JPH0597554A - 炭素繊維無機繊維強化炭素複合材 - Google Patents

炭素繊維無機繊維強化炭素複合材

Info

Publication number
JPH0597554A
JPH0597554A JP4028715A JP2871592A JPH0597554A JP H0597554 A JPH0597554 A JP H0597554A JP 4028715 A JP4028715 A JP 4028715A JP 2871592 A JP2871592 A JP 2871592A JP H0597554 A JPH0597554 A JP H0597554A
Authority
JP
Japan
Prior art keywords
carbon
fiber
composite material
reinforced
inorganic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4028715A
Other languages
English (en)
Inventor
Kiyoshi Takei
精 武居
Isao Kinukawa
功 絹川
Mamoru Tamura
守 田村
Seiichi Tashiro
聖一 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohwada Carbon Industrial Co Ltd
Original Assignee
Ohwada Carbon Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohwada Carbon Industrial Co Ltd filed Critical Ohwada Carbon Industrial Co Ltd
Priority to JP4028715A priority Critical patent/JPH0597554A/ja
Publication of JPH0597554A publication Critical patent/JPH0597554A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】 【目的】 強固にして安定な耐酸化被覆が得られ、酸化
雰囲気で高温に対し高強度を保持する炭素繊維無機繊維
強化炭素複合材を提供する。 【構成】 炭素繊維を強化材とするとともに炭素をマト
リックスとした炭素繊維強化炭素複合材が芯1として構
成される。この芯1の外側が、炭素を除く無機繊維を強
化材とするとともに、炭素または炭素と硼素化合物との
混合物をマトリックスとした無機繊維強化炭素複合材2
で被覆される。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、炭素繊維無機繊維強化
炭素複合材に関する。
【0002】
【従来の技術】炭素繊維で強化された炭素複合材(以下
「C/C複合材」と呼ぶ)は、比重が1.5 〜1.7 と軽量
で、1500℃を超える高温においても1000kgf/
cm2 以上の高強度を保持するので、先端技術分野での用
途が伸びて行くものと考えられている。
【0003】たとえば、宇宙分野でスペースシャトルが
宇宙圏から空気層に高速で突入する際、1700℃以上
の高温の中で大きな圧力を受けると予想される。それに
耐え得る材料としては、C/C複合材が最も推奨されて
いる。しかるに、C/C複合材は炭素材料だけで構成さ
れており、空気中などの酸化雰囲気では400℃以上で
酸化消耗してしまうため、その使用分野が制限されてい
る。
【0004】
【発明が解決しようとする課題】そこで耐酸化性を向上
させるため、SiCをCVD(Chemical Vapor Deposi
t)で被覆させる方法が試みられている。しかし、C/
C複合材の線膨張係数が1.5 ×10-6であるのに対し、
SiCの線膨張係数が4.5 ×10-6と大きく差があるた
め、約1500℃でCVDによりSiCの被覆を均一に
行なっても、室温迄温度を低下させると細かい亀裂が生
じ、その亀裂を通して炭素が空気に触れて酸化が生じる
という問題がある。これを防止するため、B2 3 また
はTiCを先に被覆し、その上にSiCを被覆して、線
膨張係数を段階的に変化させて温度変化による亀裂を防
ぐことが可能である。しかし、この方法によっても充分
には目的を達することができず、且つ工程が複雑で高価
になるという問題がある。また、このようにして作られ
た耐酸化被覆層は強度が低く、スペースシャトルが高速
で空気層に入ったときのように表面に大きな力と熱が加
わったとき、膨張係数の差により耐酸化被覆層に亀裂が
入り、この亀裂を通して酸化し、被覆層がはがれ、C/
C複合材の強度も著しく弱くなり、耐熱性もなくなるな
どの問題がある。
【0005】本発明はこのような問題を解決するもの
で、強固にして安定な耐酸化被覆が得られて、高温の酸
化雰囲気に対し高強度を保持する複合材を提供すること
を目的とする。
【0006】
【課題を解決するための手段】この目的を達成するため
