JPH0542159B2 - - Google Patents

Info

Publication number
JPH0542159B2
JPH0542159B2 JP61089319A JP8931986A JPH0542159B2 JP H0542159 B2 JPH0542159 B2 JP H0542159B2 JP 61089319 A JP61089319 A JP 61089319A JP 8931986 A JP8931986 A JP 8931986A JP H0542159 B2 JPH0542159 B2 JP H0542159B2
Authority
JP
Japan
Prior art keywords
dielectric
green sheet
insulator
sheet
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61089319A
Other languages
Japanese (ja)
Other versions
JPS62244631A (en
Inventor
Takatada Tomioka
Juzo Shimada
Kazuaki Uchiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP61089319A priority Critical patent/JPS62244631A/en
Publication of JPS62244631A publication Critical patent/JPS62244631A/en
Publication of JPH0542159B2 publication Critical patent/JPH0542159B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複合部品の製造方法に関し、特に大容
量コンデンサを基板中に内蔵したコンデンサ内蔵
複合積層セラミツク部品に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing composite parts, and more particularly to a capacitor-embedded composite laminated ceramic part in which a large-capacity capacitor is built into a substrate.

(従来の技術) 従来、大容量のコンデンサを利用する電子回路
に対して、アルミナなどの基板上にチツプ形コン
デンサを搭載して高集積化をはかつてきた。つま
りセラミツク等の絶縁体基板上に印刷法などで、
抵抗体、電極および導体による配線パターンの形
成を行ない、かつ同一面上にチツプ形コンデンサ
および半導体ICなどを搭載する方法でハイブリ
ツトIC等が作製されていた。また最近では、基
板の絶縁体を誘電層として絶縁体内でコンデンサ
を形成する複合セラミツク部品の開発が進み、ハ
イブリツトICなどへの応用が行なわれつつある。
(Prior Art) Conventionally, electronic circuits that use large-capacity capacitors have been highly integrated by mounting chip-shaped capacitors on substrates such as alumina. In other words, by printing on an insulating substrate such as ceramic,
Hybrid ICs and the like were manufactured by forming wiring patterns using resistors, electrodes, and conductors, and mounting chip capacitors, semiconductor ICs, etc. on the same surface. Recently, there has been progress in the development of composite ceramic parts that use the insulator of the substrate as a dielectric layer to form a capacitor within the insulator, and are being applied to hybrid ICs and the like.

(発明が解決しようとする問題点) 近来では、エレクトロニクスの急速な技術進歩
に伴ない、各種エレクトロニクス部品は、小形化
へ移行しつつあり、低コスト化の点においても部
品の軽薄短少化は必須条件となつている。しかし
ながら、従来のハイブリツトICなどの複合部品
では限られたセラミツク基板上に抵抗体、電極、
配線パターンを高密度に印刷することおよびチツ
プコンデンサ、半導体ICなどを高集積に搭載す
るにはある程度の限界がある。
(Problem to be solved by the invention) In recent years, with the rapid technological advancement of electronics, various electronic parts are becoming smaller and smaller, and it is essential to make parts lighter, thinner, and smaller in order to reduce costs. It has become a condition. However, in conventional composite parts such as hybrid ICs, resistors, electrodes,
There are certain limits to printing wiring patterns with high density and mounting chip capacitors, semiconductor ICs, etc. in a highly integrated manner.

たとえば、高密度の配線パターンを形成した場
合には、品質の低下あるいはコスト(手間)の高
騰を生じ、高集積な設計においては、特に実装部
品類の数量増加に伴なう搭載スペースの問題およ
び形状の制約などが問題となつた。そこで、高密
度、高集積化をはかるため、基板内に抵抗体やコ
ンデンサを納めた構造を持つ新しい複合セラミツ
ク部品が開発されつつある。しかし第2図のよう
な高誘電率を有する誘電体3を絶縁体1で挟みこ
んで構造の複合積層セラミツク部品においては、
絶縁体材料、誘電体材料とまつたく異なつた性質
の材料の複合体となるため、単に絶縁体で誘電体
を挟みこんだ構造では各材料の微妙な収縮率の差
や異質材料間の相互拡散により、絶縁体と誘電体
の界面での剥離およびクラツクなどの現象が生じ
易いなど品質の安定した信頼性の高い複合部品を
得ることができなかつた。
For example, when a high-density wiring pattern is formed, quality may deteriorate or costs (labor) may rise.In highly integrated designs, there may be issues with mounting space, especially as the number of mounted components increases. Problems such as shape constraints arose. Therefore, in order to achieve higher density and higher integration, new composite ceramic parts with a structure in which resistors and capacitors are housed within the substrate are being developed. However, in a composite laminated ceramic component with a structure in which a dielectric material 3 having a high dielectric constant is sandwiched between insulators 1 as shown in Fig. 2,
Because it is a composite of insulator materials, dielectric materials, and materials with very different properties, a structure in which a dielectric material is simply sandwiched between insulators will cause subtle differences in shrinkage rates of each material and mutual diffusion between different materials. As a result, phenomena such as peeling and cracking at the interface between the insulator and the dielectric tend to occur, making it impossible to obtain a composite component with stable quality and high reliability.

