JPH0567963A - Integrated logic circuit - Google Patents

Integrated logic circuit

Info

Publication number
JPH0567963A
JPH0567963A JP3226888A JP22688891A JPH0567963A JP H0567963 A JPH0567963 A JP H0567963A JP 3226888 A JP3226888 A JP 3226888A JP 22688891 A JP22688891 A JP 22688891A JP H0567963 A JPH0567963 A JP H0567963A
Authority
JP
Japan
Prior art keywords
circuit
power supply
gate
logic
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3226888A
Other languages
Japanese (ja)
Inventor
Masaya Muranaka
雅也 村中
Shinichi Miyatake
伸一 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP3226888A priority Critical patent/JPH0567963A/en
Publication of JPH0567963A publication Critical patent/JPH0567963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)
  • Dram (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the area by providing a level conversion circuit in which a latch circuit operated at a high voltage is connected to a next stage of a logic section operated at a low voltage between a logic circuit operated at a low voltage and a logic circuit operated at a high voltage. CONSTITUTION:Each of level conversion circuits LC1, LC2 consists of a latch circuit in which input and output terminals of a composite logic gate G11 and a NOR gate G12 are in cross connection. The gate G11 and the gate G12 are driven by a high power supply voltage VccH similar to that at an output stage 1 and NAND gates G1, G2 are driven at a low power supply voltage VccL. When an output of the gates G1, G2 reaches an H level as 3.3V, feedback is applied in the inside of the latch circuit and a P-MOSFET at the Vcc side of the gate G12 is turned off by applying a voltage of 5V to the other input terminal. Thus, the flowing of a through-current is prevented and when output MOSFETs Q1, Q2 are turned off, the gate terminal is fixed to a ground potential and turned off completely.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路技術さ
らにはレベル変換回路の構成に適用して特に有効な技術
に関し、例えば2電源方式のMOS論理LSIの出力バ
ッファ回路に利用して有効な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit technology, and more particularly to a technology which is particularly effective when applied to the configuration of a level conversion circuit. Regarding technology.

【0002】[0002]

【従来の技術】近年、LSIの微細化が進むにつれて、
MOSLSIにおいては、電源電圧が5V一定のままで
は短チャネル効果やホットエレクトロンの発生、耐圧の
低下等、素子特性上種々の問題が生じる。そこで、LS
I内部に降圧回路を設け、外部から供給された+5Vの
ような電源電圧Vccで入出力バッファを駆動するとと
もに、上記降圧回路で降圧した3.3Vのような低電圧
でメモリアレイ部やデコーダ等の周辺回路を駆動するよ
うにしたLSIメモリが提案されている(特願平1−6
5840号)。
2. Description of the Related Art In recent years, as miniaturization of LSI has progressed,
In a MOS LSI, if the power supply voltage is kept constant at 5 V, various problems occur in device characteristics such as short channel effect, generation of hot electrons, and reduction of breakdown voltage. So LS
A step-down circuit is provided inside I to drive the input / output buffer with a power supply voltage Vcc such as +5 V supplied from the outside, and a memory array section, a decoder, etc., with a low voltage such as 3.3 V stepped down by the step-down circuit. An LSI memory in which peripheral circuits of the above are driven has been proposed (Japanese Patent Application No. 1-6).
5840).

【0003】[0003]

