下側基板SUB1よりも内側に制限されている。端
子群Tg,Tdはそれぞれ後述する走査回路接続用端子
GTM、映像信号回路接続用端子DTMとそれらの引出
配線部を集積回路チップCHIが搭載されたテープキャ
リアパッケージTCP(図20、図21)の単位に複数
本まとめて名付けたものである。各群のマトリクス部か
ら外部接続端子部に至るまでの引出配線は、両端に近づ
くにつれ傾斜している。これは、パッケージTCPの配
列ピッチ及び各パッケージTCPにおける接続端子ピッ
チに表示パネルPNLの端子DTM,GTMを合わせる
ためである。
[0016] Any For this panel In the manufacture of, if small size divided from simultaneously processing a plurality fraction of the device in one glass substrate for increased throughput, manufacturing facilities if large size shared In each product type, a glass substrate of standardized size is processed and then reduced to a size suitable for each product type. In each case, the glass is cut after one step. 16 to 18 show an example of the latter case. In both of FIGS. 16 and 17, the upper and lower substrates SUB are shown.
18 shows the state after the cutting of the substrates 1 and SUB2, and FIG. 18 shows the state before the cutting, LN indicates the edges of the both substrates before the cutting, and CT1 and CT2 indicate the positions of the substrates SUB1 and SUB2 to be cut, respectively. In either case, in the completed state, the external connection terminal group T
g and Td (subscripts omitted) exist (upper and lower sides in the figure)
The upper substrate SUB2 is limited in size to the inside of the lower substrate SUB1 so as to expose them. The terminal groups Tg and Td are respectively a scanning circuit connecting terminal GTM, a video signal circuit connecting terminal DTM, which will be described later, and lead-out wiring parts thereof of a tape carrier package TCP (FIG. 20, FIG. 21) on which an integrated circuit chip CHI is mounted. It is named after a plurality of units. The lead wiring from the matrix portion of each group to the external connection terminal portion is inclined toward both ends. This is to match the terminals DTM and GTM of the display panel PNL with the arrangement pitch of the package TCP and the connection terminal pitch of each package TCP.

【0017】透明ガラス基板SUB1、SUB2の間に
はその縁に沿って、液晶封入口INJを除き、液晶LC
を封止するようにシールパターンSLが形成される。シ
ール材は例えばエポキシ樹脂から成る。上部透明ガラス
基板SUB2側の共通透明画素電極ITO2は、少なく
とも一箇所において、本実施例ではパネルの4角で銀ペ
ースト材AGPによって下部透明ガラス基板SUB1側
に形成されたその引出配線INTに接続されている。こ
の引出配線INTは後述するゲート端子GTM、ドレイ
ン端子DTMと同一製造工程で形成される。
A liquid crystal LC is provided between the transparent glass substrates SUB1 and SUB2 along the edge thereof except for the liquid crystal inlet INJ.
A seal pattern SL is formed so as to seal the. The sealing material is made of epoxy resin, for example. The common transparent pixel electrode ITO2 on the upper transparent glass substrate SUB2 side is connected to at least one of the lead wirings INT formed on the lower transparent glass substrate SUB1 side by the silver paste material AGP at four corners of the panel in this embodiment. ing. The lead wiring INT is formed in the same manufacturing process as a gate terminal GTM and a drain terminal DTM described later.

【0018】配向膜ORI1、ORI2、透明画素電極
ITO1、共通透明画素電極ITO2、それぞれの層
は、シールパターンSLの内側に形成される。偏光板P
OL1、POL2はそれぞれ下部透明ガラス基板SUB
1、上部透明ガラス基板SUB2の外側の表面に形成さ
れている。液晶LCは液晶分子の向きを設定する下部配
向膜ORI1と上部配向膜ORI2との間でシールパタ
ーンSLで仕切られた領域に封入されている。下部配向
膜ORI1は下部透明ガラス基板SUB1側の保護膜P
SV1の上部に形成される。
The alignment layers ORI1 and ORI2, the transparent pixel electrode ITO1 and the common transparent pixel electrode ITO2, and the respective layers are formed inside the seal pattern SL. Polarizing plate P
OL1 and POL2 are lower transparent glass substrates SUB, respectively.
1. Formed on the outer surface of the upper transparent glass substrate SUB2. The liquid crystal LC is enclosed in a region partitioned by a seal pattern SL between a lower alignment film ORI1 and an upper alignment film ORI2 that set the orientation of liquid crystal molecules. The lower alignment film ORI1 is a protective film P on the lower transparent glass substrate SUB1 side.
It is formed on top of SV1.

【0019】この液晶表示装置は、下部透明ガラス基板
SUB1側、上部透明ガラス基板SUB2側で別個に種
々の層を積み重ね、シールパターンSLを基板SUB2
側に形成し、下部透明ガラス基板SUB1と上部透明ガ
ラス基板SUB2とを重ね合わせ、シール材SLの開口
部INJから液晶LCを注入し、注入口INJをエポキ
シ樹脂などで封止し、上下基板を切断することによって
組み立てられる。
In this liquid crystal display device, various layers are separately stacked on the lower transparent glass substrate SUB1 side and the upper transparent glass substrate SUB2 side, and the seal pattern SL is provided on the substrate SUB2.
Formed on the side, the lower transparent glass substrate SUB1 and the upper transparent glass substrate SUB2 are overlapped, the liquid crystal LC is injected from the opening INJ of the sealing material SL, and the injection port INJ is sealed with epoxy resin or the like to form the upper and lower substrates. It is assembled by cutting.

【0020】(薄膜トランジスタTFT)薄膜トランジ
スタTFTは、ゲート電極GTに正のバイアスを印加す
ると、ソース−ドレイン間のチャネル抵抗が小さくな
り、バイアスを零にすると、チャネル抵抗は大きくなる
ように動作する。
(Thin Film Transistor TFT) The thin film transistor TFT operates so that when a positive bias is applied to the gate electrode GT, the channel resistance between the source and the drain becomes small, and when the bias is zero, the channel resistance becomes large.

【0021】各画素の薄膜トランジスタTFTは、画素
内において2つ(複数)に分割され、薄膜トランジスタ
(分割薄膜トランジスタ)TFT1およびTFT2で構
成されている。薄膜トランジスタTFT1、TFT2の
それぞれは実質的に同一サイズ(チャネル長、チャネル
幅が同じ)で構成されている。この分割された薄膜トラ
ンジスタTFT1、TFT2のそれぞれは、ゲート電極
GT、ゲート絶縁膜GI、i型(真性、intrinsic、導
電型決定不純物がドープされていない)非晶質シリコン
(Si)からなるi型半導体層AS、一対のソース電極
SD1、ドレイン電極SD2を有す。なお、ソース、ド
レインは本来その間のバイアス極性によって決まるもの
で、この液晶表示装置の回路ではその極性は動作中反転
するので、ソース、ドレインは動作中入れ替わると理解
されたい。しかし、以下の説明では、便宜上一方をソー
ス、他方をドレインと固定して表現する。
The thin film transistor TFT of each pixel is divided into two (plural) within the pixel, and is composed of thin film transistors (divided thin film transistors) TFT1 and TFT2. Each of the thin film transistors TFT1 and TFT2 has substantially the same size (channel length and channel width are the same). Each of the divided thin film transistors TFT1 and TFT2 is an i-type semiconductor made of a gate electrode GT, a gate insulating film GI, and an i-type (intrinsic, intrinsic, conductivity type determination impurity-free) amorphous silicon (Si). It has a layer AS, a pair of source electrodes SD1 and a pair of drain electrodes SD2. It should be understood that the source and drain are originally determined by the bias polarity between them, and the polarity is inverted during operation in the circuit of this liquid crystal display device, so it should be understood that the source and drain are switched during operation. However, in the following description, for convenience, one is fixed as the source and the other is fixed as the drain.

【0022】(ゲート電極GT)ゲート電極GTは図5
(図1の第2導電膜g2およびi型半導体層ASのみを
描いた平面図)に示すように、走査信号線GLから垂直
方向(図1および図5において上方向)に突出する形状
で構成されている(T字形状に分岐されている)。ゲー
ト電極GTは薄膜トランジスタTFT1、TFT2のそ
れぞれの能動領域を越えるよう突出している。薄膜トラ
ンジスタTFT1、TFT2のそれぞれのゲート電極G
Tは、一体に(共通ゲート電極として)構成されてお
り、走査信号線GLに連続して形成されている。本例で
は、ゲート電極GTは、単層の第2導電膜g2で形成さ
れている。第2導電膜g2はたとえばスパッタで形成さ
れたアルミニウム(Al)膜を用い、1000〜550
0Å程度の膜厚で形成する。また、ゲート電極GT上に
はAlの陽極酸化膜AOFが設けられている。
(Gate Electrode GT) The gate electrode GT is shown in FIG.
As shown in (plan view in which only the second conductive film g2 and the i-type semiconductor layer AS in FIG. 1 are drawn), it is formed in a shape projecting in the vertical direction (upward in FIGS. 1 and 5) from the scanning signal line GL. (T-shaped branch). The gate electrode GT projects so as to extend beyond the active regions of the thin film transistors TFT1 and TFT2. Gate electrodes G of the thin film transistors TFT1 and TFT2
T is formed integrally (as a common gate electrode) and is formed continuously with the scanning signal line GL. In this example, the gate electrode GT is formed of the single-layer second conductive film g2. The second conductive film g2 is, for example, an aluminum (Al) film formed by sputtering, and is 1000 to 550.
It is formed with a film thickness of about 0Å. An Al anodic oxide film AOF is provided on the gate electrode GT.

【0023】このゲート電極GTは図1、図2および図
5に示されているように、i型半導体層ASを完全に覆
うよう(下方からみて)それより大き目に形成される。
したがって、下部透明ガラス基板SUB1の下方に蛍光
灯等のバックライトBLを取り付けた場合、この不透明
なAlからなるゲート電極GTが影となって、i型半導
体層ASにはバックライト光が当たらず、光照射による
導電現象すなわち薄膜トランジスタTFTのオフ特性劣
化は起きにくくなる。なお、ゲート電極GTの本来の大
きさは、ソース電極SD1とドレイン電極SD2との間
をまたがるに最低限必要な(ゲート電極GTとソース電
極SD1、ドレイン電極SD2との位置合わせ余裕分も
含めて)幅を持ち、チャネル幅Wを決めるその奥行き長
さはソース電極SD1とドレイン電極SD2との間の距
離(チャネル長)Lとの比、すなわち相互コンダクタン
スgmを決定するファクタW/Lをいくつにするかによっ
て決められる。この液晶表示装置におけるゲート電極G
Tの大きさはもちろん、上述した本来の大きさよりも大
きくされる。
As shown in FIGS. 1, 2 and 5, the gate electrode GT is formed larger than it so as to completely cover the i-type semiconductor layer AS (as viewed from below).
Therefore, when a backlight BL such as a fluorescent lamp is attached below the lower transparent glass substrate SUB1, the gate electrode GT made of opaque Al becomes a shadow and the i-type semiconductor layer AS is not exposed to the backlight light. The conduction phenomenon due to the light irradiation, that is, the deterioration of the off-characteristics of the thin film transistor TFT is less likely to occur. The original size of the gate electrode GT is the minimum required to extend between the source electrode SD1 and the drain electrode SD2 (including the alignment margin between the gate electrode GT, the source electrode SD1 and the drain electrode SD2). ) Has a width and its depth length that determines the channel width W is the ratio of the distance (channel length) L between the source electrode SD1 and the drain electrode SD2, that is, the factor W / L that determines the mutual conductance gm. It depends on what you do. Gate electrode G in this liquid crystal display device
The size of T is, of course, larger than the original size described above.

