JPH0555582A - 薄膜状半導体素子およびその作製方法 - Google Patents

薄膜状半導体素子およびその作製方法

Info

Publication number
JPH0555582A
JPH0555582A JP3238714A JP23871491A JPH0555582A JP H0555582 A JPH0555582 A JP H0555582A JP 3238714 A JP3238714 A JP 3238714A JP 23871491 A JP23871491 A JP 23871491A JP H0555582 A JPH0555582 A JP H0555582A
Authority
JP
Japan
Prior art keywords
film
silicon nitride
tft
silicon
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3238714A
Other languages
English (en)
Other versions
JP3483581B2 (ja
Inventor
Shunpei Yamazaki
舜平 山崎
Yasuhiko Takemura
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP23871491A priority Critical patent/JP3483581B2/ja
Priority to KR1019920015127A priority patent/KR960000231B1/ko
Publication of JPH0555582A publication Critical patent/JPH0555582A/ja
Priority to US08/202,680 priority patent/US6849872B1/en
Priority to JP2000182365A priority patent/JP3352998B2/ja
Application granted granted Critical
Publication of JP3483581B2 publication Critical patent/JP3483581B2/ja
Priority to US11/041,704 priority patent/US7855106B2/en
Priority to US12/971,966 priority patent/US20110086472A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Dram (AREA)