【発明が解決しようとする課題】上記先願発明において
は、素子の耐圧に合わせた電圧で各回路を駆動できると
いう利点がある。しかしながら、3.3Vのような電圧
で動作される論理ゲート回路で図6に示すような出力バ
ッファ回路を駆動させるようにすると、論理ゲート回路
G1,G2の出力ハイレベルは3.3Vであるため、次
段のインバータINV1,INV2のVcc側のP−M
OSFETが完全にオフしなくなり、貫通電流が流れて
消費電力が増加するという問題点がある。そこで、上述
の先願発明(特願平1−65840号)では、図6のイ
ンバータINV1,INV2の代わりに、図7に示すよ
うなラッチ型のレベル変換回路LC1,LC2を設ける
ようにしている。しかるに、上記レベル変換回路を設け
た出力バッファ回路にあっては、ゲート段数が多くなる
ため、信号遅延時間が大きくなって出力バッファの動作
速度が遅くなるという問題点があった。
The above-mentioned invention of the prior application has the advantage that each circuit can be driven with a voltage that matches the breakdown voltage of the device. However, when the output buffer circuit as shown in FIG. 6 is driven by the logic gate circuit operated at a voltage of 3.3V, the output high level of the logic gate circuits G1 and G2 is 3.3V. , PM on the Vcc side of the next-stage inverters INV1 and INV2
There is a problem that the OSFET does not turn off completely, a through current flows, and power consumption increases. Therefore, in the above-mentioned prior invention (Japanese Patent Application No. 1-65840), latch type level conversion circuits LC1 and LC2 as shown in FIG. 7 are provided instead of the inverters INV1 and INV2 shown in FIG. .. However, in the output buffer circuit provided with the level conversion circuit, the number of gate stages increases, so that there is a problem that the signal delay time increases and the operation speed of the output buffer decreases.

【0004】本発明の目的は、電源電圧の低い回路によ
って電源電圧の高い回路を動作させる場合に、占有面積
が小さく遅延時間も短いレベル変換回路を提供すること
にある。この発明の前記ならびにそのほかの目的と新規
な特徴については、本明細書の記述および添附図面から
明らかになるであろう。
An object of the present invention is to provide a level conversion circuit having a small occupied area and a short delay time when operating a circuit having a high power supply voltage by a circuit having a low power supply voltage. The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0005】[0005]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を説明すれば、下記のと
おりである。すなわち、低い電源電圧で動作する論理回
路と高い電源電圧で動作する論理回路との間に、低い電
源電圧で動作する論理部の次段に高い電源電圧で動作す
るラッチ回路部が接続されてなるレベル変換回路を設け
るようにしたものである。上記の場合、例えばラッチ型
レベル変換回路を構成する論理ゲートの一方を複合論理
ゲートとする。
The typical ones of the inventions disclosed in the present application will be outlined below. That is, a latch circuit section operating at a high power supply voltage is connected to the next stage of a logic section operating at a low power supply voltage between a logic circuit operating at a low power supply voltage and a logic circuit operating at a high power supply voltage. A level conversion circuit is provided. In the above case, for example, one of the logic gates forming the latch type level conversion circuit is a composite logic gate.

【0006】[0006]

【作用】上記した手段によれば、レベル変換回路を構成
する素子の数を減らすことができるとともにレイアウト
においてを同一ウェル内にレベル変換回路を構成するM
OSFETを形成することができるため占有面積を減少
させることができ、また論理段数を少なくすることがで
きるため遅延時間も短くなり、回路の動作速度を向上さ
せることができる。
According to the above-mentioned means, the number of elements forming the level converting circuit can be reduced and the level converting circuit can be formed in the same well in the layout.
Since the OSFET can be formed, the occupied area can be reduced, and since the number of logic stages can be reduced, the delay time can be shortened and the operating speed of the circuit can be improved.

【0007】[0007]

【実施例】図1には、本発明を2電源方式の論理LSI
におけるレベル変換回路に適用した場合の一実施例が示
されている。この実施例の出力バッファの最終出力段1
は、+5Vのような高い電源電圧端子VccHとGND
(接地点)との間に2つのNチャネル型MOSFET
Q1,Q2が直列接続されてなり、2つのMOSFET
Q1,Q2の接続ノードn0が出力端子OUTに接続さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a logic LSI of a dual power supply system according to the present invention.
One example is shown when applied to the level conversion circuit in FIG. Final output stage 1 of the output buffer of this embodiment
Is a high power voltage terminal VccH such as + 5V and GND
Two N-channel MOSFETs between (ground point)
Two MOSFETs with Q1 and Q2 connected in series
Q1, Q2 of the connection node n 0 is connected to the output terminal OUT.