本発明は、炭素繊維を強化材とするとともに炭素をマト
リックスとした炭素繊維強化炭素複合材を芯とし、この
芯の外側を、炭素を除く無機繊維を強化材とするととも
に炭素をマトリックスとした無機繊維強化炭素複合材で
被覆したものである。
【0007】また本発明は、炭素繊維を強化材とすると
ともに炭素をマトリックスとした炭素繊維強化炭素複合
材を芯とし、この芯の外側を、炭素を除く無機繊維を強
化材とするとともに炭素と硼素化合物との混合物をマト
リックスとした無機繊維強化炭素複合材で被覆したもの
である。
【0008】また本発明は、上述の炭素複合材の表面お
よび/またはその内部気孔の表面に、SiC,TiC,
4 C,WC,TaC,Al3 4 ,Al2 3 ,Si
3 4 ,BN,HfB2 ,AlN,ZrB2 ,NbC,
ZrCの内の少なくとも1種からなる耐酸化性物質の層
を形成したものである。
【0009】本発明に用いる炭素繊維は、炭素質繊維、
黒鉛質繊維のいずれでも良い。またアクリロニトリル
系,レーヨン系,ピッチ系,リグニン系,あるいは熱硬
化性樹脂系の炭素繊維のいずれをも用いることができ、
これを長繊維,チョップドストランド,二次元織物,三
次元織物,あるいは不織布の形態で用いる。
【0010】また、本発明に用いる無機繊維としては、
炭化硅素繊維(日本カーボン社製商品名「ニカロン」な
ど)、アルミナ繊維(住友化学工業社製 商品名「アル
テックス」など)、ガラス繊維(ユニチカ ユーエムグ
ラス社製など)、ボロン繊維(テクストロン スペシャ
リティ マテリアルス社製など)のいずれでも良く、ま
た硅素・炭素・チタン・酸素の混合物からなる繊維(宇
部興産社製商品名「チラノ繊維」)、硅素・炭素・チタ
ンの混合物からなる繊維、硅素・炭素・酸素の混合物か
らなる繊維(ともに宇部興産社製)のいずれでも良い。
また、アルミナと酸化硅素との混合物からなる繊維(イ
ビデン社製 セラミック ファイバー)でも良い。上記
ガラス繊維は、酸化硅素・アルミナ・アルカリ金属の酸
化物の混合物(ユニチカ ユーエムグラス社製 商品名
「エスグラス」)でも良いし、これらと酸化硼素との混
合物(ユニチカ ユーエムグラス社製 商品名「ディー
グラス」)でも良いし、あるいは酸化硅素(アライド−
シグナル社製)のみでも良い。さらにボロンとタングス
テンとの混合物でも良いし、ボロン単独の繊維でも良
い。窒化硅素繊維(トーメン社製など)でも良い。
【0011】これらの無機繊維は、長繊維,チョップド
ストランド,二次元織物,三次元織物,あるいは不織布
の形態で用いられる。または、これら異種の繊維を混合
したもの、たとえば経糸に炭化硅素の繊維を使うととも
に緯糸にアルミナの繊維を使った織物でも良いし、ある
いは異種の短繊維を混合してなる不織布でもよい。
【0012】上述のように本発明の複合材は、炭素繊維
や無機繊維を強化材とするとともに、炭素をマトリック
スとする。マトリックスの炭素は、フェノール樹脂,ポ
リイミド樹脂,フラン樹脂などの熱硬化性樹脂を炭化し
たもの、または、ピッチ,ナイロンなどの熱可塑性樹脂
を炭化したもの、またはこれらの樹脂と、カーボンブラ
ック,人造黒鉛粉末,天然黒鉛粉末,炭素質粉末の少な
くとも1種とを混合したものを炭化したものである。マ
トリックスは、炭素質または黒鉛質のいずれか単独でも
良いし、あるいはこれらを混合したものでも良い。
【0013】上述のように、炭素繊維で強化された炭素
複合材にて芯が構成され、この芯の外側の部材が、無機
繊維を強化材として形成された複合材にて構成される
が、この複合材のマトリックスには、耐酸化性を向上さ
せるために、上述の樹脂の中に硼素化合物を混入させる
ことが望ましい。公知の技術においては、硼素化合物を
炭素繊維強化複合材のマトリックスとなる樹脂に混合さ
せると、その耐酸化性は向上するが、硼素化合物が炭素
繊維を損傷してその強度の低下を招くことがあった。し
かし本発明のように無機繊維を用いる場合には、このよ
うなことが無く、その強度を保持させて耐酸化性を向上
させることが可能である。
【0014】以上のようにして作られた炭素複合材の表
面および/またはその内部気孔の表面に上述の耐酸化性
物質の層を形成する方法としては、CVD(Chemical V
aporDeposit ),スパッタリング,蒸着などの方法が考
えられるが、高温に耐える層としての緻密な層を作るC
VDが望ましい。
【0015】次に、この炭素複合材の製造方法を説明す
る。まず、炭素繊維による布帛望ましくは二次元織物
に、樹脂望ましくは熱硬化性樹脂を含浸し、成形する。
二次元織物の場合は例えばフェノール樹脂を含浸し、成
形に必要な金型の寸法に切断し、集積して金型にセット
し、熱硬化に必要な温度と圧力で成形し、炭素繊維強化
樹脂複合材を作る。
【0016】また、無機繊維による布帛望ましくは二次
元織物に、樹脂望ましくは熱硬化性樹脂例えばフェノー
ル樹脂を含浸して、プリプレッグを作成する。この樹脂
に硼素化合物を5〜30パーセント混入してプリプレッグ
を作成すれば、耐酸化性の向上が図られる。そして、こ
のプリプレッグにて、先に作った炭素繊維強化樹脂複合