Abstract

(57)【要約】 【構成】 絶縁性基板状に形成されたTFT等の薄膜状
半導体素子において、該半導体素子の下に緩衝用絶縁膜
を介して窒化珪素、酸化アルミニウム、酸化タンタル等
からなる第1のブロッキング膜を形成し、さらに、TF
Tの上に第2のブロッキング膜を形成し,前記第1およ
び第2のブロッキング膜でTFTを覆うことによって基
板やその他外部からの可動イオンの侵入を阻止すること
を特徴とする薄膜状半導体素子およびその作製方法。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、信頼性および量産性に
優れ、歩留りの高い、薄膜トランジスタ等の薄膜状半導
体装置およびその製造方法に関する。本発明は、その応
用分野として、例えば、液晶ディスプレーや薄膜イメー
ジセンサー等の駆動回路あるいは3次元集積回路等を構
成せんとするものである。
【0002】
【従来の技術】従来、半導体集積回路は、シリコン等の
半導体基板上に形成されたモノリシック型が中心であっ
たが、近年、ガラスやサファイヤ等の絶縁基板上に形成
することが試みられている。その理由としては、基板と
配線間の寄生容量が低下して動作速度が向上すること
と、特に石英その等のガラス材料は、シリコンウェファ
ーのような大きさの制限がなく、安価であること、素子
間の分離が容易で、特にCMOSのモノリシック集積回
路で問題となるようなラッチアップ現象がおこらないこ
と等のためである。また、以上のような理由とは別に液
晶ディスプレーや密着型イメージセンサーにおいては、
半導体素子と液晶素子あるいは光検出素子とを一体化し
て構成する必要から、透明な基板上に薄膜トラジスター
(TFT)等を形成する必要がある。
【0003】このような理由から絶縁性基板上に薄膜状
の半導体素子が形成されるようになった。従来の薄膜状
半導体素子の例として、TFTを図5に示す。図に示さ
れるように、絶縁性基板501上に、パッシベーション
膜として、酸化珪素等の被膜503が形成され、その上
にTFTが他のTFTとは独立して形成される。TFT
は、モノリシック集積回路のMOSFETと同様に、ソ
ース(ドレイン)領域507とドレイン(ソース)領域
509、それらに挟まれたチャネル形成領域(単にチャ
ネル領域ともいう)508、ゲイト絶縁膜504、ゲイ
ト電極510、そして、ソース(ドレイン)電極511
とドレイン(ソース)電極512を有している。また、
多層配線が可能なようにPSG等の層間絶縁物506が
設けられる。
【0004】図5の例は、順コプラナー型と呼ばれるも
のであるが、TFTでは、ゲイト電極とチャネル領域の
配置の様子によって、これ以外に逆コプラナー型、順ス
タガー型、逆スタガー型とよばれる形態があるが、その
詳細については他の文献に任せるとして、ここではこれ
以上、言及しない。
【0005】
【発明が解決しようとする課題】モノリシック集積回路
においても、ナトリウムやカリウムのようなアルカリイ
オン、あるいは鉄、銅、ニッケル等の遷移金属イオンに
よる汚染は深刻な問題であり、これらのイオンの侵入を
食い止めるために、非常な注意が払われてきた。TFT
でも、それらのイオンの問題は同様に重大なもので、極
力、汚染がないように生産工程の清浄化には注意が向け
られている。また、素子にもこれらの汚染が及ばないよ
うに対策が講じられている。
【0006】薄膜状半導体素子がモノリシック集積回路
と異なることは、基板中の汚染イオンの濃度が比較的高
いということである。すなわち、モノリシック集積回路
に使用される単結晶シリコンは、長年の技術の蓄積によ
って、これらの有害な汚染元素を排除するようにして生
産されており、現在市販されているものでは、これらの
汚染元素は1010cm-3以下である。
【0007】しかしながら、一般に薄膜状半導体素子用
の絶縁性基板の汚染元素濃度は低くない。もちろん、ス
ピネル基板やサファイヤ基板のような単結晶基板では、
上記汚染源となる異元素の濃度を低減することが理論的
には可能であるが、採算面から現実的ではない。また、
石英基板は、高純度シランガスと酸素を原料として、気
相反応で製造すれば、理想的には異元素の侵入を食い止
めることが可能であるが、構造がアモルファスであるの
で、いったん異元素が取り込まれた場合にこれを外部に
吐き出すことが困難である。また、液晶ディスプレーに
使用される基板は特にコストの問題が優先するため、価
格の低いものを用いる必要があり、そのようなものでは
製造・加工を容易にするため、最初から、各種の異元素
を含有している。これらの異元素自体が半導体素子にと
って好ましくないものもあるし、これらの異元素を添加
する過程で、外部から混入し、あるいは添加材料に不純
物として含まれる場合がある。
【0008】例えば、TNガラスは安価なガラス基板で
耐熱性がよく、熱膨張率等がシリコンに近いため、液晶
ディスプレー用の基板として好ましいものであるが、リ
チウムを5%程度含有している。このリチウムの一部は
イオン化し、可動イオンとして半導体素子に侵入し、素
子の劣化をもたらす。また、このリチウムは99%以上
の高純度のものを製造することが難しく、通常、0.7
%程度のナトリウムが含まれている。ナトリウムのイオ
ン化率は10%程度で、極めて大きく、このナトリウム
イオンは素子の特性に極めて深刻な影響をもたらす。
【0009】従来の薄膜状半導体素子では、図5に示す
ように、この可動イオンの侵入に対しては、酸化珪素等
をパッシベーション膜として使用し、また、層間絶縁物