【0008】この実施例では、上記出力MOSFET
Q1,Q2のゲート制御信号を形成する論理部は、アウ
トイネーブル信号OEが一方の入力端子に供給され他方
の入力端子に出力データ信号D,D’が供給された出力
状態制御用NANDゲートG1,G2と、このNAND
ゲートG1,G2と上記出力MOSFETQ1,Q2の
ゲート端子との間に挿入されたレベル変換回路LC1,
LC2とにより構成されている。
In this embodiment, the output MOSFET described above is used.
The logic unit that forms the gate control signals of Q1 and Q2 includes an output state control NAND gate G1 in which the output enable signal OE is supplied to one input terminal and output data signals D and D ′ are supplied to the other input terminal. G2 and this NAND
A level conversion circuit LC1, inserted between the gates G1 and G2 and the gate terminals of the output MOSFETs Q1 and Q2.
And LC2.

【0009】上記レベル変換回路LC1,LC2は、そ
れぞれ複合論理ゲートG11とNORゲートG12の入
出力端子が交差結合されたラッチ回路により構成されて
いる。そして、これらの複合論理ゲートG11とNOR
ゲートG12は、出力段1と同様高い電源電圧VccH
で駆動され、上記NANDゲートG1,G2は低い電源
電圧VccLで駆動されるようにされている。これによ
って、NANDゲートG1,G2の出力が3.3Vのよ
うなハイレベルになったとき、ラッチ回路内部で帰還が
かかってNORゲートG12の他方の入力端子に5Vの
電圧が印加されてNORゲートG12のVcc側のP−
MOSFETが完全にオフされ、貫通電流が流れるのが
防止されると共に、出力MOSFET Q1,Q2もオ
フの際にゲート端子が接地電位に固定されて完全にオフ
されるようになる。
The level conversion circuits LC1 and LC2 are each composed of a latch circuit in which the input / output terminals of the composite logic gate G11 and the NOR gate G12 are cross-coupled. Then, these composite logic gate G11 and NOR
The gate G12 has a high power supply voltage VccH as in the output stage 1.
The NAND gates G1 and G2 are driven by a low power supply voltage VccL. As a result, when the outputs of the NAND gates G1 and G2 become a high level such as 3.3V, feedback is applied inside the latch circuit and a voltage of 5V is applied to the other input terminal of the NOR gate G12 and the NOR gate G12 is applied. P12 on the Vcc side of G12
The MOSFET is completely turned off, a through current is prevented from flowing, and when the output MOSFETs Q1 and Q2 are also turned off, the gate terminals are fixed to the ground potential and completely turned off.

【0010】また、特に制限されないがこの実施例で
は、出力端子OUTに負の電圧が印加されたとき出力M
OSFET Q1がオン状態にされて電源電圧Vccか
ら出力端子OUTに向かって大きな電流が流れるのを防
止するため、出力ノードn0と出力MOSFET Q1
のゲート端子との間に、カット用MOSFET Qcが
設けられている。
Although not particularly limited, in this embodiment, when a negative voltage is applied to the output terminal OUT, the output M
In order to prevent a large current from flowing from the power supply voltage Vcc to the output terminal OUT by turning on the OSFET Q1, the output node n 0 and the output MOSFET Q1 are prevented.
A cutting MOSFET Qc is provided between the gate terminal and the gate terminal.