材を包み、これを金型にセットし、熱硬化に必要な温度
と圧力で成形して、炭素繊維と無機繊維とで強化された
樹脂複合材を作る。これを1000℃以上の窒素,アル
ゴン,炭酸ガスの如き非活性雰囲気内で焼成し、ピッチ
または熱硬化性樹脂などを含浸,焼成する工程を繰返し
て緻密化することで、本発明による炭素複合材が得られ
る。
【0017】そして、この複合材に、公知の方法である
CVD,スパッタリング,蒸着などの方法で、SiC,
TiC,B4 C,WC,TaC,Al3 4 ,Al2
3 ,Si3 4 ,BN,HfB2 ,AlN,ZrB2
NbC、ZrCの内の少なくとも1種からなる耐酸化性
物質の層を形成する。
【0018】
【作用】このような構成によれば、炭化硅素,アルミ
ナ,ガラス,ボロンまたはこれらを主とした混合物によ
るところの、炭素を除く無機繊維は、酸化に強く且つ機
械的強度にすぐれている。このため、これらの布帛によ
って覆われたC/C複合材は、酸化雰囲気においても且
つ外力が表面にかかってもその被覆が破壊されることが
なく、内部のC/C複合材が酸素に侵されることはな
い。
【0019】また、長時間高温となる酸化雰囲気におい
ては、布帛による被覆の微細な隙間から酸化されて侵蝕
されることがあり、且つ、これらの無機繊維のマトリッ
クスが炭素であるため、マトリックスが破壊されて無機
繊維強化炭素複合材の強度が低下し、被覆がはがれて内
部のC/C複合材が侵されることもある。このため、S
iC,TiC,B4 C,WC,TaC,Al3 4 ,A
2 3 ,Si3 4 ,BN,HfB2 ,AlN,Zr
2 、NbC、ZrCの内の少なくとも1種からなる耐
酸化性物質の層を、炭素複合材の表面および/またはそ
の内部気孔の表面に設けることにより、これに対応する
ことができる。例えばSiCを用いたCVD法によれ
ば、Siを主とした無機繊維で被覆したときに線膨張係
数が一致するため、温度が上下しても亀裂が生ぜず、強
固な耐酸化性を保持できる。
【0020】また、上述の無機繊維で強化された炭素複
合材のマトリックスに、硼素化合物を混入した炭素を使
用することにより、その耐酸化性をさらに向上すること
ができる。
【0021】
【実施例】以下、図面に基づき本発明を説明する。図1
において、1は炭素繊維で強化された炭素複合材、2は
この炭素複合材1を完全に被覆したところの、無機繊維
で強化された炭素複合材である。
【0022】図2では、図1における無機繊維で強化さ
れた炭素複合材2の表面および/またはその内部気孔の
表面に、SiC,TiC,B4 C,WC,TaC,Al
3 4 , Al2 3 ,Si3 4 ,BN,HfB2 ,A
lN,ZrB2 、NbC、ZrCの内の少なくとも1種
からなる耐酸化性物質の層3を形成した、炭素繊維と無
機繊維とで強化された炭素複合材を示している。
【0023】以下、本発明の具体例について説明する。 具体例1 フェノール樹脂(ユニチカ社製 商品名「ユニベックス
S」)1をアセトン1で溶解した混合樹脂液に、600
0フィラメントのアクリル系の炭素繊維(東レ社製)か
らなり経糸420本/m,緯糸420本/m,重さ33
0gr/m2 の織物を浸漬して、織物の重量とアセトン
が蒸発した状態での樹脂の重量が1:1になるようにプ
リプレッグを作った。このプリプレッグを金型に入れ、
200トンのホットプレス機により150kg/cm2 の圧
力で圧縮した。次に、フェノール樹脂1をアセトン1で
溶解した混合樹脂液に、Si;50%,C;25%,
O;20%,Ti;5%よりなる無機繊維(宇部興産社
製 商品名「チラノ繊維」)を材料とし1600フィラ
メントで織った経糸420本/m,緯糸420本/m,
重さ420gr/m2 の織物を浸漬し、織物と樹脂の重
量比が1:1になるようにプリプレッグを作り、このプ
リブレッグに張力を加えて前記炭素繊維織物のプリプレ
ッグを完全に包み、金型にセットし、150kg/cm2
圧力かつ200℃の温度で硬化反応させた。
【0024】このようにしてできたところの、炭素繊維
と無機繊維とで強化された樹脂複合材を、真空中で13
00℃で焼成し、それをフェノール樹脂とアセトンとの
混合樹脂液に含浸し焼成する工程を5回繰返して、炭素
繊維と無機繊維とで強化された炭素複合材を作成した。
酸化試験として、この炭素繊維と無機繊維とで強化され
た炭素複合材を大気中で100℃で24時間乾燥した後
に計量し、その後大気中で500℃で100時間放置し
て計量したところ、7%減量した。 具体例2 具体例1と全く同じ方法で作られた炭素繊維と無機繊維
とで強化された炭素複合材に、CVD法でSiCを被覆
した。これを具体例1と同様の方法により大気中で10
0℃で24時間乾燥した後に計量し、その後大気中で5
00℃で100時間放置して計量したところ、減量が認
められなかった。 比較例1 具体例1と同様にして、炭素繊維織物のプリプレッグを
作った。これを金型に入れ、200トンのホットプレス
機により、150kg/cm2 の圧力かつ200℃の雰囲気
中で硬化反応させた。
【0025】このようにしてできたところの、炭素繊維
で強化さけた樹脂複合材を真空中で1300℃で焼成