をPSGやBPSGとすることによってこれらの可動イ
オンをゲッタリングすることによって対処されてきた。
しかしながら、これらの方法では汚染を十分に防ぐこと
は困難であった。本発明は、これらの汚染元素・イオン
を侵入によって素子が劣化することを抑制することを目
的とする。
【0010】
【問題を解決する方法】本発明では、以上のような汚染
を抑制するために薄膜半導体素子の下部と上部にそれぞ
れ窒化珪素や酸化アルミニウム、酸化タンタル等の可動
イオンに対してブロッキング作用を有する膜(ブロッキ
ング膜)を形成したことを特徴とする。
【0011】本発明の典型的な例は図1に示される。図
1では本発明を用いたTFTが示されている。すなわ
ち、絶縁性基板101上に第1のブロッキング膜102
として第1の窒化珪素膜が形成されている。第1の窒化
珪素皮膜は基板からの汚染を防ぐ効果を有する。そし
て、第1の窒化珪素膜上に、例えば酸化珪素のようなシ
リコン材料と密着性のよい皮膜103を形成する。この
皮膜103を形成せずして、直接、半導体皮膜を第1の
窒化珪素上に形成し、TFTを作製すると、窒化珪素と
半導体材料の界面に生ずるトラップ準位によってチャネ
ル領域が導通化し、TFTが動作しなくなる。したがっ
て、このような緩衝体を設けることは重要である。
【0012】皮膜103上にはTFTが形成される。T
FTは、ソース(ドレイン)領域107とドレイン(ソ
ース)領域109、それらに挟まれたチャネル領域10
8、ゲイト絶縁膜104、ゲイト電極110を有する。
TFTのソース、ドレイン、チャネル各領域は単結晶も
しくは多結晶、あるいはアモルファスの半導体材料で形
成される。半導体材料としては、例えば、シリコン、ゲ
ルマニウム、炭化珪素、およびこれらの合金が使用され
うる。
【0013】そして、このTFTを覆って、第2のブロ
ッキング膜105として第2の窒化珪素皮膜が形成され
る。ここで、第2の窒化珪素皮膜が、TFTの作製の後
で、かつ、ソースおよび/またはドレインに電極が形成
される前に形成されることが本発明の特徴とするところ
である。従来の技術では、電極形成後にファイナルパッ
シベーション膜としての窒化珪素膜が形成されたが、本
発明はそのような意味で形成される窒化珪素膜とは目的
が異なる。すなわち、本発明における第2の窒化珪素膜
は、第1の窒化珪素膜とともにTFTを包み込んでしま
うために形成されるのであり、TFT形成後の電極形成
の工程での汚染をも防ぐことを意図するものである。し
たがって、本発明によってTFTとそれに付随する電極
や配線を形成した後、従来のようにファイナルパッシベ
ーション膜として窒化珪素膜を形成してもよい。
【0014】さて、第2の窒化珪素膜形成後に、層間背
絶縁材料、例えばPSG等によって、層間絶縁膜106
を形成し、ソース(ドレイン)電極111とドレイン
(ソース)電極112を形成する。
【0015】図1の例では、しかしながら、ゲイト絶縁
膜が遠方に延びており、その端部からTFT内部に侵入
する可能性がある。これを改良したものが、図2に示さ
れる例で、ゲイト絶縁膜はTFT上にしかないため、図
1のような問題はない。しかしながら、この場合はチャ
ネル領域に隣接した部分のソース領域およびドレイン領
域が窒化珪素膜に接触しているため、この部分の窒化珪
素がゲイト電圧によって分極し、あるいは電子をトラッ
プして、TFTの動作を妨げることがある。
【0016】その問題を克服した例が図3に示される。
ここでは、チャネル領域に隣接したソース領域およびド
レイン領域は窒化珪素膜に隣接していない。したがっ
て、窒化珪素の分極や電子トラップという困難は解決さ
れる。しかしながら、ソースおよびドレイン領域の形成
にあたって、ゲイト電極をマスクとするセルフアライン
プロセスを採用する場合には、この例では図1の例と同
様に、ゲイト絶縁膜を通して、アクセプターあるいはド
ナー元素を注入しなければならず、そのためイオン注入
法を採用するのであれば、イオンの加速エネルギーを高
める必要がある。その際、高速イオンが注入される結
果、その2次散乱によってソースおよびドレイン領域が
広がることがある。
【0017】図2において、201は絶縁性基板、20
2は第1の窒化珪素膜、203は酸化珪素等の緩衝用絶
縁膜、204はゲイト絶縁膜、205は第2の窒化珪素
膜、206は層間絶縁膜、207はソース(ドレイン)
領域、208はチャネル領域、209はドレイン(ソー
ス)領域、210はゲイト電極、211はソース(ドレ
イン)電極、212はドレイン(ソース)電極である。
また、図3において、301は絶縁性基板、302は第
1の窒化珪素膜、303は酸化珪素等の緩衝用絶縁膜、
304はゲイト絶縁膜、305は第2の窒化珪素膜、3
06は層間絶縁膜、307はソース(ドレイン)領域、
308はチャネル領域、309はドレイン(ソース)領
域、310はゲイト電極、311はソース(ドレイン)
電極、312はドレイン(ソース)電極である。
【0018】本発明において、ブロッキング膜として窒
化珪素膜を用いる場合には、化学式でSiNx で表した
とき、x=1.0からx=1.7が適し、特に、x=
1.3からx=1.35の化学量論的組成(x=1.3
3)のもの、あるいはそれに近いのものでよい結果が得
られた。したがって、本発明では、窒化珪素は減圧CV
D法によって形成する方が良かった。しかしながら、プ
ラズマCVD法や光CVD法で形成された窒化珪素皮膜
であっても、本発明を使用しない場合に比べて素子の信
頼性が向上することは言うまでもない。