(問題点を解決するための手段) 本発明は、誘電体層、絶縁体層および金属体層
を積層した構造を有する複合積層セラミツク部品
の製造方法において、誘電体生シートと絶縁体生
シートおよびAu,Ag,Pd,Cu,Niの1つ以上
を含む組成からなる金属体生シートを形成する工
程と、誘電体生シートと絶縁体生シートおよび金
属体生シートにスルーホールを設ける工程と、ス
ルーホールを穿設した誘電体生シートおよび絶縁
体生シートのスルーホールに導電性物質を充填
し、該誘電体生シートまたは誘電体生シートと絶
縁体生シートの表面に導体層をそれぞれ形成する
工程と、誘電体生シートを介して導体層が対向す
るように誘電体生シートを配置しさらに誘電体生
シートと絶縁体生シートの境界に金属体生シート
を配置して積層圧着する工程と、該積層体を850
℃〜950℃で焼成する工程とを有することを特徴
とする複合積層セラミツク部品の製造方法であ
る。
(Means for Solving the Problems) The present invention provides a method for manufacturing a composite laminated ceramic component having a structure in which a dielectric layer, an insulator layer, and a metal layer are laminated. a step of forming a green metal sheet having a composition containing one or more of Au, Ag, Pd, Cu, and Ni; a step of providing through holes in the dielectric green sheet, the insulator green sheet, and the metal green sheet; A conductive material is filled into the through holes of the dielectric green sheet and the insulator green sheet in which the through holes are formed, and a conductive layer is formed on the surface of the dielectric green sheet or the dielectric green sheet and the insulator green sheet, respectively. and a step of arranging a dielectric green sheet so that the conductor layers face each other with the dielectric green sheet interposed therebetween, further arranging a metal green sheet at the boundary between the dielectric green sheet and the insulator green sheet, and laminating and crimping. , the laminate at 850
This method of manufacturing a composite laminated ceramic part is characterized by comprising a step of firing at a temperature of .degree. C. to 950.degree.

(作用) この金属層を形成する金属体を形成する金属体
材料は、比較的低い温度で焼結が起こるため、高
温で絶縁体と誘電体のセラミツクの焼結反応が起
こる際、されらの界面を完全に分離し異なる材料
間の相互拡散を防止し、セラミツク同志の反応を
まつたく起こさせなくする。このことは従来発生
したマイクロクラツク、界面の剥離などを防止す
るための効果がある。また各セラミツクスとの接
合性を強めるためには、金属材料を選ぶことによ
り接合性の高い高品質なものが得られる。また複
合積層セラミツク部品を形成する誘電体と絶縁体
は850℃〜950℃の低い温度で焼結可能なため、金
属層を形成する金属体材料および内蔵コンデンサ
電極用ペースト材、導体ペースト材など卑金属材
料を用いることができる。
(Function) The metal material forming the metal body forming this metal layer undergoes sintering at a relatively low temperature, so when the sintering reaction between the insulator and the dielectric ceramic occurs at high temperature, their Completely separates the interface, prevents mutual diffusion between different materials, and prevents reactions between ceramics. This has the effect of preventing microcracks, interfacial peeling, etc. that conventionally occur. In addition, in order to strengthen the bondability with each ceramic, a high quality product with high bondability can be obtained by selecting a metal material. In addition, the dielectrics and insulators that form composite laminated ceramic parts can be sintered at a low temperature of 850°C to 950°C. material can be used.

以上のことにより剥離およびクラツクなどの発
生しない高品質で信頼性が高く、卑金属を用いる
ことのできる複合積層セラミツク部品を実現でき
た。
As a result of the above, a high quality, highly reliable composite laminated ceramic part that does not cause peeling or cracking, and allows the use of base metals has been realized.

(実施例) 以下本発明を実施例に基づいて詳細に説明す
る。
(Examples) The present invention will be described in detail below based on Examples.