し、それをフェノール樹脂とアセトンとの混合樹脂液に
含浸,焼成する工程を5回繰返すことで、炭素繊維で強
化された炭素複合材を作成した。この炭素繊維で強化さ
れた炭素複合材をを用いて具体例1と同様の方法で酸化
試験を行なったところ、30%減量した。 具体例3 フェノール樹脂(ユニチカ社製 商品名「ユニベックス
S」)1をアセトン1で溶解した混合樹脂液に、600
0フィラメントのアクリル系の炭素繊維(東レ社製)か
らなり経糸420本/m,緯糸420本/m,重さ33
0gr/m2 の織物を浸漬し、織物の重量とアセトンが
蒸発した状態での重量とが1:1になるように第1のプ
リプレッグを作った。この第1のプリプレッグを金型に
入れ、200トンのホットプレス機により150kg/cm
2 の圧力で圧縮した。次に、フェノール樹脂1をアセト
ン1で溶解した混合樹脂液に、Si;50%,C;25
%,O;20%,Ti;5%よりなる無機繊維(宇部興
産社製 商品名「チラノ繊維」)1600フィラメント
で織った経糸420本/m,緯糸420本/m,重さ4
20gr/m2 の織物を浸漬し、織物と樹脂の重量比が
1:1になるように第2のプリプレッグを作り、この第
2のプリブレッグに張力を加えて前記炭素繊維織物製の
第1のプリプレッグを完全に包み、金型にセットし、1
50kg/cm2 の圧力かつ200℃の温度で硬化反応させ
た。
【0026】このようにしてできたところの、炭素繊維
と無機繊維とで強化された樹脂複合材を真空中で130
0℃で焼成し、それをフェノール樹脂とアセトンとの混
合樹脂液に含浸し焼成する行程を5回繰返して、炭素繊
維と無機繊維とで強化された炭素複合材を作成した。こ
の炭素繊維と無機繊維とで強化された炭素複合材にCV
D法でSi3 4 を被覆した。酸化試験として、これを
大気中で100℃で24時間乾燥した後に計量し、その
後大気中で500℃で100時間放置して計量したとこ
ろ、減量が認められなかった。 具体例4 フェノール樹脂(ユニチカ社製 商品名「ユニベックス
S」)1をアセトン1で溶解した混合樹脂液に、600
0フィラメントのアクリル系の炭素繊維(東レ社製)か
らなり経糸420本/m,緯糸420本/m,重さ33
0gr/m2 の織物を浸漬し、織物の重量とアセトンが
蒸発した状態での重量とが1:1になるように第1のプ
リプレッグを作った。この第1のプリプレッグを金型に
入れ、200トンのホットプレス機により150kg/cm
2 の圧力で圧縮した。次に、フェノール樹脂45%wt
と、硼素酸ガラス(SiO2 30%wt、B2 3 30%
wt、アルカリ金属酸化物40%wtからなる)10%wt
と、アセトン45%wtとを混合した樹脂液に、Si;5
0%,C;25%,O;20%,Ti;5%よりなる無
機繊維(宇部興産社製 商品名「チラノ繊維」)160
0フィラメントで織った経糸420本/m,緯糸420
本/m,重さ420gr/m2 の織物を浸漬し、織物と
樹脂の重量比が1:1になるように第2のプリプレッグ
を作り、この第2のプリブレッグに張力を加えて前記炭
素繊維織物製の第1のプリプレッグを完全に包み、金型
にセットし、150kg/cm2 の圧力かつ200℃の温度
で硬化反応させた。
【0027】このようにしてできたところの、炭素繊維
と無機繊維とで強化された樹脂複合材を真空中で130
0℃で焼成し、それをフェノール樹脂とアセトンとの混
合樹脂液に含浸し焼成する行程を5回繰返して、炭素繊
維と無機繊維とで強化された炭素複合材を作成した。こ
の炭素繊維と無機繊維とで強化された炭素複合材にCV
D法でSi3 4 を被覆した。酸化試験として、これを
大気中で100℃で24時間乾燥した後に計量し、その
後大気中で1000℃で100時間放置して計量したと
ころ、減量が認められなかった。
【0028】
【発明の効果】このように本発明によれば、酸化雰囲気
中において被覆が破壊されることなく、且つ機械的強度
の高い無機繊維で覆われているので、表面に外力が加わ
っても被覆が破壊されることのない、優れた複合材を提
供することができる。特に、複合材の表面および内部気
孔の表面に耐酸化性物質の層を形成することにより、安
定した耐酸化性を維持することができる。
【0029】また、無機繊維で強化された炭素複合材の
マトリックスに、硼素化合物を混入した炭素を使用する
ことにより、その耐酸化性をさらに向上することができ
る。さらに、SiC,TiC,B4 C,WC,TaC,
Al3 4 ,Al2 3 ,Si3 4 ,BN,Hf
2 ,AlN,ZrB2 、NbC、ZrCの内の少なく
とも1種からなる耐酸化性物質の層を、炭素複合材の表
面および/またはその内部気孔の表面に設けることによ
り、線膨張係数を一致させることができ、温度が上昇し
ても亀裂の発生を防止でき、強固な耐酸化性を保持する
ことができる。
【図面の簡単な説明】
【図1】本発明の一例の炭素繊維無機繊維強化炭素複合
材の断面図である。
【図2】本発明の他の例の炭素繊維無機繊維強化炭素複
合材の断面図である。
【符号の説明】
1 炭素繊維強化炭素複合材 2 無機繊維強化炭素複合材 3 耐酸化性物質の層