【0019】減圧CVD法によって、窒化珪素膜を形成
しようとすれば、原料ガスとしてジクロールシラン(S
iCl22 )とアンモニア(NH3 )を用い、圧力1
0〜1000Paで500〜800℃、好ましくは55
0〜750℃で反応させればよい。もちろん、シラン
(SiH4 )やテトラクロロシラン(SiCl4 )を用
いてもよい。
【0020】さらに、窒化珪素以外に酸化アルミニウム
や酸化タンタルがブロッキング膜として用いられること
は先に述べた通りである。これらの被膜を形成するに
は、CVD法やスパッタ法を用いればよい。例えば、酸
化アルミニウム膜の形成には、トリメチルアルミニウム
Al(CH3 3 を酸化窒素(N2O、NO、NO2
等と酸化反応させればよい。
【0021】図4には、本発明を使用して、公知の技術
である低不純物濃度ドレイン(LDD)を形成する例を
示した。まず、石英あるいはANガラス等の絶縁性基板
401上に減圧CVD法によって窒化珪素膜402を厚
さ50〜1000nm形成する。このとき、基板の表面
だけでなく、裏面をも窒化珪素膜で被覆してしまうと本
発明をより確実に効果的に実施できる。すなわち、製造
工程においては裏面から発生した可動イオン(それらは
基板に含まれているのだが)が、さまざまな理由によっ
て表面に到達することがよくあり、その結果、例えば、
ゲイト酸化膜作製中に膜中に可動イオンが侵入する。ま
た、裏面が可動イオンの発生源であると、成膜装置等の
製造装置は絶えず、可動イオンによって汚染されている
ので、製造装置の清浄度を保つうえでも、基板の裏面に
窒化珪素膜を設けることは必要なことである。窒化珪素
膜の上に緩衝用の酸化珪素皮膜403を同じく減圧CV
D法によって、厚さ50〜1000nm形成する。この
際、原料ガス中に体積比で3%から6%、例えば5%ほ
どの塩化水素等のハロゲンを含むガスを混入させておく
と、得られる酸化珪素膜中にハロゲン元素が取り込まれ
る。このハロゲンはナトリウム等のアルカリイオンと結
合して、ナトリウムを固定するので、ナトリウム汚染を
防ぐうえでより大きな効果が得られる。しかし、過剰な
ハロゲンの添加は膜を粗にし、密着性や表面の平坦性を
損なうので好ましくない。
【0022】次にドナーもアクセプターも添加されない
非晶質シリコン膜を減圧CVD法、あるいはプラズマC
VD法、あるいはスパッタ法によって厚さ20〜500
nmだけ形成する。そして、これを島上にエッチングす
る。その上にゲイト絶縁膜として、厚さ10〜100n
mの酸化珪素膜を減圧CVD法、あるいはスパッタ法に
よって形成する。この際も、先のように、原料ガス中、
あるいはスパッタガス中にハロゲン材料ガスを混入させ
ておくとよい。
【0023】そして、その上に減圧CVD法、あるいは
プラズマCVD法によって、リンが1021cm-3程度に
ドープされた多結晶あるいは微結晶シリコン膜を形成す
る。そして、このシリコン膜およびその下のゲイト絶縁
膜(酸化珪素)をパターニングし、ゲイト電極410と
ゲイト絶縁膜404を形成する。
【0024】さらに、このゲイト電極をマスクとしてセ
ルフアライン的にイオン注入をおこない、比較的不純物
濃度の小さい(1017〜1019cm-3程度)ソース(ド
レイン)領域407、ドレイン(ソース)領域408を
形成する。不純物の注入されなかった部分がチャネル領
域408として残る。こうして、図4(A)が得られ
る。
【0025】次に、図4(B)に示すように減圧CVD
法によって、全体にPSG膜413が形成される。そし
て、これを公知の方向性エッチングによってエッチング
し、ゲイト電極の横に側壁414を形成する。その後、
再び、イオン注入をおこない、不純物濃度の高いソース
(ドレイン)領域407aとドレイン(ソース)領域4
09aを形成する。不純物濃度の低い領域はソース(ド
レイン)領域407bとドレイン(ソース)領域409
bとなって、LDDを形成する。こうして、図4(C)
を得る。
【0026】その後、図4(D)に示すように、減圧C
VD法によって、全体に窒化珪素膜405を、厚さ50
〜1000nm形成する。その後、例えば、600℃程
度の低温アニールによってシリコン膜の結晶化をおこな
い、ソース、ドレイン領域の活性化をおこなう。この工
程はレーザーアニールでおこなってもよい。このように
して、TFTの中間体が得られる。
【0027】図4の例は、本発明の例を示したに過ぎ
ず、本発明が、上記の工程に制約されないことは明らか
であろう。図4の例では、図3の例と同様に、窒化珪素
膜とゲイト電極とソースあるいはドレイン領域が隣接す
る部分がない。すなわち、図2の場合とは違って、側壁
414が存在するため、図2で懸念されたような問題は
ない。さらに、図3とは異なって、ドナーやアクセプタ
ーの添加は容易におこなえるという特徴を有する。
【0028】
【実施例】本発明を用いたTFTの特性について記述す
る。本実施例で使用したTFTは石英ガラス基板上に図
4のプロセスに従って作製したLDD型TFTである。
まず、石英ガラス基板401上およびその裏面と側面
(すなわち、基板全体)に減圧CVD法によって窒化珪
素膜402を厚さ100nm形成し、さらに、連続的に
減圧CVD法によって酸化珪素膜(低温酸化膜(LTO
膜)ともいう)403を厚さ200nm形成し、最後
に、やはり減圧CVD法によって非晶質シリコン膜を厚
さ30nm形成した。このときの最高プロセス温度は6
00℃であった。次に、非晶質シリコン膜を島状にパタ
ーニングした。そして、その非晶質シリコン膜の表面の