【0024】(走査信号線GL)走査信号線GLは第2
導電膜g2で構成されている。この走査信号線GLの第
2導電膜g2はゲート電極GTの第2導電膜g2と同一
製造工程で形成され、かつ一体に構成されている。ま
た、走査信号線GL上にもAlの陽極酸化膜AOFが設
けられている。
(Scanning Signal Line GL) The scanning signal line GL is the second
It is composed of a conductive film g2. The second conductive film g2 of the scanning signal line GL is formed in the same manufacturing process as the second conductive film g2 of the gate electrode GT, and is integrally formed. Further, an Al anodic oxide film AOF is also provided on the scanning signal line GL.

【0025】(絶縁膜GI)絶縁膜GIは薄膜トランジ
スタTFT1、TFT2のそれぞれのゲート絶縁膜とし
て使用される。絶縁膜GIはゲート電極GTおよび走査
信号線GLの上層に形成されている。絶縁膜GIはたと
えばプラズマCVDで形成された窒化シリコン膜を用
い、1200〜2700Åの膜厚(この液晶表示装置で
は、2000Å程度の膜厚)で形成する。ゲート絶縁膜
GIは図18に示すように、マトリクス部ARの全体を
囲むように形成され、周辺部は外部接続端子DTM,G
TMを露出するよう除去されている。
(Insulating Film GI) The insulating film GI is used as each gate insulating film of the thin film transistors TFT1 and TFT2. The insulating film GI is formed on the gate electrode GT and the scanning signal line GL. The insulating film GI is, for example, a silicon nitride film formed by plasma CVD, and is formed with a film thickness of 1200 to 2700Å (in this liquid crystal display device, a film thickness of about 2000Å). As shown in FIG. 18, the gate insulating film GI is formed so as to surround the entire matrix portion AR, and the peripheral portion has external connection terminals DTM and G.
Removed to expose TM.

【0026】(i型半導体層AS)i型半導体層AS
は、図5に示すように、複数に分割された薄膜トランジ
スタTFT1、TFT2のそれぞれのチャネル形成領域
として使用される。i型半導体層ASは非晶質シリコン
膜または多結晶シリコン膜で形成し、200〜2200
Åの膜厚(この液晶表示装置では、2000Å程度の膜
厚)で形成する。
(I-type semiconductor layer AS) i-type semiconductor layer AS
Is used as a channel forming region of each of the thin film transistors TFT1 and TFT2 divided into a plurality of parts, as shown in FIG. The i-type semiconductor layer AS is formed of an amorphous silicon film or a polycrystalline silicon film, and has a thickness of 200-2200.
It is formed with a film thickness of Å (a film thickness of about 2000 Å in this liquid crystal display device).

【0027】このi型半導体層ASは、供給ガスの成分
を変えてSi34からなるゲート絶縁膜として使用され
る絶縁膜GIの形成に連続して、同じプラズマCVD装
置で、しかもそのプラズマCVD装置から外部に露出す
ることなく形成される。また、オーミックコンタクト用
のリン(P)を2.5%ドープしたN(+)型半導体層d
0(図2)も同様に連続して200〜500Åの膜厚
(この液晶表示装置では、300Å程度の膜厚)で形成
される。しかる後、下部透明ガラス基板SUB1はCV
D装置から外に取り出され、写真処理技術によりN(+)
型半導体層d0およびi型半導体層ASは図1、図2お
よび図5に示すように独立した島状にパターニングされ
る。
The i-type semiconductor layer AS is continuously formed by the same plasma CVD apparatus and plasma in the same manner as the formation of the insulating film GI used as a gate insulating film made of Si 3 N 4 by changing the composition of the supply gas. It is formed without being exposed to the outside from the CVD device. Further, phosphorus (P) for ohmic contact is doped with 2.5% of N (+) type semiconductor layer d.
0 (FIG. 2) is similarly continuously formed with a film thickness of 200 to 500 Å (in this liquid crystal display device, a film thickness of about 300 Å). After that, the lower transparent glass substrate SUB1 is CV
It is taken out from the D device and is N (+) by the photo processing technology.
The type semiconductor layer d0 and the i-type semiconductor layer AS are patterned into independent islands as shown in FIGS. 1, 2 and 5.

【0028】i型半導体層ASは、図1および図5に示
すように、走査信号線GLと映像信号線DLとの交差部
(クロスオーバ部)の両者間にも設けられている。この
交差部のi型半導体層ASは交差部における走査信号線
GLと映像信号線DLとの短絡を低減する。
As shown in FIGS. 1 and 5, the i-type semiconductor layer AS is also provided between both the intersections (crossover portions) of the scanning signal lines GL and the video signal lines DL. The i-type semiconductor layer AS at the intersection reduces the short circuit between the scanning signal line GL and the video signal line DL at the intersection.

【0029】(透明画素電極ITO1)透明画素電極I
TO1は液晶表示部の画素電極の一方を構成する。
(Transparent Pixel Electrode ITO1) Transparent Pixel Electrode I
TO1 constitutes one of the pixel electrodes of the liquid crystal display section.

【0030】透明画素電極ITO1は薄膜トランジスタ
TFT1のソース電極SD1および薄膜トランジスタT
FT2のソース電極SD1の両方に接続されている。こ
のため、薄膜トランジスタTFT1、TFT2のうちの
1つに欠陥が発生しても、その欠陥が副作用をもたらす
場合はレーザ光等によって適切な箇所を切断し、そうで
ない場合は他方の薄膜トランジスタが正常に動作してい
るので放置すれば良い。なお、2つの薄膜トランジスタ
TFT1、TFT2に同時に欠陥が発生することは稀で
あり、このような冗長方式により点欠陥や線欠陥の確率
を極めて小さくすることができる。透明画素電極ITO
1は第1導電膜d1によって構成されており、この第1
導電膜d1はスパッタリングで形成された透明導電膜
(Indium-Tin-Oxide ITO:ネサ膜)からなり、10
00〜2000Åの膜厚(この液晶表示装置では、14
00Å程度の膜厚)で形成される。
The transparent pixel electrode ITO1 is the source electrode SD1 of the thin film transistor TFT1 and the thin film transistor T1.
It is connected to both source electrodes SD1 of FT2. Therefore, even if a defect occurs in one of the thin film transistors TFT1 and TFT2, if the defect causes a side effect, an appropriate portion is cut by laser light or the like, and if not, the other thin film transistor operates normally. You can leave it as it is. It is rare that defects occur simultaneously in the two thin film transistors TFT1 and TFT2, and the probability of point defects and line defects can be extremely reduced by such a redundancy system. Transparent pixel electrode ITO
1 is composed of a first conductive film d1.
The conductive film d1 is made of a transparent conductive film (Indium-Tin-Oxide ITO: Nesa film) formed by sputtering.
A film thickness of 00 to 2000Å (in this liquid crystal display device, 14
It is formed with a film thickness of about 00Å).

【0031】(ソース電極SD1、ドレイン電極SD
2)複数に分割された薄膜トランジスタTFT1、TF
T2のそれぞれのソース電極SD1とドレイン電極SD
2とは、図1、図2および図6(図1の第1〜第3導電
膜d1〜d3のみを描いた平面図)に示すように、i型
半導体層AS上にそれぞれ離隔して設けられている。
(Source electrode SD1, drain electrode SD
2) Thin film transistors TFT1, TF divided into a plurality of parts
Source electrode SD1 and drain electrode SD of T2
2 is provided separately from each other on the i-type semiconductor layer AS as shown in FIGS. 1, 2 and 6 (a plan view showing only the first to third conductive films d1 to d3 of FIG. 1). Has been.

【0032】ソース電極SD1、ドレイン電極SD2の
それぞれは、N(+)型半導体層d0に接触する下層側か
ら、第2導電膜d2、第3導電膜d3を順次重ね合わせ
て構成されている。ソース電極SD1の第2導電膜d2
および第3導電膜d3は、ドレイン電極SD2の第2導
電膜d2および第3導電膜d3と同一製造工程で形成さ
れる。
Each of the source electrode SD1 and the drain electrode SD2 is formed by sequentially superposing a second conductive film d2 and a third conductive film d3 from the lower layer side in contact with the N (+) type semiconductor layer d0. Second conductive film d2 of the source electrode SD1
The third conductive film d3 is formed in the same manufacturing process as the second conductive film d2 and the third conductive film d3 of the drain electrode SD2.

【0033】第2導電膜d2はスパッタで形成したクロ
ム(Cr)膜を用い、500〜1000Åの膜厚(この
液晶表示装置では、600Å程度の膜厚)で形成する。
Cr膜は膜厚を厚く形成するとストレスが大きくなるの
で、2000Å程度の膜厚を越えない範囲で形成する。
Cr膜はN(+)型半導体層d0との接触が良好である。
Cr膜は後述する第3導電膜d3のAlがN(+)型半導
体層d0に拡散することを防止するいわゆるバリア層を
構成する。第2導電膜d2として、Cr膜の他に高融点
金属(Mo、Ti、Ta、W)膜、高融点金属シリサイ
ド(MoSi2、TiSi2、TaSi2、WSi2)膜を
用いてもよい。
The second conductive film d2 is a chromium (Cr) film formed by sputtering and is formed to have a film thickness of 500 to 1000 Å (in this liquid crystal display device, a film thickness of about 600 Å).
Since the stress increases when the Cr film is formed thicker, the Cr film is formed within a range of about 2000Å or less.
The Cr film has good contact with the N (+) type semiconductor layer d0.
The Cr film constitutes a so-called barrier layer that prevents Al of the third conductive film d3 described later from diffusing into the N (+) type semiconductor layer d0. As the second conductive film d2, a refractory metal (Mo, Ti, Ta, W) film or a refractory metal silicide (MoSi 2 , TiSi 2 , TaSi 2 , WSi 2 ) film may be used instead of the Cr film.