本発明で用いた絶縁体生シートは、酸化アルミ
ニウム40〜60重量%、結晶化ガラス40〜60重量%
の組成範囲で総量100%となるように選んだ混合
粉末をバインダー、有機溶媒、可塑剤と共に泥漿
化し、ドクターブレード法などのスリツプキヤス
テイング製膜により20μm〜300μmの生シートを
ポリエステルフイルム上に形成し剥離したのち、
所用の寸法にパンチングしてシートを得る。
The insulating raw sheet used in the present invention contains 40 to 60% by weight of aluminum oxide and 40 to 60% by weight of crystallized glass.
A mixed powder selected to have a total content of 100% within the composition range is turned into a slurry with a binder, organic solvent, and plasticizer, and a raw sheet of 20 μm to 300 μm is formed on a polyester film by slip casting film formation such as the doctor blade method. After peeling,
Punch to desired dimensions to obtain a sheet.

誘電体生シートは、PbO,MnCO3,Nb2O5
NiO,WO3,TiO2の酸化粉末を所定量秤量し、
ボールミル混合して炉過乾燥後、700〜850℃で仮
焼を行なつたのち、ボールミル粉砕した粉末をバ
インダー有機溶媒、可塑剤と共に混合し泥漿化し
て、絶縁体生シートと同様な作製方法により20〜
100μmのシートを得た。ここで用いた誘電体材料
は、Pb(Mn1/3・Nb)0.005(Ni1/3・Nb2/30.295
(Mg1/2・W1/20.29Ti0.41O3のペロブスカイト化合
物になるように原料を秤量した。
The dielectric green sheet is made of PbO, MnCO 3 , Nb 2 O 5 ,
Weigh a predetermined amount of oxidized powders of NiO, WO 3 and TiO 2 ,
After mixing in a ball mill, over-drying in an oven, and calcining at 700 to 850°C, the ball-milled powder is mixed with a binder organic solvent and a plasticizer to form a slurry, and then manufactured using the same method as the insulating green sheet. 20〜
A 100 μm sheet was obtained. The dielectric material used here was Pb (Mn 1/3・Nb) 0.005 (Ni 1/3・Nb 2/3 ) 0.295
The raw materials were weighed to form a perovskite compound of (Mg 1/2 ·W 1/2 ) 0.29 Ti 0.41 O 3 .

また金属体生シートはAu,Ag,Pd,Pt,Cu,
Niなどの1つ以上を含む組成からなる金属材料
をバインダー、有機溶剤、可塑剤と共に混合し、
泥漿化し、絶縁体生シート、誘電体生シートと同
様な作製方法により10μm〜50μmのシートを得
た。
In addition, raw metal sheets include Au, Ag, Pd, Pt, Cu,
A metal material having a composition containing one or more of Ni, etc. is mixed with a binder, an organic solvent, and a plasticizer,
It was turned into a slurry, and a sheet of 10 μm to 50 μm was obtained using the same manufacturing method as the insulator green sheet and dielectric green sheet.

コンデンサ形成用パターン電極およびスルーホ
ール埋込みおよびパツド電極などに用いる導体
は、Au,Ag,Pd,Pt,Cu,Niなどの1つ以上
を含む組成からなる合金粉末を有機ビヒクルと共
に混練しペースト化したものを使用した。
The conductors used for pattern electrodes for capacitor formation, through-hole filling, pad electrodes, etc. are made by kneading alloy powder containing one or more of Au, Ag, Pd, Pt, Cu, Ni, etc. with an organic vehicle to form a paste. I used something.