【0011】図2には、上記レベル変換回路LC1,L
C2を構成する複合論理ゲートG11の具体的回路例が
示されている。すなわち、この複合論理ゲートG11
は、通常のNANDゲートを構成する並列形態のP−M
OSFET Q11,Q12と直列形態のN−MOSF
ET Q13,Q14とともに、上記P−MOSFET
Q11,Q12の共通ドレイン端子と出力ノードn1
との間に直列接続されたP−MOSFET Q15と、
出力ノードn1と接地点との間に上記N−MOSFET
Q13,Q14と並列に接続されたN−MOSFET
Q16とを備えてなる。この複合論理ゲートG11に
おいて、I1,I2はNAND入力、I3はNOR入力
である。
FIG. 2 shows the above level conversion circuits LC1 and L.
A specific circuit example of the composite logic gate G11 forming C2 is shown. That is, this composite logic gate G11
Is a parallel type P-M that constitutes a normal NAND gate.
N-MOSF in series with OSFETs Q11 and Q12
ET Q13 and Q14 together with the P-MOSFET
Common drain terminal of Q11 and Q12 and output node n 1
A P-MOSFET Q15 connected in series between
The N-MOSFET is provided between the output node n 1 and the ground point.
N-MOSFET connected in parallel with Q13 and Q14
And Q16. In this composite logic gate G11, I1 and I2 are NAND inputs and I3 is a NOR input.

【0012】上記複合論理ゲートG11を使用すること
により、図1のレベル変換回路LC1,LC2は、図7
に示されている回路に比べてインバータINV3がない
分だけ信号の遅延時間が短くなる。すなわち、図7の回
路では、論理ゲートG1,G2から出力MOSFET
Q1,Q2までのゲート段数が3段であるのに対し、図
7の回路では、論理ゲートG1,G2から出力MOSF
ET Q1,Q2までのゲート段数が2段であるため、
動作速度が速くなる。しかも、図7のレベル変換回路L
C1(LC2)は、インバータINV3とNORゲート
を構成するMOSFETを別々のウェル領域内に形成す
るため占有面積が大きくなるのに対し、図1のレベル変
換回路LC1(LC2)は、複合論理ゲートG11を構
成する同一導電型のMOSFETをすべて同一のウェル
領域内に形成できるため、回路の占有面積を低減させる
ことができる。
By using the composite logic gate G11, the level conversion circuits LC1 and LC2 shown in FIG.
As compared with the circuit shown in FIG. 1, the signal delay time is shortened by the amount of the inverter INV3 not provided. That is, in the circuit of FIG. 7, the logic gates G1 and G2 output MOSFETs.
The number of gate stages up to Q1 and Q2 is three, whereas in the circuit of FIG. 7, the logic gates G1 and G2 are connected to the output MOSF.
Since the number of gate stages up to ET Q1 and Q2 is 2,
The operation speed becomes faster. Moreover, the level conversion circuit L of FIG.
The C1 (LC2) occupies a large area because the inverter INV3 and the MOSFET forming the NOR gate are formed in separate well regions, whereas the level conversion circuit LC1 (LC2) in FIG. 1 has a complex logic gate G11. Since all the MOSFETs of the same conductivity type constituting the above can be formed in the same well region, the area occupied by the circuit can be reduced.

【0013】図3〜図5には、レベル変換回路に論理機
能を持たせた本発明の他の実施例が示されている。上記
実施例では、出力バッファ回路に好適なレベル変換回路
について説明したが、図3〜図5の論理機能付きレベル
変換回路は、異なる電源電圧で動作する論理回路間で信
号を伝達する場合に利用して好適である。このうち、図
3の回路は、ラッチ回路の一方のゲート回路G11を3
入力NORゲートとしたもので、論理ゲートG11,G
12の電源電圧として高電源電圧VccHを供給し、前
段の論理ゲートG1の電源電圧として低電源電圧Vcc
Lを供給するようにして、論理機能として入力X,Yに
対し論理和(X+Y)をとりかつ出力ハイレベルとして
VccHレベルの信号Zを出力するように構成されてい
る。
FIGS. 3 to 5 show another embodiment of the present invention in which the level conversion circuit has a logical function. Although the level conversion circuit suitable for the output buffer circuit has been described in the above embodiment, the level conversion circuit with logical functions shown in FIGS. 3 to 5 is used when signals are transmitted between logic circuits operating at different power supply voltages. Is suitable. Of these, in the circuit of FIG. 3, one gate circuit G11 of the latch circuit is
It is an input NOR gate, and has logic gates G11 and G.
The high power supply voltage VccH is supplied as the power supply voltage of 12 and the low power supply voltage Vcc is supplied as the power supply voltage of the preceding logic gate G1.
By supplying L, the logical function is to take the logical sum (X + Y) with respect to the inputs X and Y, and the signal Z of VccH level is output as the output high level.