【0034】第3導電膜d3はAlのスパッタリングで
3000〜5000Åの膜厚(この液晶表示装置では、
4000Å程度の膜厚)に形成される。Al膜はCr膜
に比べてストレスが小さく、厚い膜厚に形成することが
可能で、ソース電極SD1、ドレイン電極SD2および
映像信号線DLの抵抗値を低減するように構成されてい
る。第3導電膜d3として純Al膜の他にシリコンや銅
(Cu)を添加物として含有させたAl膜を用いてもよ
い。
The third conductive film d3 is formed by sputtering Al and has a thickness of 3000 to 5000 Å (in this liquid crystal display device,
The film thickness is about 4000 Å). The Al film has less stress than the Cr film, can be formed to have a thick film thickness, and is configured to reduce the resistance values of the source electrode SD1, the drain electrode SD2, and the video signal line DL. As the third conductive film d3, an Al film containing silicon or copper (Cu) as an additive may be used instead of the pure Al film.

【0035】第2導電膜d2、第3導電膜d3を同じマ
スクパターンでパターニングした後、同じマスクを用い
て、あるいは第2導電膜d2、第3導電膜d3をマスク
として、N(+)型半導体層d0が除去される。つまり、
i型半導体層AS上に残っていたN(+)型半導体層d0
は第2導電膜d2、第3導電膜d3以外の部分がセルフ
アラインで除去される。このとき、N(+)型半導体層d
0はその厚さ分は全て除去されるようエッチングされる
ので、i型半導体層ASも若干その表面部分がエッチン
グされるが、その程度はエッチング時間で制御すればよ
い。
After patterning the second conductive film d2 and the third conductive film d3 with the same mask pattern, an N (+) type film is formed by using the same mask or by using the second conductive film d2 and the third conductive film d3 as a mask. The semiconductor layer d0 is removed. That is,
The N (+) type semiconductor layer d0 remaining on the i type semiconductor layer AS
The portions other than the second conductive film d2 and the third conductive film d3 are removed by self-alignment. At this time, the N (+) type semiconductor layer d
Since 0 is etched so that the entire thickness thereof is removed, the surface portion of the i-type semiconductor layer AS is also slightly etched, but the degree may be controlled by the etching time.

【0036】ソース電極SD1は透明画素電極ITO1
に接続されている。ソース電極SD1は、i型半導体層
AS段差(第2導電膜g2の膜厚、陽極酸化膜AOFの
膜厚、i型半導体層ASの膜厚およびN(+)型半導体層
d0の膜厚を加算した膜厚に相当する段差)に沿って構
成されている。具体的には、ソース電極SD1は、i型
半導体層ASの段差に沿って形成された第2導電膜d2
と、この第2導電膜d2の上部に形成した第3導電膜d
3とで構成されている。ソース電極SD1の第3導電膜
d3は第2導電膜d2のCr膜がストレスの増大から厚
く形成できず、i型半導体層ASの段差形状を乗り越え
られないので、このi型半導体層ASを乗り越えるため
に構成されている。つまり、第3導電膜d3は厚く形成
することでステップカバレッジを向上している。第3導
電膜d3は厚く形成できるので、ソース電極SD1の抵
抗値(ドレイン電極SD2や映像信号線DLについても
同様)の低減に大きく寄与している。
The source electrode SD1 is a transparent pixel electrode ITO1
It is connected to the. The source electrode SD1 has the i-type semiconductor layer AS step (thickness of the second conductive film g2, thickness of the anodic oxide film AOF, thickness of the i-type semiconductor layer AS, and thickness of the N (+)-type semiconductor layer d0. It is configured along a step corresponding to the added film thickness). Specifically, the source electrode SD1 is the second conductive film d2 formed along the step of the i-type semiconductor layer AS.
And the third conductive film d formed on the second conductive film d2.
3 and 3. The third conductive film d3 of the source electrode SD1 cannot be formed thick due to the increased stress of the Cr film of the second conductive film d2, and cannot overcome the step shape of the i-type semiconductor layer AS. Is configured for. That is, the step coverage is improved by forming the third conductive film d3 thick. Since the third conductive film d3 can be formed thick, it greatly contributes to the reduction of the resistance value of the source electrode SD1 (the same applies to the drain electrode SD2 and the video signal line DL).

【0037】(保護膜PSV1)薄膜トランジスタTF
Tおよび透明画素電極ITO1上には保護膜PSV1が
設けられている。保護膜PSV1は主に薄膜トランジス
タTFTを湿気等から保護するために形成されており、
透明性が高くしかも耐湿性の良いものを使用する。保護
膜PSV1はたとえばプラズマCVD装置で形成した酸
化シリコン膜や窒化シリコン膜で形成されており、1μ
m程度の膜厚で形成する。
(Protective film PSV1) Thin film transistor TF
A protective film PSV1 is provided on the T and the transparent pixel electrode ITO1. The protective film PSV1 is formed mainly for protecting the thin film transistor TFT from moisture and the like,
Use one with high transparency and good moisture resistance. The protective film PSV1 is formed of, for example, a silicon oxide film or a silicon nitride film formed by a plasma CVD apparatus, and has a thickness of 1 μm.
It is formed with a film thickness of about m.

【0038】保護膜PSV1は図18に示すように、マ
トリクス部ARの全体を囲むように形成され、周辺部は
外部接続端子DTM,GTMを露出するよう除去され、
また上基板側SUB2の共通電極COMを下側基板SU
B1の外部接続端子接続用引出配線INTに銀ペースト
AGPで接続する部分も除去されている。保護膜PSV
1とゲート絶縁膜GIの厚さ関係に関しては、前者は保
護効果を考え厚くされ、後者はトランジスタの相互コン
ダクタンスgmを薄くされる。従って図18に示すよう
に、保護効果の高い保護膜PSV1は周辺部もできるだ
け広い範囲に亘って保護するようゲート絶縁膜GIより
も大きく形成されている。
As shown in FIG. 18, the protective film PSV1 is formed so as to surround the entire matrix portion AR, and the peripheral portion is removed so as to expose the external connection terminals DTM and GTM.
In addition, the common electrode COM of the upper substrate SUB2 is connected to the lower substrate SU.
The portion connected to the lead wire INT for connecting the external connection terminal of B1 with the silver paste AGP is also removed. Protective film PSV
Regarding the thickness relationship between 1 and the gate insulating film GI, the former is made thicker in consideration of the protective effect, and the latter is made thin in the transconductance gm of the transistor. Therefore, as shown in FIG. 18, the protective film PSV1 having a high protective effect is formed to be larger than the gate insulating film GI so as to protect the peripheral portion over as wide a range as possible.

【0039】(遮光膜BM)上部透明ガラス基板SUB
2側には、外部光(図2では上方からの光)がチャネル
形成領域として使用されるi型半導体層ASに入射され
ないように、遮光膜BMが設けられ、遮光膜BMは図7
のハッチングに示すようなパターンとされている。な
お、図7は図1におけるITO膜からなる第1導電膜d
1、カラーフィルタFILおよび遮光膜BMのみを描い
た平面図である。遮光膜BMは光に対する遮蔽性が高い
たとえばアルミニウム膜やクロム膜等で形成されてお
り、この液晶表示装置ではクロム膜がスパッタリングで
1300Å程度の膜厚に形成される。
(Light-shielding film BM) Upper transparent glass substrate SUB
A light-shielding film BM is provided on the second side so that external light (light from above in FIG. 2) does not enter the i-type semiconductor layer AS used as a channel formation region.
The pattern is as shown by the hatching. Note that FIG. 7 shows the first conductive film d made of the ITO film in FIG.
FIG. 1 is a plan view illustrating only a color filter FIL and a light shielding film BM. The light-shielding film BM is formed of, for example, an aluminum film or a chrome film having a high light-shielding property, and in this liquid crystal display device, the chrome film is formed by sputtering to a film thickness of about 1300 Å.

【0040】従って、薄膜トランジスタTFT1、TF
T2のi型半導体層ASは上下にある遮光膜BMおよび
大き目のゲート電極GTによってサンドイッチにされ、
その部分は外部の自然光やバックライト光が当たらなく
なる。遮光膜BMは図7のハッチング部分で示すよう
に、画素の周囲に形成され、つまり遮光膜BMは格子状
に形成され(ブラックマトリクス)、この格子で1画素
の有効表示領域が仕切られている。従って、各画素の輪
郭が遮光膜BMによってはっきりとし、コントラストが
向上する。つまり、遮光膜BMはi型半導体層ASに対
する遮光とブラックマトリクスとの2つの機能をもつ。
Therefore, the thin film transistors TFT1 and TF
The i-type semiconductor layer AS of T2 is sandwiched by the upper and lower light-shielding films BM and the large gate electrode GT,
That part is not exposed to external natural light or backlight. The light-shielding film BM is formed around the pixel as shown by the hatched portion in FIG. 7, that is, the light-shielding film BM is formed in a grid shape (black matrix), and the effective display area of one pixel is partitioned by this grid. .. Therefore, the contour of each pixel is made clear by the light shielding film BM, and the contrast is improved. That is, the light blocking film BM has two functions of blocking the i-type semiconductor layer AS and serving as a black matrix.

【0041】また、透明画素電極ITO1のラビング方
向の根本側のエッジ部に対向する部分(図1右下部分)
が遮光膜BMによって遮光されているから、上記部分に
ドメインが発生したとしても、ドメインが見えないの
で、表示特性が劣化することはない。
A portion facing the edge portion of the transparent pixel electrode ITO1 on the base side in the rubbing direction (lower right portion in FIG. 1).
Since the light is shielded by the light shielding film BM, even if a domain is generated in the above portion, the domain cannot be seen, so that the display characteristics are not deteriorated.

【0042】なお、バックライトを上部透明ガラス基板
SUB2側に取り付け、下部透明ガラス基板SUB1を
観察側(外部露出側)とすることもできる。
The backlight may be attached to the upper transparent glass substrate SUB2 side and the lower transparent glass substrate SUB1 may be the observation side (externally exposed side).

【0043】遮光膜BMは周辺部にも図17に示すよう
に額縁状のパターンに形成され、そのパターンはドット
状に複数の開口を設けた図7に示すマトリクス部のパタ
ーンと連続して形成されている。周辺部の遮光膜BMは
図17〜図20に示すように、シール部SLの外側に延
長され、パソコン等の実装機に起因する反射光等の漏れ
光がマトリクス部に入り込むのを防いでいる。他方、こ
の遮光膜BMは基板SUB2の縁よりも約0.3〜1.
0mm程内側に留められ、基板SUB2の切断領域を避
けて形成されている。
The light-shielding film BM is also formed on the peripheral portion in a frame-shaped pattern as shown in FIG. 17, and the pattern is formed continuously with the pattern of the matrix portion shown in FIG. Has been done. As shown in FIGS. 17 to 20, the light shielding film BM in the peripheral portion is extended to the outside of the seal portion SL to prevent leaked light such as reflected light caused by a mounting machine such as a personal computer from entering the matrix portion. .. On the other hand, this light-shielding film BM is about 0.3-1.
It is held inside by about 0 mm and formed so as to avoid the cutting region of the substrate SUB2.