ごく薄い部分、厚さ2〜10nmを陽極酸化法によって
酸化した。その後、スパッタ法によって酸化珪素膜を1
00nm形成した。ここで、スパッタ雰囲気は酸素とア
ルゴンもしくは他の希ガスの混合気体とし、かつ、酸素
の分圧を80%以上とした。このとき、スパッタ衝撃に
よって、下地の膜に欠陥が生じる。例えば、下地がシリ
コン膜であった場合には、シリコン中に酸素原子が打ち
込まれ、酸素の濃度が増加する。このような状態ではシ
リコンは極在準位の多いものとなってしまう。すなわ
ち、シリコンと酸化珪素の境界がはっきりしないものと
なってしまう。しかし、本実施例のように予め薄い陽極
酸化膜を形成しておけば、スパッタの際には既に酸化珪
素が存在しているため、上記のような原子の混合が避け
られ、シリコン膜と酸化珪素膜の境界は保たれる。
【0029】この酸化珪素膜の形成後、減圧CVD法に
よって、リンを1021cm-3程度含んだn+ 型の微結晶
珪素膜を厚さ300nm形成した。以上の被膜形成の最
高プロセス温度は650℃であった。その後、ゲイト電
極のパターニングをおこないゲイト電極410とゲイト
絶縁膜404を形成した。さらに、イオン打ち込みによ
って砒素イオンを2×1018cm-3だけ注入し、ソース
およびドレイン領域407、409を形成した。こうし
て、図4(A)を得た。
【0030】次いで、図4(B)のように減圧CVD法
によってPSG膜413を形成し、方向性エッチングに
よって、図4(C)に示される側壁414を形成した。
さらに、イオン打ち込み法によって砒素イオンを領域4
07aおよび409aに5×1020cm-3注入した。
【0031】その後、全体に窒化珪素膜405を減圧C
VD法によって形成した。こうして、図4(D)を得
た。その後、真空中620℃で48時間アニールして、
領域407a、407b、408、409a、409b
を活性化させた。そして、減圧CVD法によって層間絶
縁物として、全体にPSG膜を形成し、電極用の穴を開
け、アルミ電極をソース領域およびドレイン領域に形成
した。そして、最後に、パッシベーションの目的で全体
に再び、減圧CVD法によって窒化珪素膜を形成した。
【0032】このようにして形成されたTFTは極めて
信頼性の高いものであった。いわゆるバイアス−温度処
理(BT処理)によっても素子の動作特性が変化しない
ことが示された。その例を図6に示す。BT処理は図6
中に示された回路図のように配線して、加温中でゲイト
(G)とソース(S)、ドレイン(D)間にバイアス電
圧VB を加えることによっておこなった。具体的には、
作製後直ちに室温でTFTのゲイト電圧−ドレイン電流
特性を測定し(VB=0)、その後、150℃で1時
間、ゲイト電極に+20Vの電圧を加え、室温でTFT
のゲイト電圧−ドレイン電流特性を測定し(VB =+2
0V)、次に、再び、150℃で1時間、ゲイト電極に
今度は−20Vの電圧を加え、その後、室温でTFTの
ゲイト電圧−ドレイン電流特性を測定し(VB =−20
V)、TFTのしきい値電圧の変動を調べた。
【0033】図6(B)が以上に記載した方法によって
作製したTFTの特性である。このように、バイアス電
圧VB に全く特性が影響されず、精密な測定の結果、し
きい値電圧の変動は0.2V以下であった。
【0034】一方、図6(A)に示されるものは、窒化
珪素膜402と405を設けなかった以外は本実施例に
示した方法と全く同じプロセスで作製したものである
が、図から明らかなように特性がVB に大きく依存して
しまっている。このような特性の変動(しきい値電圧の
変動)は、ゲイト絶縁膜中のナトリウム等の可動イオン
によるものと説明され、変動が大きいほど可動イオンが
多く、また、図6(B)のように変動が少ないものは可
動イオンの量がすくないと説明されている。しきい値電
圧の変動幅から本実施例で作製したTFTのゲイト電極
中の可動イオンの量は8×1010cm-3程度であると推
定される。すなわち、本発明のように窒化珪素膜を設け
ることによって、TFTの特性を著しく改善し、信頼性
を向上せしめることが可能であることが示された。
【0035】
【発明の効果】本発明によって、ナトリウム等の可動イ
オンの影響の少ないTFT等の薄膜状半導体素子を作製
することができる。従来、可動イオンが存在するため素
子が形成できなかった基板においても、TFTを形成す
ることが可能となった。本発明を実施するには、図1な
いし図4のようにコプラナ型であっても、また、逆コプ
ラナ型やスタガ型、逆スタガ型のTFTを用いても構わ
ない。また、本発明は、薄膜状半導体素子の動作につい
て制約を加えるものではないので、トランジスタのシリ
コンはアモルファスであっても、多結晶であっても、微
結晶であっても、またそれらの中間状態のものであって
も、さらには単結晶であっても構わないことは明らかで
あろう。
【図面の簡単な説明】
【図1】本発明によるTFTの例を示す。
【図2】本発明によるTFTの例を示す。
【図3】本発明によるTFTの例を示す。
【図4】本発明によるTFTの作製例を示す。
【図5】従来のTFTの例を示す。
【図6】本発明を利用したTFTと利用しないTFTの
特性を示す。
【符号の説明】 101 絶縁性基板 102 第1のブロッキング膜 103 緩衝絶縁膜 104 ゲイト絶縁膜 105 第2のブロッキング膜 106 層間絶縁膜 107 ソース(ドレイン)領域 108 チャネル領域 109 ドレイン(ソース)領域 110 ゲイト電極 111 ソース(ドレイン)電極 112 ドレイン(ソース)電極