【0014】一方、図4の回路は、RSフリップフロッ
プに適用したもので、低電源電圧VccLで駆動される
NORゲートG21とG22からなるラッチ回路の次段
に高電源電圧VccHで駆動されるNORゲートG3
1,G32からなるラッチ回路を接続して、0−Vcc
Lレベルの入力信号を0−VccHレベルの信号Qを変
換して出力するように構成されている。
On the other hand, the circuit of FIG. 4 is applied to an RS flip-flop, and NOR driven by a high power supply voltage VccH is provided next to a latch circuit composed of NOR gates G21 and G22 driven by a low power supply voltage VccL. Gate G3
0-Vcc by connecting the latch circuit consisting of 1, G32.
The input signal of L level is converted into the signal Q of 0-VccH level and output.

【0015】また、図5の回路は、同期型フリップフロ
ップに適用したもので、低電源電圧VccLで駆動され
る制御用NORゲートG21とG22の次段に高電源電
圧VccHで駆動されるNORゲートG31,G32か
らなるラッチ回路を接続して、0−VccLレベルの入
力信号を0−VccHレベルの信号Qに変換して出力す
るように構成されている。なお、上記実施例では、電源
電圧が正である場合のレベル変換回路について説明した
が、この発明はそれに限定されず、電源電圧が負である
場合にも同様に適用することができる。
The circuit of FIG. 5 is applied to a synchronous flip-flop, and NOR gates driven by a high power supply voltage VccH are provided next to the control NOR gates G21 and G22 driven by a low power supply voltage VccL. A latch circuit composed of G31 and G32 is connected to convert an input signal of 0-VccL level to a signal Q of 0-VccH level and output the signal Q. In addition, although the level conversion circuit in the case where the power supply voltage is positive has been described in the above embodiments, the present invention is not limited to this, and can be similarly applied to the case where the power supply voltage is negative.

【0016】以上説明したように、上記実施例は、低い
電源電圧で動作する論理回路と高い電源電圧で動作する
論理回路との間に、低い電源電圧で動作する論理部の次
段に高い電源電圧で動作するラッチ回路部が接続されて
なるレベル変換回路を接続してなるので、レベル変換回
路の構成が簡略化され、素子の数を減らすことができる
とともにレイアウトにおいて同一ウェル内にレベル変換
回路を構成するMOSFETを形成することができるた
め占有面積を減少させることができ、また論理段数を少
なくすることができるため遅延時間も短くなり、回路の
動作速度を向上させることができるという効果がある。
As described above, in the above embodiment, the high power supply is provided in the next stage of the logic unit operating at the low power supply voltage between the logic circuit operating at the low power supply voltage and the logic circuit operating at the high power supply voltage. Since the level conversion circuit is formed by connecting the latch circuit section that operates with voltage, the configuration of the level conversion circuit is simplified, the number of elements can be reduced, and the level conversion circuit can be arranged in the same well in the layout. Since it is possible to form the MOSFET that constitutes the circuit, the occupied area can be reduced, and the number of logic stages can be reduced, so that the delay time can be shortened and the operation speed of the circuit can be improved. ..

【0017】以上本発明者によってなされた発明を実施
例に基づき具体的に説明したが、本発明は上記実施例に
限定されるものではなく、その要旨を逸脱しない範囲で
種々変更可能であることはいうまでもない。例えば、上
記実施例では低い電源電圧(接地電位)を基準にしてレ
ベル変換を行なっているが、高い電源電圧を基準にして
レベル変換を行なうように回路を構成することも可能で
ある。以上の説明では主として本発明者によってなされ
た発明をその背景となった利用分野である2電源で動作
する論理集積回路に適用した場合について説明したが、
この発明はそれに限定されるものでなく、3電源その他
複数電源の論理集積回路一般に利用することができる。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, although the level conversion is performed with reference to the low power supply voltage (ground potential) in the above embodiment, the circuit can be configured to perform the level conversion with reference to the high power supply voltage. In the above description, the case where the invention made by the present inventor is mainly applied to a logic integrated circuit which operates with two power sources, which is the field of application of the background, has been described.
The present invention is not limited to this, and can be applied to a logic integrated circuit having three power supplies and a plurality of power supplies in general.