【0044】(カラーフィルタFIL)カラーフィルタ
FILはアクリル樹脂等の樹脂材料で形成される染色基
材に染料を着色して構成されている。カラーフィルタF
ILは画素に対向する位置にストライプ状に形成され
(図8)、染め分けられている(図8は図4の第1導電
膜膜d1、遮光膜BMおよびカラーフィルタFILのみ
を描いたもので、B、R、Gの各カラーフィルターFI
Lはそれぞれ、45°、135°、クロスのハッチを施
してある)。カラーフィルタFILは図7,9に示すよ
うに透明画素電極ITO1の全てを覆うように大き目に
形成され、遮光膜BMはカラーフィルタFILおよび透
明画素電極ITO1のエッジ部分と重なるよう透明画素
電極ITO1の周縁部より内側に形成されている。
(Color Filter FIL) The color filter FIL is constructed by coloring a dye base material made of a resin material such as acrylic resin with a dye. Color filter F
ILs are formed in stripes at positions facing the pixels (FIG. 8) and are dyed separately (FIG. 8 shows only the first conductive film d1, the light shielding film BM and the color filter FIL in FIG. B, R, G color filters FI
L is 45 °, 135 °, and has a cross hatch). As shown in FIGS. 7 and 9, the color filter FIL is formed to have a large size so as to cover the entire transparent pixel electrode ITO1, and the light-shielding film BM of the transparent pixel electrode ITO1 overlaps the edge portions of the color filter FIL and the transparent pixel electrode ITO1. It is formed inside the peripheral portion.

【0045】カラーフィルタFILは次のように形成す
ることができる。まず、上部透明ガラス基板SUB2の
表面に染色基材を形成し、フォトリソグラフィ技術で赤
色フィルタ形成領域以外の染色基材を除去する。この
後、染色基材を赤色染料で染め、固着処理を施し、赤色
フィルタRを形成する。つぎに、同様な工程を施すこと
によって、緑色フィルタG、青色フィルタBを順次形成
する。
The color filter FIL can be formed as follows. First, a dyeing base material is formed on the surface of the upper transparent glass substrate SUB2, and the dyeing base material other than the red filter forming region is removed by a photolithography technique. After that, the dyed substrate is dyed with a red dye and a fixing process is performed to form a red filter R. Next, the green filter G and the blue filter B are sequentially formed by performing the same process.

【0046】(保護膜PSV2)保護膜PSV2はカラ
ーフィルタFILを異なる色に染め分けた染料が液晶L
Cに漏れることを防止するために設けられている。保護
膜PSV2はたとえばアクリル樹脂、エポキシ樹脂等の
透明樹脂材料で形成されている。
(Protective Film PSV2) In the protective film PSV2, the liquid crystal L is a dye in which the color filter FIL is dyed in different colors.
It is provided to prevent leakage to C. The protective film PSV2 is formed of a transparent resin material such as acrylic resin or epoxy resin.

【0047】(共通透明画素電極ITO2)共通透明画
素電極ITO2は、下部透明ガラス基板SUB1側に画
素ごとに設けられた透明画素電極ITO1に対向し、液
晶LCの光学的な状態は各画素電極ITO1と共通透明
画素電極ITO2との間の電位差(電界)に応答して変
化する。この共通透明画素電極ITO2にはコモン電圧
Vcomが印加されるように構成されている。本実施例で
は、コモン電圧Vcomは映像信号線DLに印加されるロ
ウレベルの駆動電圧Vdminとハイレベルの駆動電圧V
dmaxとの中間電位に設定されるが、映像信号駆動回路
で使用される集積回路の電源電圧を約半分に低減したい
場合は、交流電圧を印加すれば良い。なお、共通透明画
素電極ITO2の平面形状は図17、図18を参照され
たい。
(Common Transparent Pixel Electrode ITO2) The common transparent pixel electrode ITO2 faces the transparent pixel electrode ITO1 provided for each pixel on the lower transparent glass substrate SUB1 side, and the optical state of the liquid crystal LC is the pixel electrode ITO1. And the common transparent pixel electrode ITO2 change in response to a potential difference (electric field). A common voltage Vcom is applied to the common transparent pixel electrode ITO2. In this embodiment, the common voltage Vcom is the low level drive voltage Vdmin and the high level drive voltage V applied to the video signal line DL.
Although it is set to an intermediate potential with respect to dmax, if it is desired to reduce the power supply voltage of the integrated circuit used in the video signal drive circuit to about half, an AC voltage may be applied. For the planar shape of the common transparent pixel electrode ITO2, see FIGS. 17 and 18.

【0048】(ゲート端子部)図9は表示マトリクスの
走査信号線GLからその外部接続端子GTMまでの接続
構造を示す図であり、(A)は平面であり(B)は
(A)のB−B切断線における断面を示している。な
お、同図は図18下方付近に対応し、斜め配線の部分は
便宜状一直線状で表した。
(Gate Terminal) FIG. 9 is a diagram showing a connection structure from the scanning signal line GL of the display matrix to its external connection terminal GTM. (A) is a plane and (B) is B of (A). -B shows a cross section taken along the line B. Note that the same drawing corresponds to the lower part of FIG. 18, and the diagonal wiring portions are shown in a straight line for convenience.

【0049】AOは写真処理用のマスクパターン、言い
換えれば選択的陽極酸化のホトレジストパターンであ
る。従って、このホトレジストは陽極酸化後除去され、
図に示すパターンAOは完成品としては残らないが、ゲ
ート配線GLには断面図に示すように酸化膜AOFが選
択的に形成されるのでその軌跡が残る。平面図におい
て、ホトレジストの境界線AOを基準にして左側はレジ
ストで覆い陽極酸化をしない領域、右側はレジストから
露出され陽極酸化される領域である。陽極酸化されたA
L層g2は表面にその酸化物Al23膜AOFが形成さ
れ下方の導電部は体積が減少する。勿論、陽極酸化はそ
の導電部が残るように適切な時間、電圧などを設定して
行われる。マスクパターンAOは走査線GLに単一の直
線では交差せず、クランク状に折れ曲がって交差させて
いる。
AO is a mask pattern for photographic processing, in other words, a photoresist pattern for selective anodic oxidation. Therefore, this photoresist is removed after anodization,
The pattern AO shown in the figure does not remain as a finished product, but since the oxide film AOF is selectively formed on the gate line GL as shown in the cross-sectional view, its locus remains. In the plan view, with respect to the photoresist boundary line AO, the left side is a region covered with the resist and not anodized, and the right side is a region exposed from the resist and anodized. Anodized A
The oxide Al 2 O 3 film AOF is formed on the surface of the L layer g2, and the volume of the lower conductive portion is reduced. Of course, the anodic oxidation is performed by setting an appropriate time and voltage so that the conductive portion remains. The mask pattern AO does not intersect with the scanning line GL by a single straight line, but is bent in a crank shape and intersects.

【0050】図中AL層g2は、判り易くするためハッ
チを施してあるが、陽極化成されない領域は櫛状にパタ
ーニングされている。これは、Al層の幅が広いと表面
にホイスカが発生するので、1本1本の幅は狭くし、そ
れらを複数本並列に束ねた構成とすることにより、ホイ
スカの発生を防ぎつつ、断線の確率や導電率の犠牲を最
低限に押さえる狙いである。従って、本例では櫛の根本
に相当する部分もマスクAOに沿ってずらしている。
In the figure, the AL layer g2 is hatched for easy understanding, but the region which is not anodized is patterned in a comb shape. This is because whiskers are generated on the surface when the width of the Al layer is wide. Therefore, by narrowing the width of each one and arranging a plurality of them in parallel, whiskers can be prevented from occurring and wire breakage can be prevented. The aim is to minimize the probability of and the sacrifice of conductivity. Therefore, in this example, the portion corresponding to the base of the comb is also displaced along the mask AO.

【0051】ゲート端子GTMは酸化珪素SIO層と接
着性が良くAl等よりも耐電触性の高いCr層g1と、
更にその表面を保護し画素電極ITO1と同レベル(同
層、同時形成)の透明導電層d1とで構成されている。
なお、ゲート絶縁膜GI上及びその側面部に形成された
導電層d2及びd3は、導電層d3やd2のエッチング
時ピンホール等が原因で導電層g2やg1が一緒にエッ
チングされないようその領域をホトレジストで覆ってい
た結果として残っているものである。又、ゲート絶縁膜
GIを乗り越えて右方向に延長されたITO層d1は同
様な対策を更に万全とさせたものである。
The gate terminal GTM has a Cr layer g1 having a good adhesiveness to the silicon oxide SIO layer and a higher electric contact resistance than Al or the like,
Further, the surface thereof is protected and is composed of the pixel electrode ITO1 and the transparent conductive layer d1 of the same level (same layer, simultaneously formed).
In addition, the conductive layers d2 and d3 formed on the gate insulating film GI and on the side surfaces thereof have their regions so that the conductive layers g2 and g1 are not etched together due to pinholes or the like during the etching of the conductive layers d3 and d2. It remains as a result of being covered with photoresist. Further, the ITO layer d1 which extends over the gate insulating film GI and extends rightward is one in which the same measures are taken more thoroughly.

【0052】平面図において、ゲート絶縁膜GIはその
境界線よりも右側に、保護膜PSV1もその境界線より
も右側に形成されており、左端に位置する端子部GTM
はそれらから露出し外部回路との電気的接触ができるよ
うになっている。図では、ゲート線GLとゲート端子の
一つの対のみが示されているが、実際はこのような対が
図18に示すように上下に複数本並べられ端子群Tg
(図17、図18)が構成され、ゲート端子の左端は、
製造過程では、基板の切断領域CT1を越えて延長され
配線SHgによって短絡される。製造過程におけるこの
ような短絡線SHgは陽極化成時の給電と、配向膜OR
I1のラビング時等の静電破壊防止に役立つ。
In the plan view, the gate insulating film GI is formed on the right side of the boundary line and the protective film PSV1 is formed on the right side of the boundary line, and the terminal portion GTM located at the left end is formed.
Are exposed from them to allow electrical contact with external circuitry. In the figure, only one pair of the gate line GL and the gate terminal is shown, but in reality, a plurality of such pairs are arranged vertically as shown in FIG.
(FIGS. 17 and 18), and the left end of the gate terminal is
In the manufacturing process, it extends beyond the cutting region CT1 of the substrate and is short-circuited by the wiring SHg. Such a short-circuit line SHg in the manufacturing process is used for power supply during anodization and for the orientation film OR.
Useful for preventing electrostatic damage during I1 rubbing.

【0053】(ドレイン端子DTM)図10は映像信号
線DLからその外部接続端子DTMまでの接続を示す図
であり、(A)はその平面を示し、(B)は(A)のB
−B切断線における断面を示す。なお、同図は図18右
上付近に対応し、図面の向きは便宜上変えてあるが右端
方向が基板SUB1の上端部(又は下端部)に該当す
る。
(Drain Terminal DTM) FIG. 10 is a diagram showing the connection from the video signal line DL to the external connection terminal DTM, (A) shows the plane, and (B) shows B of (A).
-B shows a cross section taken along the line B. The drawing corresponds to the vicinity of the upper right of FIG. 18, and although the orientation of the drawing is changed for convenience, the right end direction corresponds to the upper end portion (or the lower end portion) of the substrate SUB1.