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 炭素繊維を強化材とするとともに炭素を
    マトリックスとした炭素繊維強化炭素複合材を芯とし、
    この芯の外側を、炭素を除く無機繊維を強化材とすると
    ともに炭素をマトリックスとした無機繊維強化炭素複合
    材で被覆したことを特徴とする炭素繊維無機繊維強化炭
    素複合材。
  2. 【請求項2】 炭素繊維を強化材とするとともに炭素を
    マトリックスとした炭素繊維強化炭素複合材を芯とし、
    この芯の外側を、炭素を除く無機繊維を強化材とすると
    ともに炭素と硼素化合物との混合物をマトリックスとし
    た無機繊維強化炭素複合材で被覆したことを特徴とする
    炭素繊維無機繊維強化炭素複合材。
  3. 【請求項3】 請求項1または2記載の炭素繊維無機繊
    維強化炭素複合材であって、この炭素複合材の表面およ
    び/またはその内部気孔の表面に、SiC,TiC,B
    4 C,WC,TaC,Al3 4 ,Al2 3 ,Si3
    4 ,BN,HfB2 ,AlN,ZrB2 ,NbC,Z
    rCの内の少なくとも1種からなる耐酸化性物質の層を
    形成したことを特徴とする。
JP4028715A 1991-03-06 1992-02-17 炭素繊維無機繊維強化炭素複合材 Pending JPH0597554A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4028715A JPH0597554A (ja) 1991-03-06 1992-02-17 炭素繊維無機繊維強化炭素複合材