【0018】[0018]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば下記
のとおりである。すなわち、電源電圧の低い回路によっ
て電源電圧の高い回路を動作させる場合に、占有面積が
小さく遅延時間も短いレベル変換回路を実現することが
できる。
The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows. That is, when operating a circuit having a high power supply voltage with a circuit having a low power supply voltage, a level conversion circuit having a small occupied area and a short delay time can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るレベル変換回路を備えた出力バッ
ファ回路の一実施例を示す回路構成図である。
FIG. 1 is a circuit configuration diagram showing an embodiment of an output buffer circuit including a level conversion circuit according to the present invention.

【図2】図1のレベル変換回路を構成する複合論理ゲー
トの一例を示す回路図である。
FIG. 2 is a circuit diagram showing an example of a composite logic gate that constitutes the level conversion circuit of FIG.

【図3】本発明に係るレベル変換回路の他の実施例を示
す回路構成図である。
FIG. 3 is a circuit configuration diagram showing another embodiment of the level conversion circuit according to the present invention.

【図4】本発明に係るレベル変換回路の他の実施例を示
す回路図である。
FIG. 4 is a circuit diagram showing another embodiment of the level conversion circuit according to the present invention.

【図5】本発明に係るレベル変換回路の他の実施例を示
す回路図である。
FIG. 5 is a circuit diagram showing another embodiment of the level conversion circuit according to the present invention.

【図6】従来の出力バッファ回路の一例を示す回路構成
図である。
FIG. 6 is a circuit configuration diagram showing an example of a conventional output buffer circuit.

【図7】従来のレベル変換回路を備えた出力バッファ回
路の一実施例を示す回路構成図である。
FIG. 7 is a circuit configuration diagram showing an embodiment of an output buffer circuit including a conventional level conversion circuit.

【符号の説明】[Explanation of symbols]

1 出力段 LC1,LC2 レベル変換回路 G11,G12 複合論理ゲート VccH 高い電源電圧 VccL 低い電源電圧 G1,G2,G21,G22 論理部を構成する論理ゲ
ート G11,G12,G31,G32 ラッチ回路部を構成
する論理ゲート
1 output stage LC1, LC2 level conversion circuit G11, G12 composite logic gate VccH high power supply voltage VccL low power supply voltage G1, G2, G21, G22 logic gates constituting a logic section G11, G12, G31, G32 constituting a latch circuit section Logic gate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7342−4M H01L 27/08 321 K (72)発明者 宮武 伸一 東京都小平市上水本町5丁目20番1号 日 立超エル・エス・アイ・エンジニアリング 株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location 7342-4M H01L 27/08 321 K (72) Inventor Shinichi Miyatake 5, Kamimizumoto-cho, Kodaira-shi, Tokyo No. 20-1 Hitate Super LSI Engineering Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 低い電源電圧で動作する論理回路と高い
電源電圧で動作する論理回路との間に、低い電源電圧で
動作する論理部の次段に高い電源電圧で動作するラッチ
回路部が接続されてなるレベル変換回路が設けられてい
ることを特徴とする論理集積回路。
1. A latch circuit section operating at a high power supply voltage is connected to the next stage of a logic section operating at a low power supply voltage between a logic circuit operating at a low power supply voltage and a logic circuit operating at a high power supply voltage. A logic integrated circuit, characterized in that a level conversion circuit is provided.
【請求項2】 上記ラッチ回路部を構成する一方の論理
ゲートは、複合論理回路で構成されていることを特徴と
する請求項1記載の論理集積回路。
2. The logic integrated circuit according to claim 1, wherein one of the logic gates forming the latch circuit section is formed of a composite logic circuit.
【請求項3】 上記高い電源電圧で動作する論理回路
は、電源電圧端子間に直列接続された一対のMOSFE
Tからなる出力回路であることを特徴とする請求項1ま
たは2記載の論理集積回路。
3. The logic circuit operating at a high power supply voltage comprises a pair of MOSFEs connected in series between power supply voltage terminals.
3. The logic integrated circuit according to claim 1, which is an output circuit made of T.
JP3226888A 1991-09-06 1991-09-06 Integrated logic circuit Pending JPH0567963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3226888A JPH0567963A (en) 1991-09-06 1991-09-06 Integrated logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3226888A JPH0567963A (en) 1991-09-06 1991-09-06 Integrated logic circuit