【0054】TSTdは検査端子でありここには外部回
路は接続されないが、プローブ針等を接触できるよう配
線部より幅が広げられている。同様に、ドレイン端子D
TMも外部回路との接続ができるよう配線部より幅が広
げられている。検査端子TSTdと外部接続ドレイン端
子DTMは上下方向に千鳥状に複数交互に配列され、検
査端子TSTdは図に示すとおり基板SUB1の端部に
到達することなく終端しているが、ドレイン端子DTM
は、図18に示すように端子群Td(添字省略)を構成
し基板SUB1の切断線CT1を越えて更に延長され、
製造過程中は静電破壊防止のためその全てが互いに配線
SHdによって短絡される。検査端子TSTdが存在す
る映像信号線DLのマトリクスを挟んで反対側にはドレ
イン接続端子が接続され、逆にドレイン接続端子DTM
が存在する映像信号線DLのマトリクスを挟んで反対側
には検査端子が接続される。
TSTd is an inspection terminal, which is not connected to an external circuit, but is wider than the wiring portion so that a probe needle or the like can come into contact therewith. Similarly, the drain terminal D
The width of the TM is also wider than that of the wiring portion so that the TM can be connected to an external circuit. The inspection terminals TSTd and the external connection drain terminals DTM are alternately arranged in a zigzag pattern in the vertical direction, and the inspection terminals TSTd terminate without reaching the end portion of the substrate SUB1 as shown in the figure, but the drain terminal DTM.
Is a terminal group Td (subscript omitted) as shown in FIG. 18, and is further extended beyond the cutting line CT1 of the substrate SUB1.
During the manufacturing process, all of them are short-circuited to each other by the wiring SHd to prevent electrostatic breakdown. The drain connection terminal is connected to the opposite side of the matrix of the video signal lines DL in which the inspection terminal TSTd exists, and conversely, the drain connection terminal DTM.
The inspection terminal is connected to the opposite side of the matrix of the video signal lines DL in which there is a line.

【0055】ドレイン接続端子DTMは前述したゲート
端子GTMと同様な理由でCr層g1及びITO層d1
の2層で形成されており、ゲート絶縁膜GIを除去した
部分で映像信号線DLと接続されている。ゲート絶縁膜
GIの端部上に形成された半導体層ASはゲート絶縁膜
GIの縁をテーパ状にエッチングするためのものであ
る。端子DTM上では外部回路との接続を行うため保護
膜PSV1は勿論のこと取り除かれている。AOは前述
した陽極酸化マスクでありその境界線はマトリクス全体
をを大きく囲むように形成され、図ではその境界線から
左側がマスクで覆われるが、この図で覆われない部分に
は層g2が存在しないのでこのパターンは直接は関係し
ない。
The drain connection terminal DTM has the Cr layer g1 and the ITO layer d1 for the same reason as the above-mentioned gate terminal GTM.
And is connected to the video signal line DL at a portion where the gate insulating film GI is removed. The semiconductor layer AS formed on the end portion of the gate insulating film GI is for etching the edge of the gate insulating film GI in a tapered shape. The protective film PSV1 is, of course, removed on the terminal DTM to connect to the external circuit. AO is the anodizing mask described above, and its boundary line is formed so as to largely surround the entire matrix. In the figure, the left side of the boundary line is covered with the mask. This pattern is not directly relevant as it does not exist.

【0056】マトリクス部からドレイン端子部DTMま
での引出配線は図19の(C)部にも示されるように、
ドレイン端子部DTMと同じレベルの層d1,g1のす
ぐ上に映像信号線DLと同じレベルの層d2,d3がシ
ールパターンSLの途中まで積層された構造になってい
るが、これは断線の確率を最小限に押さえ、電触し易い
Al層d3を保護膜PSV1やシールパターンSLでで
きるだけ保護する狙いである。
The lead-out wiring from the matrix portion to the drain terminal portion DTM is as shown in FIG.
The layers d2 and d3 having the same level as the video signal line DL are laminated just above the layers d1 and g1 having the same level as the drain terminal portion DTM to the middle of the seal pattern SL, but this is the probability of disconnection. Is to be minimized, and the Al layer d3, which is easily touched with electricity, is protected as much as possible by the protective film PSV1 and the seal pattern SL.

【0057】(保持容量素子Caddの構造)透明画素電
極ITO1は、薄膜トランジスタTFTと接続される端
部と反対側の端部において、隣りの走査信号線GLと重
なるように形成されている。この重ね合わせは、図1、
図3からも明らかなように、透明画素電極ITO1を一
方の電極PL2とし、隣りの走査信号線GLを他方の電
極PL1とする保持容量素子(静電容量素子)Caddを
構成する。この保持容量素子Caddの誘電体膜は、薄膜
トランジスタTFTのゲート絶縁膜として使用される絶
縁膜GIおよび陽極酸化膜AOFで構成されている。
(Structure of Storage Capacitance Element Cadd) The transparent pixel electrode ITO1 is formed so as to overlap the adjacent scanning signal line GL at the end opposite to the end connected to the thin film transistor TFT. This overlay is shown in Figure 1.
As is clear from FIG. 3, a holding capacitance element (electrostatic capacitance element) Cadd having the transparent pixel electrode ITO1 as one electrode PL2 and the adjacent scanning signal line GL as the other electrode PL1 is formed. The dielectric film of the storage capacitor element Cadd is composed of an insulating film GI used as a gate insulating film of the thin film transistor TFT and an anodized film AOF.

【0058】保持容量素子Caddは、図5からも明らか
なように、走査信号線GLの第2導電膜g2の幅を広げ
た部分に形成されている。なお、映像信号線DLと交差
する部分の第2導電膜g2は映像信号線DLとの短絡の
確率を小さくするため細くされている。
As is apparent from FIG. 5, the storage capacitor element Cadd is formed in a portion where the width of the second conductive film g2 of the scanning signal line GL is widened. The second conductive film g2 at the portion intersecting the video signal line DL is thinned in order to reduce the probability of short circuit with the video signal line DL.

【0059】保持容量素子Caddの電極PL1の段差部
において透明画素電極ITO1が断線しても、その段差
をまたがるように形成された第2導電膜d2および第3
導電膜d3で構成された島領域によってその不良は補償
される。
Even if the transparent pixel electrode ITO1 is broken at the step portion of the electrode PL1 of the storage capacitor Cadd, the second conductive film d2 and the third conductive film d2 formed so as to cross the step.
The defect is compensated by the island region formed of the conductive film d3.

【0060】(表示装置全体等価回路)表示マトリクス
部の等価回路とその周辺回路の結線図を図11に示す。
同図は回路図ではあるが、実際の幾何学的配置に対応し
て描かれている。ARは複数の画素を二次元状に配列し
たマトリクス・アレイである。
(Equivalent Circuit of Entire Display Device) FIG. 11 shows a wiring diagram of the equivalent circuit of the display matrix portion and its peripheral circuits.
Although the figure is a circuit diagram, it is drawn corresponding to the actual geometrical arrangement. AR is a matrix array in which a plurality of pixels are two-dimensionally arranged.

【0061】図中、Xは映像信号線DLを意味し、添字
G、BおよびRがそれぞれ緑、青および赤画素に対応し
て付加されている。Yは走査信号線GLを意味し、添字
1,2,3,…,endは走査タイミングの順序に従って
付加されている。
In the figure, X means a video signal line DL, and subscripts G, B and R are added corresponding to green, blue and red pixels, respectively. Y represents the scanning signal line GL, and subscripts 1, 2, 3, ..., End are added according to the order of scanning timing.

【0062】映像信号線X(添字省略)は交互に上側
(または奇数)映像信号駆動回路He、下側(または偶
数)映像信号駆動回路Hoに接続されている。
The video signal lines X (subscripts omitted) are alternately connected to the upper (or odd) video signal drive circuit He and the lower (or even) video signal drive circuit Ho.

【0063】走査信号線Y(添字省略)は垂直走査回路
Vに接続されている。
The scanning signal line Y (subscript omitted) is connected to the vertical scanning circuit V.

【0064】SUPは1つの電圧源から複数の分圧した
安定化された電圧源を得るための電源回路やホスト(上
位演算処理装置)からのCRT(陰極線管)用の情報を
TFT液晶表示装置用の情報に交換する回路を含む回路
である。
The SUP is a TFT liquid crystal display device that displays information for a CRT (cathode ray tube) from a power supply circuit or a host (upper processing unit) to obtain a plurality of divided and stabilized voltage sources from one voltage source. It is a circuit including a circuit for exchanging information for use.

【0065】(保持容量素子Caddの等価回路とその動
作)図1に示される画素の等価回路を図12に示す。図
12において、Cgsは薄膜トランジスタTFTのゲート
電極GTとソース電極SD1との間に形成される寄生容
量である。寄生容量Cgsの誘電体膜は絶縁膜GIおよび
陽極酸化膜AOFである。Cpixは透明画素電極ITO
1(PIX)と共通透明画素電極ITO2(COM)と
の間に形成される液晶容量である。液晶容量Cpixの誘
電体膜は液晶LC、保護膜PSV1および配向膜ORI
1、ORI2である。Vlcは中点電位である。
(Equivalent circuit of holding capacitance element Cadd and its operation) FIG. 12 shows an equivalent circuit of the pixel shown in FIG. In FIG. 12, Cgs is a parasitic capacitance formed between the gate electrode GT and the source electrode SD1 of the thin film transistor TFT. The dielectric film having the parasitic capacitance Cgs is the insulating film GI and the anodic oxide film AOF. Cpix is a transparent pixel electrode ITO
A liquid crystal capacitor formed between 1 (PIX) and the common transparent pixel electrode ITO2 (COM). The dielectric film of the liquid crystal capacitance Cpix is the liquid crystal LC, the protective film PSV1 and the alignment film ORI.
1 and ORI2. Vlc is the midpoint potential.

【0066】保持容量素子Caddは、薄膜トランジスタ
TFTがスイッチングするとき、中点電位(画素電極電
位)Vlcに対するゲート電位変化ΔVgの影響を低減す
るように働く。この様子を式で表すと、次式のようにな
る。
The storage capacitor element Cadd functions to reduce the influence of the gate potential change ΔVg on the midpoint potential (pixel electrode potential) Vlc when the thin film transistor TFT switches. This can be expressed by the following equation.