第3図a,bから第10図a,bは本発明の実
施例による製造方法を示したものである。各図の
aは生シートの平面図、bは断面図である。製膜
した絶縁体生シートを所用の寸法にパンチングし
て、第3図a,bに示す絶縁体生シート9として
用いる。また第4図a,bに製膜した金属体生シ
ートを所用の寸法にパンチングして金属体生シー
ト10として用いる。一方、製膜して得た誘電体
生シートを第5図a,bに示すように所用の寸法
にパンイングして、誘電体生シート11を得る。
次に第6図a,b、第7図a,b、第8図a,b
に示すように、絶縁体生シート、金属体生シー
ト、誘電体シートの各シートに上下導通をもたす
ためのスルーホール7を形成する。ここで形成す
るスルーホールの径は絶縁体と誘電体において
は、最小100μmまで可能である。金属体に形成す
るスルーホールは、導体を埋込むためでなく、単
にスルーホールとして絶縁体層と誘電体層のコン
タクトを得るために必要なため、常に絶縁体、誘
電体のスルーホールよりも大きくあけ、導体が接
触しないスルーホール径とする。
FIGS. 3a and 3b to 10a and 10b illustrate a manufacturing method according to an embodiment of the present invention. In each figure, a is a plan view of the raw sheet, and b is a cross-sectional view. The formed insulator green sheet is punched to the required dimensions and used as the insulator green sheet 9 shown in FIGS. 3a and 3b. Further, the metal raw sheet formed as shown in FIGS. 4a and 4b is punched to desired dimensions and used as the metal raw sheet 10. On the other hand, the dielectric green sheet obtained by film formation is panned to desired dimensions as shown in FIGS. 5a and 5b to obtain a dielectric green sheet 11.
Next, Figure 6 a, b, Figure 7 a, b, Figure 8 a, b
As shown in FIG. 2, through holes 7 are formed in each of the insulator raw sheet, metal raw sheet, and dielectric sheet to provide vertical conduction. The diameter of the through hole formed here can be up to a minimum of 100 μm in insulators and dielectrics. Through-holes formed in metal bodies are not used to embed conductors, but are simply needed to establish contact between insulator and dielectric layers, so they are always larger than through-holes in insulators and dielectrics. The diameter of the through hole should be such that the conductor does not touch it.

次に第9図a,bに示すようにスルーホールを
設けた誘電体シート上に、コンデンサ内部電極5
となるパターン導体層を形成するために導体ペー
ストを印刷などにより印刷し、同時にスルーホー
ル部分に上下導通を得るために導体ペーストをス
ルーホールに埋め込み導通用の導体6を形成す
る。また第10図に示すように絶縁体生シートに
スルーホールをあけた生シート(第6図)を用い
コンデンサ部取り出し用パツドパターンを導体ペ
ーストを用いて印刷等により印刷し、パツド電極
4を得る。尚、金属体生シートを除き、所用数量
の絶縁体生シートおよび誘電体生シートのスルー
ホールを設けた生シートには導体ペーストを用い
てスルーホールに導体を埋め込んでおく。
Next, as shown in FIG. 9a and b, capacitor internal electrodes 5 are placed on the dielectric sheet provided with through holes.
In order to form a patterned conductor layer, a conductor paste is printed by printing or the like, and at the same time, in order to obtain vertical conduction in the through-hole portion, conductor paste is embedded in the through-hole to form a conductor 6 for conduction. Further, as shown in FIG. 10, a pad pattern for taking out a capacitor portion is printed by printing or the like using a conductive paste using a raw insulator sheet with through holes (FIG. 6), to obtain a pad electrode 4. In addition, except for the metal raw sheet, conductors are embedded in the through holes using a conductor paste for the required number of raw sheets of insulator and dielectric sheets with through holes provided therein.

次に第1図に示すように第6図から第10図の
それぞれの生シートおよび厚みを調整するため第
3図、第5図の絶縁体生シート、誘電体生シート
のそれぞれの生シートおよびスルーホール部分と
その近傍に導体を形成した絶縁体生シート、誘電
体生シートおよび第4図で示した金属体生シート
を第1図の構造になるようにプレス金形の下パン
チ側に重ね上パンチを乗せた後、70℃〜130℃の
温度で圧力150〜300Kg/cm2で積層プレスした。第
1図において数枚積み重ねた誘電体層3の上下に
金属体層2が形成され、金属体生シートの上下に
絶縁体層1で更にサンドイツチされた構造となつ
ている。誘電体生シート部分とその上下の導体パ
ターン電極5は、焼結後コンデンサ形成部分8
(図の破線部)となり導体6を経由して外部端子
パツト電極4につながつている。
Next, as shown in FIG. 1, in order to adjust the respective raw sheets and thicknesses of FIGS. 6 to 10, the raw sheets of insulator and dielectric raw sheets of FIGS. Layer the insulator raw sheet with a conductor formed in and around the through-hole area, the dielectric raw sheet, and the metal raw sheet shown in Figure 4 on the lower punch side of the press mold so that it has the structure shown in Figure 1. After placing the upper punch, lamination pressing was carried out at a temperature of 70° C. to 130° C. and a pressure of 150 to 300 kg/cm 2 . In FIG. 1, metal layers 2 are formed above and below a dielectric layer 3 stacked in several sheets, and an insulating layer 1 is further sandwiched between the top and bottom of the raw metal sheet. After sintering, the dielectric green sheet portion and the conductor pattern electrodes 5 above and below it form a capacitor forming portion 8.
(dashed line in the figure) and is connected to the external terminal pad electrode 4 via the conductor 6.