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 基板上に形成された第1のブロッキング
    膜と、前記ブロッキング膜上に形成された絶縁性被膜
    と、前記絶縁性被膜上に形成された薄膜トランジスタ
    と、前記薄膜トランジスタを包んで形成された第2のブ
    ロッキング膜を有する薄膜状半導体素子。
  2. 【請求項2】 請求項1において、該絶縁性被膜はハロ
    ゲン元素を含有することを特徴とする薄膜状半導体素
    子。
  3. 【請求項3】 請求項1において、ブロッキング膜は、
    窒化珪素、酸化アルミニウム、もしくは酸化タンタルで
    あることを特徴とする薄膜状半導体素子。
  4. 【請求項4】 基板上に、第1のブロッキング膜を形成
    する工程と、前記ブロッキング膜上に、第1の絶縁性被
    膜を形成する工程と、前記絶縁性被膜上にシリコン膜を
    形成する工程と、前記シリコン膜上に第2の絶縁性被膜
    を形成する工程と、前記第2の絶縁性被膜上にゲイト電
    極を形成する工程と、前記シリコン膜およびゲイト電極
    を覆って第2のブロッキング膜を形成する工程とを有す
    る薄膜状半導体素子の作製方法。
JP23871491A 1991-08-26 1991-08-26 半導体装置 Expired - Lifetime JP3483581B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP23871491A JP3483581B2 (ja) 1991-08-26 1991-08-26 半導体装置
KR1019920015127A KR960000231B1 (ko) 1991-08-26 1992-08-22 박막형 반도체소자 및 그 제작방법
US08/202,680 US6849872B1 (en) 1991-08-26 1994-02-25 Thin film transistor
JP2000182365A JP3352998B2 (ja) 1991-08-26 2000-06-19 半導体装置の作製方法
US11/041,704 US7855106B2 (en) 1991-08-26 2005-01-25 Semiconductor device and method for forming the same
US12/971,966 US20110086472A1 (en) 1991-08-26 2010-12-17 Semiconductor device and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23871491A JP3483581B2 (ja) 1991-08-26 1991-08-26 半導体装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2000182365A Division JP3352998B2 (ja) 1991-08-26 2000-06-19 半導体装置の作製方法
JP2003317783A Division JP3923458B2 (ja) 2003-09-10 2003-09-10 半導体装置