【0067】 ΔVlc={Cgs/(Cgs+Cadd+Cpix)}×ΔVg ここで、ΔVlcはΔVgによる中点電位の変化分を表わ
す。この変化分ΔVlcは液晶LCに加わる直流成分の原
因となるが、保持容量Caddを大きくすればする程、そ
の値を小さくすることができる。また、保持容量素子C
addは放電時間を長くする作用もあり、薄膜トランジス
タTFTがオフした後の映像情報を長く蓄積する。液晶
LCに印加される直流成分の低減は、液晶LCの寿命を
向上し、液晶表示画面の切り替え時に前の画像が残るい
わゆる焼き付きを低減することができる。
ΔVlc = {Cgs / (Cgs + Cadd + Cpix)} × ΔVg Here, ΔVlc represents a change amount of the midpoint potential due to ΔVg. This variation ΔVlc causes a direct current component applied to the liquid crystal LC, but the value can be reduced as the holding capacitance Cadd is increased. In addition, the storage capacitor element C
The add also has the effect of lengthening the discharge time, and accumulates image information for a long time after the thin film transistor TFT is turned off. The reduction of the DC component applied to the liquid crystal LC can improve the life of the liquid crystal LC and reduce so-called burn-in in which the previous image remains when the liquid crystal display screen is switched.

【0068】前述したように、ゲート電極GTはi型半
導体層ASを完全に覆うよう大きくされている分、ソー
ス電極SD1、ドレイン電極SD2とのオーバラップ面
積が増え、従って寄生容量Cgsが大きくなり、中点電位
Vlcはゲート(走査)信号Vgの影響を受け易くなると
いう逆効果が生じる。しかし、保持容量素子Caddを設
けることによりこのデメリットも解消することができ
る。
As described above, since the gate electrode GT is made large enough to completely cover the i-type semiconductor layer AS, the overlap area with the source electrode SD1 and the drain electrode SD2 is increased, and thus the parasitic capacitance Cgs is increased. The reverse effect is that the midpoint potential Vlc is easily affected by the gate (scanning) signal Vg. However, this demerit can be eliminated by providing the storage capacitor element Cadd.

【0069】保持容量素子Caddの保持容量は、画素の
書込特性から、液晶容量Cpixに対して4〜8倍(4・C
pix<Cadd<8・Cpix)、寄生容量Cgsに対して8〜3
2倍(8・Cgs<Cadd<32・Cgs)程度の値に設定す
る。
The holding capacitance of the holding capacitance element Cadd is 4 to 8 times (4.C
pix <Cadd <8 · Cpix), 8 to 3 for parasitic capacitance Cgs
Set to a value about twice (8 · Cgs <Cadd <32 · Cgs).

【0070】(保持容量素子Cadd電極線の結線方法)
保持容量電極線としてのみ使用される初段の走査信号線
GL(Y0)は、図11に示すように、共通透明画素電
極ITO2(Vcom)と同じ電位にする。図18の例で
は、初段の走査信号線は端子GT0、引出線INT、端
子DT0及び外部配線を通じて共通電極COMに短絡さ
れる。或いは、初段の保持容量電極線Y0は最終段の走
査信号線Yendに接続、Vcom以外の直流電位点(交流接
地点)に接続するかまたは垂直走査回路Vから1つ余分
に走査パルスY0を受けるように接続してもよい。
(Method of connecting the storage capacitor element Cadd electrode wire)
As shown in FIG. 11, the scanning signal line GL (Y 0 ) in the first stage, which is used only as the storage capacitor electrode line, has the same potential as the common transparent pixel electrode ITO2 (Vcom). In the example of FIG. 18, the scanning signal line at the first stage is short-circuited to the common electrode COM through the terminal GT0, the lead wire INT, the terminal DT0 and the external wiring. Alternatively, the first-stage storage capacitor electrode line Y 0 is connected to the final-stage scanning signal line Yend, is connected to a DC potential point (AC ground point) other than Vcom, or one extra scanning pulse Y 0 from the vertical scanning circuit V. You may connect to receive.

【0071】(外部回路との接続構造)図21は走査信
号駆動回路Vや映像信号駆動回路He,Hoを構成す
る、集積回路チップCHIがフレキシブル配線基板(通
称TAB、Tape Automated Bonding)に搭載されたテー
プキャリアパッケージTCPの断面構造を示す図であ
り、図22はそれを液晶表示パネルの、本例では映像信
号回路用端子DTMに接続した状態を示す要部断面図で
ある。
(Connection Structure with External Circuit) FIG. 21 shows an integrated circuit chip CHI, which constitutes the scanning signal drive circuit V and the video signal drive circuits He and Ho, mounted on a flexible wiring board (commonly called TAB, Tape Automated Bonding). FIG. 23 is a view showing a cross-sectional structure of the tape carrier package TCP, and FIG. 22 is a main-portion cross-sectional view showing a state where the tape carrier package TCP is connected to the liquid crystal display panel, in this example, the video signal circuit terminal DTM.

【0072】同図において、TTBは集積回路CHIの
入力端子・配線部であり、TTMは集積回路CHIの出
力端子・配線部であり、例えばCuから成り、それぞれ
の内側の先端部(通称インナーリード)には集積回路C
HIのボンディングパッドPADがいわゆるフェースダ
ウンボンディング法により接続される。端子TTB,T
TMの外側の先端部(通称アウターリード)はそれぞれ
半導体集積回路チップCHIの入力及び出力に対応し、
半田付け等によりCRT/TFT変換回路・電源回路S
UPに、異方性導電膜ACFによって液晶表示パネルP
NLに接続される。パッケージTCPは、その先端部が
パネルPNL側の接続端子DTMを露出した保護膜PS
V1を覆うようにパネルに接続されており、従って、外
部接続端子DTM(GTM)は保護膜PSV1かパッケ
ージTCPの少なくとも一方で覆われるので電触に対し
て強くなる。
In the figure, TTB is an input terminal / wiring part of the integrated circuit CHI, and TTM is an output terminal / wiring part of the integrated circuit CHI, which is made of, for example, Cu and has inner ends (commonly called inner leads). ) Is the integrated circuit C
The HI bonding pad PAD is connected by a so-called face-down bonding method. Terminals TTB, T
Outer end portions (commonly called outer leads) of TM correspond to the input and output of the semiconductor integrated circuit chip CHI,
CRT / TFT conversion circuit / power supply circuit S by soldering, etc.
A liquid crystal display panel P is formed on the UP by an anisotropic conductive film ACF.
Connected to NL. The package TCP has a protective film PS whose front end exposes the connection terminal DTM on the panel PNL side.
Since it is connected to the panel so as to cover V1, and therefore the external connection terminal DTM (GTM) is covered with at least one of the protective film PSV1 and the package TCP, it is strong against electric contact.

【0073】BF1はポリイミド等からなるベースフィ
ルムであり、SRSは半田付けの際半田が余計なところ
へつかないようにマスクするためのソルダレジスト膜で
ある。シールパターンSLの外側の上下ガラス基板の隙
間は洗浄後エポキシ樹脂EPX等により保護され、パッ
ケージTCPと上側基板SUB2の間には更にシリコー
ン樹脂SILが充填され保護が多重化されている。
BF1 is a base film made of polyimide or the like, and SRS is a solder resist film for masking the solder so that it will not stick to unnecessary places during soldering. The gap between the upper and lower glass substrates outside the seal pattern SL is protected by epoxy resin EPX or the like after cleaning, and a silicone resin SIL is further filled between the package TCP and the upper substrate SUB2 to provide multiple protection.

【0074】(製造方法)つぎに、上述した液晶表示装
置の基板SUB1側の製造方法について図13〜図15
を参照して説明する。なお同図において、中央の文字は
工程名の略称であり、左側は図2に示す画素部分、右側
は図9に示すゲート端子付近の断面形状でみた加工の流
れを示す。工程Dを除き工程A〜工程Iは各写真処理に
対応して区分けしたもので、各工程のいずれの断面図も
写真処理後の加工が終わりフォトレジストを除去した段
階を示している。なお、写真処理とは本説明ではフォト
レジストの塗布からマスクを使用した選択露光を経てそ
れを現像するまでの一連の作業を示すものとし、繰返し
の説明は避ける。以下区分けした工程に従って、説明す
る。
(Manufacturing Method) Next, a manufacturing method of the substrate SUB1 side of the above-described liquid crystal display device will be described with reference to FIGS.
Will be described. In the figure, the letters in the center are abbreviations of process names, the left side shows the pixel portion shown in FIG. 2, and the right side shows the processing flow as seen in the sectional shape near the gate terminal shown in FIG. Except for the step D, steps A to I are divided corresponding to each photographic process, and all the cross-sectional views of each process show the stage where the processing after the photographic process is completed and the photoresist is removed. In this description, the photographic processing means a series of operations from the application of the photoresist to the selective exposure using the mask to the development thereof, and the repetitive description will be omitted. A description will be given below according to the divided steps.

【0075】工程A、図13 7059ガラス(商品名)からなる下部透明ガラス基板
SUB1の両面に酸化シリコン膜SIOをディップ処理
により設けたのち、500℃、60分間のベークを行な
う。下部透明ガラス基板SUB1上に膜厚が1100Å
のクロムからなる第1導電膜g1をスパッタリングによ
り設け、写真処理後、エッチング液として硝酸第2セリ
ウムアンモニウム溶液で第1導電膜g1を選択的にエッ
チングする。それによって、ゲート端子GTM、ドレイ
ン端子DTM、ゲート端子GTMを接続する陽極酸化バ
スラインSHg、ドレイン端子DTMを短絡するバスラ
インSHd、陽極酸化バスラインSHgに接続された陽
極酸化パッド(図示せず)を形成する。
Step A, FIG. 13 A silicon oxide film SIO is formed on both surfaces of a lower transparent glass substrate SUB1 made of 7059 glass (trade name) by dip processing, and then baked at 500 ° C. for 60 minutes. The film thickness is 1100Å on the lower transparent glass substrate SUB1.
The first conductive film g1 made of chromium is provided by sputtering, and after the photographic processing, the first conductive film g1 is selectively etched with a cerium ammonium nitrate solution as an etching solution. Thereby, the gate terminal GTM, the drain terminal DTM, the anodized bus line SHg connecting the gate terminal GTM, the bus line SHd shorting the drain terminal DTM, and the anodized pad connected to the anodized bus line SHg (not shown). To form.

【0076】工程B、図13 膜厚が2800ÅのAl−Pd、Al−Si、Al−S
i−Ti、Al−Si−Cu等からなる第2導電膜g2
をスパッタリングにより設ける。写真処理後、リン酸と
硝酸と氷酢酸との混酸液で第2導電膜g2を選択的にエ
ッチングする。
Step B, FIG. 13 Al-Pd, Al-Si, Al-S having a film thickness of 2800Å
The second conductive film g2 made of i-Ti, Al-Si-Cu, or the like
Are provided by sputtering. After the photographic processing, the second conductive film g2 is selectively etched with a mixed acid solution of phosphoric acid, nitric acid and glacial acetic acid.