Publications (1)

Publication Number Publication Date
JPH0567963A true JPH0567963A (en) 1993-03-19

Family

ID=16852158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3226888A Pending JPH0567963A (en) 1991-09-06 1991-09-06 Integrated logic circuit

Country Status (1)

Country Link
JP (1) JPH0567963A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343034A (en) * 1993-06-01 1994-12-13 Nippon Motorola Ltd Driver device using complementary fet
JPH07177019A (en) * 1993-04-15 1995-07-14 Micron Semiconductor Inc Improved type inversion output driving circuit that reduces electron injection into substrate
US5517132A (en) * 1994-01-19 1996-05-14 Matsushita Electric Industrial Co., Ltd. Logic synthesis method and semiconductor integrated circuit
EP0744704A2 (en) * 1995-05-26 1996-11-27 Matsushita Electric Industrial Co., Ltd. Logic synthesis method, semiconductor integrated circuit and arithmetic circuit
JPH09121151A (en) * 1995-08-18 1997-05-06 Samsung Electron Co Ltd Data output buffer
JP2001144603A (en) * 1999-11-18 2001-05-25 Oki Micro Design Co Ltd Level shifter circuit and data output circuit including it
JP2003188278A (en) * 2002-11-01 2003-07-04 Sharp Corp Semiconductor device
KR100469762B1 (en) * 2002-07-16 2005-02-02 매그나칩 반도체 유한회사 C-gate circuit
DE10047451B4 (en) * 1999-09-28 2008-01-03 Samsung Electronics Co., Ltd., Suwon Data output circuit for a semiconductor device
US9941881B1 (en) 2017-03-23 2018-04-10 Qualcomm Incorporated Apparatus and method for latching data including AND-NOR or OR-NAND gate and feedback paths
CN112383299A (en) * 2020-10-26 2021-02-19 中车株洲电力机车研究所有限公司 Signal logic conversion circuit