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP3883591 1991-03-06
JP3-195603 1991-08-06
JP3-38835 1991-08-06
JP19560391 1991-08-06
JP4028715A JPH0597554A (ja) 1991-03-06 1992-02-17 炭素繊維無機繊維強化炭素複合材

Publications (1)

Publication Number Publication Date
JPH0597554A true JPH0597554A (ja) 1993-04-20

Family

ID=27286293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4028715A Pending JPH0597554A (ja) 1991-03-06 1992-02-17 炭素繊維無機繊維強化炭素複合材

Country Status (1)

Country Link
JP (1) JPH0597554A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003281A (ja) * 2000-06-20 2002-01-09 Natl Aerospace Lab 耐酸化型c/c基材
JP2017114731A (ja) * 2015-12-25 2017-06-29 株式会社サンケン 炭素繊維断熱タイル及びその製造方法
CN109095939A (zh) * 2018-09-18 2018-12-28 航天特种材料及工艺技术研究所 一种碳化钨界面层改性的碳化硅纤维增强碳化硅复合材料及其制备方法
CN114230347A (zh) * 2021-12-24 2022-03-25 华中科技大学 连续纤维增强ZrC/SiC复合零件的制备方法及产品
CN115231937A (zh) * 2022-07-04 2022-10-25 武汉科技大学 B4C表面原位生成SiC晶须的复合陶瓷粉体及制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003281A (ja) * 2000-06-20 2002-01-09 Natl Aerospace Lab 耐酸化型c/c基材
JP2017114731A (ja) * 2015-12-25 2017-06-29 株式会社サンケン 炭素繊維断熱タイル及びその製造方法
CN109095939A (zh) * 2018-09-18 2018-12-28 航天特种材料及工艺技术研究所 一种碳化钨界面层改性的碳化硅纤维增强碳化硅复合材料及其制备方法
CN114230347A (zh) * 2021-12-24 2022-03-25 华中科技大学 连续纤维增强ZrC/SiC复合零件的制备方法及产品
CN115231937A (zh) * 2022-07-04 2022-10-25 武汉科技大学 B4C表面原位生成SiC晶须的复合陶瓷粉体及制备方法

Similar Documents

Publication Publication Date Title
EP1004559B1 (en) Ceramic matrix composites
US6773528B2 (en) Process for producing fiber-reinforced-silicon carbide composites
US8043720B2 (en) Process of producing a ceramic matrix composite article and article formed thereby
US7374709B2 (en) Method of making carbon/ceramic matrix composites
US5707471A (en) Method for making ceramic matrix composites
CA2960342A1 (en) Ceramic matrix composites having monomodal pore size distribution and low fiber volume fraction
US6743393B1 (en) Method for producing ceramic matrix composites
JP4507138B2 (ja) セラミック系マトリックス複合材料の誘電特性の変更方法
JP3034084B2 (ja) 耐酸化性炭素繊維強化炭素複合材料及びその製造方法
EP0549224B1 (en) Ceramic matrix composites and method for making same
US5368940A (en) Carbon composite material reinforced with carbon fiber and inorganic fiber
JPH07172942A (ja) リキッドプロセスによって固化された繊維強化材からなる複合材料で製造される部材の製法
Kim et al. Nicalon-fibre-reinforced silicon-carbide composites via polymer solution infiltration and chemical vapour infiltration
JPH0597554A (ja) 炭素繊維無機繊維強化炭素複合材
US5290491A (en) Process for the manufacture of a thermostructural composite material having a carbon interphase between its reinforcement fibers and its matrix
CA3049204C (en) Melt infiltration with siga and/or siin alloys
EP1004558A2 (en) Coated ceramic fibers
JPH0517243A (ja) 繊維強化セラミツクスの製造方法
JPH06183863A (ja) 耐酸化性炭素繊維強化炭素複合材料の製造方法
JPH04325481A (ja) 炭素繊維強化炭素複合材の耐酸化処理法
JPH08253371A (ja) 炭素繊維強化炭素複合材料及びその製造方法
JPH03205358A (ja) 炭素繊維強化炭素複合材料の製造方法
JPS63256586A (ja) 耐酸化性炭素複合材の製造方法
JPH06287079A (ja) 繊維強化複合セラミックス
JP2001048665A (ja) セラミックス基繊維複合材料およびその製造方法