Publications (2)

Publication Number Publication Date
JPH0555582A true JPH0555582A (ja) 1993-03-05
JP3483581B2 JP3483581B2 (ja) 2004-01-06

Family

ID=17034181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23871491A Expired - Lifetime JP3483581B2 (ja) 1991-08-26 1991-08-26 半導体装置

Country Status (1)

Country Link
JP (1) JP3483581B2 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034916A1 (fr) * 1994-06-15 1995-12-21 Seiko Epson Corporation Fabrication d'un equipement a semi-conducteurs a couches minces, equipement a semi-conducteurs a couches minces, afficheur a cristaux liquides et equipement electronique
EP0811868A1 (en) * 1996-06-04 1997-12-10 Canon Kabushiki Kaisha Liquid crystal display apparatus and fabrication process thereof
EP0845839A1 (en) * 1996-11-27 1998-06-03 Lucent Technologies Inc. Tantalum-aluminum oxide coatings for semiconductor devices
US5834827A (en) * 1994-06-15 1998-11-10 Seiko Epson Corporation Thin film semiconductor device, fabrication method thereof, electronic device and its fabrication method
US6133620A (en) * 1995-05-26 2000-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
JP2000353810A (ja) * 1999-03-26 2000-12-19 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2001007342A (ja) * 1999-04-20 2001-01-12 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US6211535B1 (en) 1994-11-26 2001-04-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6320224B1 (en) 1995-01-17 2001-11-20 Semiconductor Energy Laboratory Co., Ltd. Method for producing a semiconductor integrated circuit including a thin film transistor and a capacitor
US6335555B1 (en) 1993-10-01 2002-01-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a manufacturing method for the same
US7019385B1 (en) 1996-04-12 2006-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US7141462B2 (en) 1997-03-18 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Substrate of semiconductor device and fabrication method thereof as well as semiconductor device and fabrication method thereof
CN100420026C (zh) * 1994-08-19 2008-09-17 株式会社半导体能源研究所 半导体器件及其制造方法
US7544534B2 (en) 2004-02-09 2009-06-09 Samsung Mobile Display Co., Ltd. Organic light-emitting diode (OLED) and method of fabrication thereof
JP2009200515A (ja) * 2009-04-27 2009-09-03 Semiconductor Energy Lab Co Ltd 半導体装置
US7871936B2 (en) 1999-03-26 2011-01-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing active matrix display device
JP2011142332A (ja) * 2002-10-30 2011-07-21 Semiconductor Energy Lab Co Ltd 発光装置及び電子機器
JP2012252344A (ja) * 2008-09-01 2012-12-20 Semiconductor Energy Lab Co Ltd 表示装置
JP5243046B2 (ja) * 2006-01-25 2013-07-24 シャープ株式会社 半導体装置の製造方法、及び、半導体装置
US8835271B2 (en) 2002-04-09 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US9105727B2 (en) 2002-04-09 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US10133139B2 (en) 2002-05-17 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335555B1 (en) 1993-10-01 2002-01-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a manufacturing method for the same
US7301209B2 (en) 1993-10-01 2007-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7170138B2 (en) 1993-10-01 2007-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6835607B2 (en) 1993-10-01 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method for manufacturing the same
US6462403B1 (en) 1994-05-31 2002-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising thin film transistors having a passivation film formed thereon
US6017779A (en) * 1994-06-15 2000-01-25 Seiko Epson Corporation Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device
US6335542B2 (en) 1994-06-15 2002-01-01 Seiko Epson Corporation Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device
WO1995034916A1 (fr) * 1994-06-15 1995-12-21 Seiko Epson Corporation Fabrication d'un equipement a semi-conducteurs a couches minces, equipement a semi-conducteurs a couches minces, afficheur a cristaux liquides et equipement electronique
US6972433B2 (en) 1994-06-15 2005-12-06 Seiko Epson Corporation Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device
US5834827A (en) * 1994-06-15 1998-11-10 Seiko Epson Corporation Thin film semiconductor device, fabrication method thereof, electronic device and its fabrication method
US5858819A (en) * 1994-06-15 1999-01-12 Seiko Epson Corporation Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device
KR100306527B1 (ko) * 1994-06-15 2002-06-26 구사마 사부로 박막반도체장치의제조방법,박막반도체장치
CN100420026C (zh) * 1994-08-19 2008-09-17 株式会社半导体能源研究所 半导体器件及其制造方法
US6211535B1 (en) 1994-11-26 2001-04-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7517738B2 (en) 1995-01-17 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for producing a semiconductor integrated circuit including a thin film transistor and a capacitor
US6320224B1 (en) 1995-01-17 2001-11-20 Semiconductor Energy Laboratory Co., Ltd. Method for producing a semiconductor integrated circuit including a thin film transistor and a capacitor
US6133620A (en) * 1995-05-26 2000-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US7838968B2 (en) 1996-04-12 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US7019385B1 (en) 1996-04-12 2006-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US6097453A (en) * 1996-06-04 2000-08-01 Canon Kabushiki Kaisha Display apparatus and fabrication process thereof
EP0811868A1 (en) * 1996-06-04 1997-12-10 Canon Kabushiki Kaisha Liquid crystal display apparatus and fabrication process thereof
EP0845839A1 (en) * 1996-11-27 1998-06-03 Lucent Technologies Inc. Tantalum-aluminum oxide coatings for semiconductor devices
US7141462B2 (en) 1997-03-18 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Substrate of semiconductor device and fabrication method thereof as well as semiconductor device and fabrication method thereof
US8274083B2 (en) 1999-03-26 2012-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method of manufacturing the same
US8658481B2 (en) 1999-03-26 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9876033B2 (en) 1999-03-26 2018-01-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method of manufacturing the same
US7871936B2 (en) 1999-03-26 2011-01-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing active matrix display device
US9620573B2 (en) 1999-03-26 2017-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including light-emitting element
JP2000353810A (ja) * 1999-03-26 2000-12-19 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US9105523B2 (en) 1999-03-26 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method of manufacturing the same
US8686553B2 (en) 1999-03-26 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method of manufacturing the same
JP2014030023A (ja) * 1999-03-26 2014-02-13 Semiconductor Energy Lab Co Ltd 表示装置
JP2001007342A (ja) * 1999-04-20 2001-01-12 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US10083995B2 (en) 2002-04-09 2018-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US10050065B2 (en) 2002-04-09 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US8835271B2 (en) 2002-04-09 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US11101299B2 (en) 2002-04-09 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US9105727B2 (en) 2002-04-09 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US10854642B2 (en) 2002-04-09 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US10700106B2 (en) 2002-04-09 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9406806B2 (en) 2002-04-09 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9666614B2 (en) 2002-04-09 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US11422423B2 (en) 2002-05-17 2022-08-23 Semiconductor Energy Laboratory Co., Ltd. Display device
US10527903B2 (en) 2002-05-17 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Display device
US10133139B2 (en) 2002-05-17 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device
US9224667B2 (en) 2002-10-30 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9929190B2 (en) 2002-10-30 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2011142332A (ja) * 2002-10-30 2011-07-21 Semiconductor Energy Lab Co Ltd 発光装置及び電子機器
US9508620B2 (en) 2002-10-30 2016-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7544534B2 (en) 2004-02-09 2009-06-09 Samsung Mobile Display Co., Ltd. Organic light-emitting diode (OLED) and method of fabrication thereof
JP5243046B2 (ja) * 2006-01-25 2013-07-24 シャープ株式会社 半導体装置の製造方法、及び、半導体装置
US10128381B2 (en) 2008-09-01 2018-11-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxygen rich gate insulating layer
US9397194B2 (en) 2008-09-01 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with oxide semiconductor ohmic conatct layers
JP2012252344A (ja) * 2008-09-01 2012-12-20 Semiconductor Energy Lab Co Ltd 表示装置
US9082857B2 (en) 2008-09-01 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor layer
JP2009200515A (ja) * 2009-04-27 2009-09-03 Semiconductor Energy Lab Co Ltd 半導体装置