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177019A (en) * 1993-04-15 1995-07-14 Micron Semiconductor Inc Improved type inversion output driving circuit that reduces electron injection into substrate
JPH06343034A (en) * 1993-06-01 1994-12-13 Nippon Motorola Ltd Driver device using complementary fet
USRE38152E1 (en) 1994-01-19 2003-06-24 Matsushita Electric Industrial Co., Ltd. Logic synthesis method and semiconductor integrated circuit
US5517132A (en) * 1994-01-19 1996-05-14 Matsushita Electric Industrial Co., Ltd. Logic synthesis method and semiconductor integrated circuit
USRE37475E1 (en) 1994-01-19 2001-12-18 Matsushita Electric Industrial Co., Ltd. Logic synthesis method and semiconductor integrated circuit
EP0863471A3 (en) * 1994-01-19 1999-02-17 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit with two supply voltages
EP0862127A2 (en) * 1994-01-19 1998-09-02 Matsushita Electric Industrial Co., Ltd. Method of designing semiconductor integrated circuit
EP0863472A2 (en) * 1994-01-19 1998-09-09 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit with two supply voltage levels
EP0863471A2 (en) * 1994-01-19 1998-09-09 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit with two supply voltages
EP0863472A3 (en) * 1994-01-19 1999-02-10 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit with two supply voltage levels
EP0862127A3 (en) * 1994-01-19 1999-02-17 Matsushita Electric Industrial Co., Ltd. Method of designing semiconductor integrated circuit
EP0955594A2 (en) * 1995-05-26 1999-11-10 Matsushita Electric Industrial Co., Ltd. Arithmetic circuit with two different voltage levels
US5926396A (en) * 1995-05-26 1999-07-20 Matsushita Electric Industrial Co., Ltd. Logic synthesis method, semiconductor integrated circuit and arithmetic circuit
EP0744704A2 (en) * 1995-05-26 1996-11-27 Matsushita Electric Industrial Co., Ltd. Logic synthesis method, semiconductor integrated circuit and arithmetic circuit
EP0744704A3 (en) * 1995-05-26 1998-04-08 Matsushita Electric Industrial Co., Ltd. Logic synthesis method, semiconductor integrated circuit and arithmetic circuit
US5978573A (en) * 1995-05-26 1999-11-02 Matsushita Electric Industrial Co.Ltd. Logic synthesis method, semiconductor integrated circuit and arithmetic circuit
EP0955594A3 (en) * 1995-05-26 2002-04-10 Matsushita Electric Industrial Co., Ltd. Arithmetic circuit with two different voltage levels
EP1335309A1 (en) * 1995-05-26 2003-08-13 Matsushita Electric Industrial Co., Ltd. Method of designing a semiconductor integrated circuit
JPH09121151A (en) * 1995-08-18 1997-05-06 Samsung Electron Co Ltd Data output buffer
DE10047451B4 (en) * 1999-09-28 2008-01-03 Samsung Electronics Co., Ltd., Suwon Data output circuit for a semiconductor device
JP2001144603A (en) * 1999-11-18 2001-05-25 Oki Micro Design Co Ltd Level shifter circuit and data output circuit including it
KR100469762B1 (en) * 2002-07-16 2005-02-02 매그나칩 반도체 유한회사 C-gate circuit
JP2003188278A (en) * 2002-11-01 2003-07-04 Sharp Corp Semiconductor device
US9941881B1 (en) 2017-03-23 2018-04-10 Qualcomm Incorporated Apparatus and method for latching data including AND-NOR or OR-NAND gate and feedback paths
CN112383299B (en) * 2020-10-26 2024-04-02 中车株洲电力机车研究所有限公司 Signal logic conversion circuit
CN112383299A (en) * 2020-10-26 2021-02-19 中车株洲电力机车研究所有限公司 Signal logic conversion circuit

Similar Documents

Publication Publication Date Title
JPH0567963A (en) Integrated logic circuit
JPH05144270A (en) Decoder circuit
JP2001244804A (en) Level converter circuit
JP3464425B2 (en) Logic interface circuit and semiconductor memory device
JPH0261821B2 (en)
US7317334B2 (en) Voltage translator circuit and semiconductor memory device
JPH11163713A (en) Semiconductor integrated circuit device
US5003203A (en) Adaptive reference voltage generation circuit for PLA sense amplifiers
JP3224712B2 (en) Logic & level conversion circuit and semiconductor device
JPH1127137A (en) Semiconductor integrated circuit
JPS6218993B2 (en)
JPH0353715A (en) Output buffer circuit
JPH10190435A (en) Semiconductor output circuit, cmos output circuit, terminal potential detection circuit and semiconductor device
JP3000950B2 (en) Word line drive circuit for semiconductor memory device
JPS62208715A (en) Semiconductor integrated circuit
JPS6075126A (en) Multi-input logical circuit
KR100233271B1 (en) Method of decreasing power consumption in decoder circuit
JPS6325438B2 (en)
JPH0398314A (en) Level conversion circuit
JPS62231521A (en) Semiconductor integrated circuit
JPH0777344B2 (en) Output buffer circuit
JP2752778B2 (en) Semiconductor integrated circuit
JPH0567961A (en) Output buffer circuit
JPH1064265A (en) Output circuit of semiconductor device
JPH0537340A (en) Output circuit