【0077】工程C、図13 写真処理後(前述した陽極酸化マスクAO形成後)、3
%酒石酸をアンモニアによりPH6.25±0.05に調
整した溶液をエチレングリコール液で1:9に稀釈した
液からなる陽極酸化液中に基板SUB1を浸漬し、化成
電流密度が0.5mA/cm2になるように調整する(定電流化
成)。次に所定のAl23膜厚が得られるのに必要な化
成電圧125Vに達するまで陽極酸化を行う。その後こ
の状態で数10分保持することが望ましい(定電圧化
成)。これは均一なAl23膜を得る上で大事なことで
ある。それによって、導電膜g2を陽極酸化され、走査
信号線GL、ゲート電極GTおよび電極PL1上に膜厚
が1800Åの陽極酸化膜AOFが形成される 工程D、図14 プラズマCVD装置にアンモニアガス、シランガス、窒
素ガスを導入して、膜厚が2000Åの窒化Si膜を設
け、プラズマCVD装置にシランガス、水素ガスを導入
して、膜厚が2000Åのi型非晶質Si膜を設けたの
ち、プラズマCVD装置に水素ガス、ホスフィンガスを
導入して、膜厚が300ÅのN(+)型非晶質Si膜を設
ける。
Step C, FIG. 13 After photographic processing (after forming the above-described anodic oxidation mask AO), 3
Substrate SUB1 is immersed in an anodizing solution consisting of a solution of% tartaric acid adjusted to pH 6.25 ± 0.05 with ammonia and diluted 1: 9 with ethylene glycol solution, and the formation current density is 0.5 mA / cm 2. 2 so as to adjust (constant current Kasei). Next, anodic oxidation is performed until the formation voltage 125 V required to obtain a predetermined Al 2 O 3 film thickness is reached. After that, it is desirable to hold this state for several tens of minutes (constant voltage formation). This is important for obtaining a uniform Al 2 O 3 film. Thereby, the conductive film g2 is anodized to form an anodic oxide film AOF having a thickness of 1800Å on the scanning signal line GL, the gate electrode GT and the electrode PL1. Process D, FIG. 14 Ammonia gas, silane gas in plasma CVD apparatus , Nitrogen gas is introduced to form a 2000 Å-thickness Si nitride film, and silane gas and hydrogen gas are introduced into the plasma CVD apparatus to form a 2000 Å-thick i-type amorphous Si film. Hydrogen gas and phosphine gas are introduced into the CVD apparatus to form an N (+) type amorphous Si film having a film thickness of 300Å.

【0078】工程E、図14 写真処理後、ドライエッチングガスとしてSF6、CC
4を使用してN(+)型非晶質Si膜、i型非晶質Si
膜を選択的にエッチングすることにより、i型半導体層
ASの島を形成する。
Step E, FIG. 14 After photo processing, SF 6 and CC are used as dry etching gas.
Use l 4 N (+) type amorphous Si film, i-type amorphous Si
The island of the i-type semiconductor layer AS is formed by selectively etching the film.

【0079】工程F、図14 写真処理後、ドライエッチングガスとしてSF6を使用
して、窒化Si膜を選択的にエッチングする。
Step F, FIG. 14 After the photographic process, SF 6 is used as a dry etching gas to selectively etch the Si nitride film.

【0080】工程G、図15 膜厚が1400ÅのITO膜からなる第1導電膜d1を
スパッタリングにより設ける。写真処理後、エッチング
液として塩酸と硝酸との混酸液で第1導電膜d1を選択
的にエッチングすることにより、ゲート端子GTM、ド
レイン端子DTMの最上層および透明画素電極ITO1
を形成する。
Step G, FIG. 15 A first conductive film d1 made of an ITO film having a film thickness of 1400Å is provided by sputtering. After the photographic processing, the first conductive film d1 is selectively etched with a mixed acid solution of hydrochloric acid and nitric acid as an etching solution, whereby the uppermost layers of the gate terminal GTM and the drain terminal DTM and the transparent pixel electrode ITO1.
To form.

【0081】工程H、図15 膜厚が600ÅのCrからなる第2導電膜d2をスパッ
タリングにより設け、さらに膜厚が4000ÅのAl−
Pd、Al−Si、Al−Si−Ti、Al−Si−C
u等からなる第3導電膜d3をスパッタリングにより設
ける。写真処理後、第3導電膜d3を工程Bと同様な液
でエッチングし、第2導電膜d2を工程Aと同様な液で
エッチングし、映像信号線DL、ソース電極SD1、ド
レイン電極SD2を形成する。つぎに、ドライエッチン
グ装置にCCl4、SF6を導入して、N(+)型非晶質S
i膜をエッチングすることにより、ソースとドレイン間
のN(+)型半導体層d0を選択的に除去する。
Step H, FIG. 15: A second conductive film d2 made of Cr having a film thickness of 600 Å is provided by sputtering, and an Al- film having a film thickness of 4000 Å is formed.
Pd, Al-Si, Al-Si-Ti, Al-Si-C
A third conductive film d3 made of u or the like is provided by sputtering. After the photographic processing, the third conductive film d3 is etched with the same liquid as the process B, and the second conductive film d2 is etched with the same liquid as the process A to form the video signal line DL, the source electrode SD1, and the drain electrode SD2. To do. Next, by introducing CCl 4 and SF 6 into the dry etching apparatus, N (+) type amorphous S
By etching the i film, the N (+) type semiconductor layer d0 between the source and the drain is selectively removed.

【0082】工程I、図15 プラズマCVD装置にアンモニアガス、シランガス、窒
素ガスを導入して、膜厚が1μmの窒化Si膜を設け
る。写真処理後、ドライエッチングガスとしてSF6
使用した写真蝕刻技術で窒化Si膜を選択的にエッチン
グすることによって、保護膜PSV1を形成する。
Step I, FIG. 15 Ammonia gas, silane gas, and nitrogen gas are introduced into the plasma CVD apparatus to form a silicon nitride film having a thickness of 1 μm. After the photo processing, the protective film PSV1 is formed by selectively etching the Si nitride film by a photo-etching technique using SF 6 as a dry etching gas.

【0083】(変形例)前述の実施例では、保護膜PS
V1はマトリクスARの全体に亘って形成されている
が、マトリクス内では保護膜PSV1はトランジスタ部
のみ覆うようドット状にしたり、電圧の利用率を高める
ため画素電極ITO1部のみ除去した、丁度遮光膜BM
に似た格子状のパターンに形成しても良い。
(Modification) In the above-mentioned embodiment, the protective film PS is used.
V1 is formed over the entire matrix AR, but in the matrix, the protective film PSV1 is formed in a dot shape so as to cover only the transistor portion, or only the pixel electrode ITO1 portion is removed in order to increase the voltage utilization rate. BM
It may be formed in a grid pattern similar to.

【0084】[0084]

【発明の効果】上記本発明の実施例によれば、Alを含
む外部接続端子部DTMへの引出配線の導電層d3がシ
ール部SLの内側に留められているので、また外部接続
端子DTM,GTMは保護膜PSV1かベースフィルム
BF1の少なくとも一方で覆われているため電触が起き
にくい。
According to the above-described embodiment of the present invention, since the conductive layer d3 of the lead wiring to the external connection terminal portion DTM containing Al is retained inside the seal portion SL, the external connection terminal DTM, Since GTM is covered with at least one of the protective film PSV1 and the base film BF1, electric contact is less likely to occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を適用したアクティブ・マトリックス
方式のカラー液晶表示装置の液晶表示部の一画素とその
周辺を示す要部平面図である。
FIG. 1 is a plan view of relevant parts showing one pixel and its periphery of a liquid crystal display section of an active matrix type color liquid crystal display device to which the present invention is applied.

【図2】図1の2−2切断線における1画素とその周辺
を示す断面図である。
FIG. 2 is a cross-sectional view showing one pixel and its periphery taken along the line 2-2 in FIG.

【図3】図1の3−3切断線における付加容量Caddの
断面図である。
3 is a cross-sectional view of the additional capacitance Cadd taken along the line 3-3 in FIG.

【図4】図1に示す画素を複数配置した液晶表示部の要
部平面図である。
4 is a plan view of a main part of a liquid crystal display unit in which a plurality of pixels shown in FIG. 1 are arranged.

【図5】図1に示す画素の層g2,ASのみを描いた平
面図である。
5 is a plan view illustrating only layers g2 and AS of the pixel shown in FIG.

【図6】図1に示す画素の層d1,d2,d3のみを描
いた平面図である。
6 is a plan view illustrating only layers d1, d2 and d3 of the pixel shown in FIG.

【図7】図1に示す画素の画素電極層、遮光膜およびカ
ラーフィルタ層のみを描いた平面図である。
7 is a plan view showing only a pixel electrode layer, a light shielding film, and a color filter layer of the pixel shown in FIG.

【図8】図6に示す画素配列の画素電極層、遮光膜およ
びカラーフィルタ層のみを描いた要部平面図である。
FIG. 8 is a plan view of a principal part showing only a pixel electrode layer, a light shielding film and a color filter layer of the pixel array shown in FIG.

【図9】ゲート端子GTMとゲート配線GLの接続部近
辺を示す平面と断面の図である。
FIG. 9 is a plan view and a cross-sectional view showing the vicinity of a connecting portion between a gate terminal GTM and a gate wiring GL.

【図10】ドレイン端子DTMと映像信号線DLとの接
続部付近を示す平面と断面の図である。
FIG. 10 is a plan view and a cross-sectional view showing the vicinity of a connection between a drain terminal DTM and a video signal line DL.

【図11】アクティブ・マトリックス方式のカラー液晶
表示装置の液晶表示部を示す等価回路図である。
FIG. 11 is an equivalent circuit diagram showing a liquid crystal display unit of an active matrix type color liquid crystal display device.

【図12】図1に示す画素の等価回路図である。FIG. 12 is an equivalent circuit diagram of the pixel shown in FIG.

【図13】基板SUB1側の工程A〜Cの製造工程を示
す画素部とゲート端子部の断面図のフローチャートであ
る。
FIG. 13 is a flow chart of a cross-sectional view of a pixel portion and a gate terminal portion showing a manufacturing process of steps A to C on the substrate SUB1 side.

【図14】基板SUB1側の工程D〜Fの製造工程を示
す画素部とゲート端子部の断面図のフローチャートであ
る。
FIG. 14 is a flow chart of a cross-sectional view of a pixel portion and a gate terminal portion showing a manufacturing process of processes D to F on the substrate SUB1 side.

【図15】基板SUB1側の工程G〜Iの製造工程を示
す画素部とゲート端子部の断面図のフローチャートであ
る。
FIG. 15 is a flow chart of a cross-sectional view of a pixel portion and a gate terminal portion showing manufacturing steps of steps GI on the side of the substrate SUB1.

【図16】表示パネルのマトリクス周辺部の構成を説明
するための平面図である。
FIG. 16 is a plan view for explaining a configuration of a matrix peripheral portion of a display panel.

【図17】図16の周辺部をやや誇張し更に具体的に説
明するためのパネル平面図である。
FIG. 17 is a panel plan view for exaggerating the peripheral portion of FIG. 16 and explaining it more specifically.

【図18】上下基板の電気的接続部を含む表示パネルの
角部の拡大平面図である。
FIG. 18 is an enlarged plan view of a corner portion of a display panel including electrical connection portions of upper and lower substrates.