Also Published As

Publication number Publication date
JP3483581B2 (ja) 2004-01-06

Similar Documents

Publication Publication Date Title
JP3483581B2 (ja) 半導体装置
JP3187086B2 (ja) 半導体装置および半導体装置の作製方法
KR100191091B1 (ko) 박막 반도체 장치와 그 제조방법
US6849872B1 (en) Thin film transistor
US7635861B2 (en) Semiconductor device and method of manufacturing the same
US7301211B2 (en) Method of forming an oxide film
US7122833B2 (en) Semiconductor integrated circuit and method of fabricating same
JP3923458B2 (ja) 半導体装置
US8603870B2 (en) Semiconductor device and method of manufacturing the same
KR20020027902A (ko) 박막 트랜지스터 제조방법
JP3958349B2 (ja) 半導体装置の作製方法
JPH0637314A (ja) 薄膜トランジスタ及びその製造方法
JP3970891B2 (ja) 半導体装置
JP3390731B2 (ja) 半導体装置
JP3701549B2 (ja) 半導体装置
JP3352998B2 (ja) 半導体装置の作製方法
JP3375938B2 (ja) 半導体装置
JP3310654B2 (ja) 半導体装置
JPH11135797A (ja) 積層膜の形状加工方法およびそれを利用した薄膜トランジスタの製造方法
KR960000231B1 (ko) 박막형 반도체소자 및 그 제작방법
JP2003197638A (ja) 薄膜トランジスタ及びその製造方法
JP2960742B2 (ja) 薄膜トランジスタ素子
JPH08255915A (ja) 液晶表示装置
JPS59150478A (ja) 薄膜回路装置
JP2001135822A (ja) 薄膜トランジスタとその製造方法および液晶表示装置

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

EXPY Cancellation because of completion of term