【図19】マトリクスの画素部を中央に、両側にパネル
角付近と映像信号端子部付近を示す断面図である。
FIG. 19 is a cross-sectional view showing the vicinity of a panel angle and the vicinity of a video signal terminal portion on both sides with the pixel portion of the matrix at the center.

【図20】左側に走査信号端子、右側に外部接続端子の
無いパネル縁部分を示す断面図である。
FIG. 20 is a cross-sectional view showing a scan signal terminal on the left side and a panel edge portion without an external connection terminal on the right side.

【図21】駆動回路を構成する集積回路チップCHIが
フレキシブル配線基板に搭載されたテープキャリアパッ
ケージTCPの断面構造を示す図である。
FIG. 21 is a diagram showing a cross-sectional structure of a tape carrier package TCP in which an integrated circuit chip CHI which constitutes a drive circuit is mounted on a flexible wiring board.

【図22】テープキャリアパッケージTCPを液晶表示
パネルPNLの映像信号回路用端子DTMに接続した状
態を示す要部断面図である。
FIG. 22 is a cross-sectional view of essential parts showing a state in which the tape carrier package TCP is connected to the video signal circuit terminal DTM of the liquid crystal display panel PNL.

【符号の説明】[Explanation of symbols]

SUB…透明ガラス基板、GL…走査信号線、DL…映
像信号線 GI…絶縁膜、GT…ゲート電極、AS…i型半導体層 SD…ソース電極またはドレイン電極、PSV…保護
膜、BM…遮光膜 LC…液晶、TFT…薄膜トランジスタ、ITO…透明
画素電極 g、d…導電膜、Cadd…保持容量素子、AOF…陽極
酸化膜 AO…陽極酸化マスク、GTM…ゲート端子、DTM…
ドレイン端子
SUB ... Transparent glass substrate, GL ... Scan signal line, DL ... Video signal line GI ... Insulating film, GT ... Gate electrode, AS ... i-type semiconductor layer SD ... Source electrode or drain electrode, PSV ... Protective film, BM ... Light-shielding film LC ... Liquid crystal, TFT ... Thin film transistor, ITO ... Transparent pixel electrode g, d ... Conductive film, Cadd ... Storage capacitor element, AOF ... Anodized film AO ... Anodized mask, GTM ... Gate terminal, DTM ...
Drain terminal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】画素電極と該画素電極に駆動信号を伝達す
る薄膜トランジスタとを有する画素を複数個形成したマ
トリクス部を備えた第1の基板と、上記画素電極に対向
する対向電極層を形成した第2の基板と、液晶層と、上
記第1及び第2の基板間で上記液晶層を閉じ込めるシー
ルパターンと、第1の導体層を含む複数の外部接続端子
と、Alを含む第2の導体層を含み複数の上記トランジ
スタを接続する複数のマトリクス配線と、上記外部接続
端子と上記マトリクス配線の各々を接続し上記シールパ
ターンに跨って形成された複数の引出配線とを具備して
成り、上記引出配線は上記マトリクス配線との電気的接
触部から上記外部接続端子に至るまで上記第1の導体層
を有し、上記接触部から上記外部接続端子に向けて上記
シールパターンの外側に越えない範囲で上記第2の導体
層を更に有し、上記範囲では上記第2の導体層は間に絶
縁層を介在させること無く上記第1の導体層に電気的に
接触していることを特徴とする液晶表示装置。
1. A first substrate having a matrix portion formed with a plurality of pixels each having a pixel electrode and a thin film transistor transmitting a drive signal to the pixel electrode, and a counter electrode layer facing the pixel electrode. A second substrate, a liquid crystal layer, a seal pattern for confining the liquid crystal layer between the first and second substrates, a plurality of external connection terminals including the first conductor layer, and a second conductor including Al. A plurality of matrix wirings including a layer and connecting a plurality of the transistors, and a plurality of lead-out wirings connected to the external connection terminals and the matrix wirings and formed across the seal pattern. The lead-out wiring has the first conductor layer from the electrical contact portion with the matrix wiring to the external connection terminal, and the seal pattern of the seal pattern is provided from the contact portion to the external connection terminal. The second conductor layer is further provided in a range not exceeding the side, and in the range, the second conductor layer is in electrical contact with the first conductor layer without an insulating layer interposed therebetween. A liquid crystal display device characterized by the above.
【請求項2】上記第1の導体層は透明体であり、上記範
囲において上記第2の導体層は上記第1の導体層にCr
を含む他の導体層を介して電気的に接触していることを
特徴とする請求項1記載の液晶表示装置。
2. The first conductor layer is a transparent body, and in the above range, the second conductor layer is formed by adding Cr to the first conductor layer.
2. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is in electrical contact with another conductor layer including the.
【請求項3】上記マトリクス配線の各々は複数の上記ト
ランジスタのソース・ドレインを電気的に接続して成る
ことを特徴とする請求項1または2記載の液晶表示装
置。
3. The liquid crystal display device according to claim 1, wherein each of the matrix wirings is formed by electrically connecting the source and drain of a plurality of the transistors.
【請求項4】画素電極と該画素電極に駆動信号を伝達す
る薄膜トランジスタとを有する画素を複数個形成したマ
トリクス部を備えた第1の基板と、上記画素電極に対向
する対向電極層を形成した第2の基板と、液晶層と、上
記第1及び第2の基板間で上記液晶層を閉じ込めるシー
ルパターンと、該シールパターンの外側に形成された複
数の外部接続端子と、上記トランジスタを覆う保護絶縁
層と、上記外部接続端子に電気的に接続される複数の出
力端子を有し、該出力端子に駆動信号を供給する集積回
路を搭載したフレキシブル配線基板とを具備して成り、
上記保護層と同じレベルの層が上記シールパターンに跨
り、上記外部接続端子の一部を覆いかつ他部を露出する
ように形成され、上記配線基板の端部は上記シールパタ
ーンの外側で上記同じレベルの層に重ねられていること
を特徴とする液晶表示装置。
4. A first substrate having a matrix portion formed with a plurality of pixels each having a pixel electrode and a thin film transistor transmitting a drive signal to the pixel electrode, and a counter electrode layer facing the pixel electrode. A second substrate, a liquid crystal layer, a seal pattern for confining the liquid crystal layer between the first and second substrates, a plurality of external connection terminals formed outside the seal pattern, and protection for covering the transistor. An insulating layer; and a flexible wiring board having a plurality of output terminals electrically connected to the external connection terminals, and having an integrated circuit for supplying a drive signal to the output terminals.
A layer at the same level as the protective layer is formed so as to straddle the seal pattern, cover part of the external connection terminal and expose the other part, and the end portion of the wiring board is the same as the outside of the seal pattern. A liquid crystal display device characterized by being stacked on a level layer.
JP04034743A 1992-02-21 1992-02-21 Liquid crystal display Expired - Lifetime JP3125411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04034743A JP3125411B2 (en) 1992-02-21 1992-02-21 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04034743A JP3125411B2 (en) 1992-02-21 1992-02-21 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH05232494A true JPH05232494A (en) 1993-09-10
JP3125411B2 JP3125411B2 (en) 2001-01-15

Family

ID=12422807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04034743A Expired - Lifetime JP3125411B2 (en) 1992-02-21 1992-02-21 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP3125411B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264796A (en) * 1995-03-18 1996-10-11 Semiconductor Energy Lab Co Ltd Display device and its forming method
JP2001075118A (en) * 1999-09-07 2001-03-23 Seiko Epson Corp Liquid crystal device and production therefor, and electronic equipment
JP2003098543A (en) * 2001-09-21 2003-04-03 Seiko Epson Corp Electro-optical panel, manufacturing method therefor, and electronic equipment
JP2005005724A (en) * 2004-07-06 2005-01-06 Semiconductor Energy Lab Co Ltd Semiconductor integrated circuit and its manufacturing method
JP2005148734A (en) * 2003-11-12 2005-06-09 Samsung Electronics Co Ltd Liquid crystal display device
JP2008209931A (en) * 2008-03-12 2008-09-11 Semiconductor Energy Lab Co Ltd Liquid crystal display device
US8012782B2 (en) 1995-03-18 2011-09-06 Semiconductor Energy Laboratory Co., Ltd. Method for producing display device
US9059045B2 (en) 2000-03-08 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2020060797A (en) * 2014-09-05 2020-04-16 株式会社半導体エネルギー研究所 Display device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264796A (en) * 1995-03-18 1996-10-11 Semiconductor Energy Lab Co Ltd Display device and its forming method
US8012782B2 (en) 1995-03-18 2011-09-06 Semiconductor Energy Laboratory Co., Ltd. Method for producing display device
JP2001075118A (en) * 1999-09-07 2001-03-23 Seiko Epson Corp Liquid crystal device and production therefor, and electronic equipment
US9059045B2 (en) 2000-03-08 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9368514B2 (en) 2000-03-08 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9786687B2 (en) 2000-03-08 2017-10-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2003098543A (en) * 2001-09-21 2003-04-03 Seiko Epson Corp Electro-optical panel, manufacturing method therefor, and electronic equipment
JP2005148734A (en) * 2003-11-12 2005-06-09 Samsung Electronics Co Ltd Liquid crystal display device
JP2005005724A (en) * 2004-07-06 2005-01-06 Semiconductor Energy Lab Co Ltd Semiconductor integrated circuit and its manufacturing method
JP2008209931A (en) * 2008-03-12 2008-09-11 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JP2020060797A (en) * 2014-09-05 2020-04-16 株式会社半導体エネルギー研究所 Display device

Also Published As

Publication number Publication date
JP3125411B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
JP3184853B2 (en) Liquid crystal display
JPH07146481A (en) Liquid crystal display substrate
JPH06102534A (en) Thin-film transistor array
JP3125411B2 (en) Liquid crystal display
JPH06102536A (en) Thin film transistor array
JP3272848B2 (en) Liquid crystal display device
JPH0794744A (en) Mis transistor
JPH06347825A (en) Liquid crystal display device and its production
JPH08190087A (en) Transparent insulating substrate for producing liquid crystal display panel and method for inspecting its various characteristics
JPH06250221A (en) Production of liquid crystal display substrate
JPH0720463A (en) Liquid crystal display device
JPH06265922A (en) Liquid crystal display device
JP4674293B2 (en) Manufacturing method of MOS transistor
JP3311838B2 (en) Liquid crystal display
JPH05224196A (en) Liquid crystal display device and its production
JPH0792489A (en) Liquid crystal display device
JPH06258667A (en) Liquid crystal display device
JPH0720487A (en) Liquid crystal display element
JPH06242465A (en) Liquid crystal display substrate
JPH06265919A (en) Liquid crystal display device
JPH06268218A (en) Manufacture of thin film transistor
JPH06308529A (en) Thin-film transistor substrate, liquid crystal display panel and liquid crystal display device
JPH0736052A (en) Substrate provided with al alloy layer as wiring layer and its production
JPH06258666A (en) Liquid crystal display device
JPH0720464A (en) Liquid crystal display device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081102

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101102

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111102

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121102