このように積層圧着した積層体を所用の形状に
切断後、3℃〜8℃/Hrの昇温スピードにて、
350℃〜500℃の温度で3時間〜10時間保持で脱バ
インダを行なう。次に焼成温度サイクル1時間の
スピードにて850℃〜950℃の温度で連続炉を使用
して、本焼成してコンデンサ内蔵複合積層セラミ
ツク部品を得た。
After cutting the laminated body press-bonded in this way into the desired shape, it was heated at a heating rate of 3°C to 8°C/Hr.
The binder is removed by holding at a temperature of 350°C to 500°C for 3 to 10 hours. Next, main firing was performed using a continuous furnace at a temperature of 850°C to 950°C at a firing temperature cycle speed of 1 hour to obtain a composite laminated ceramic part with a built-in capacitor.

本発明の実施例により得たコンデンサ内蔵複合
積層セラミツク部品中に形成したコンデンサの容
量としては約2.5nF/mm2程度であるが、一例と
して10μFのコンデンサを形成した。高誘電体材
料としてはPb(Mn1/3・Nb2/30.005(Ni1/3・Nb2/3
0.295(Mg1/2・W1/20.29Ti0.41O3のペロブスカイト
化合物以外にも、850℃〜950℃程度で焼結可能な
材料であれば、使用は可能である。
The capacitance of the capacitor formed in the composite laminated ceramic component with a built-in capacitor obtained according to the embodiment of the present invention is about 2.5 nF/mm 2 , and as an example, a capacitor of 10 μF was formed. High dielectric materials include Pb (Mn 1/3・Nb 2/3 ) 0.005 (Ni 1/3・Nb 2/3 )
In addition to the perovskite compound of 0.295 (Mg 1/2 ·W 1/2 ) 0.29 Ti 0.41 O 3 , any material that can be sintered at about 850°C to 950°C can be used.

一方絶縁体材料としては、アルミナホウケイ酸
鉛系の複合材料をはじめ、コージライト系セラミ
ツクス、ムライト系セラミツクス、アノーサイト
系セラミツクス、カルシライト系セラミツクス、
フオルステライト系セラミツクス、スポデユーメ
ン、ユークリプタイト等の材料においても収縮
率、焼結温度を誘電体材料と合わせることにより
適用できる。これらの材料の誘電率は5〜10程度
である。
On the other hand, insulator materials include alumina borosilicate lead composite materials, cordierite ceramics, mullite ceramics, anorthite ceramics, calcilite ceramics,
It can also be applied to materials such as forsterite ceramics, spodumene, and eucryptite by adjusting the shrinkage rate and sintering temperature to match those of the dielectric material. The dielectric constant of these materials is about 5 to 10.

以上のように金属層を誘電体層と絶縁体層の界
面に形成することにより誘電体と絶縁体の界面の
反応を防止し、かつ接合性が良好で850℃〜950℃
の低い焼結温度で高い信頼性のある大容量のコン
デンサ内蔵複合積層セラミツク部品を実現でき
た。なお本実施例では金属層をグリーンシート法
によつて形成したが、スクリーン印刷法など、金
属ペーストを印刷する方法においても金属層を形
成することが可能であることを確認した。
As described above, by forming a metal layer at the interface between the dielectric layer and the insulator layer, reactions at the interface between the dielectric and the insulator can be prevented, and the bonding property can be improved at 850℃ to 950℃.
We were able to create a highly reliable, large-capacity composite laminated ceramic component with a built-in capacitor at a low sintering temperature. In this example, the metal layer was formed by a green sheet method, but it was confirmed that the metal layer could also be formed by a method of printing a metal paste, such as a screen printing method.

(発明の効果) また本発明によつて得られた複合積層セラミツ
ク部品を用いてハイブリツトICなどの複合部品
を作製すれば、従来基板上に搭載すべき実装部品
(チツプコンデンサ)が不必要となり従来のハイ
ブリツト方式技術においても、より高集積、高密
度化が可能となるので品質を下げることなく、コ
ンパクトで高品質な複合部品が実現できる。更に
複合積層セラミツク部品の両面を利用することで
より大規模な複合部品をも実現できる。
(Effects of the Invention) Furthermore, if composite parts such as hybrid ICs are manufactured using the composite laminated ceramic parts obtained by the present invention, the mounting parts (chip capacitors) that were conventionally mounted on the board become unnecessary. The hybrid method technology also enables higher integration and density, making it possible to create compact, high-quality composite parts without compromising quality. Furthermore, by using both sides of a composite laminated ceramic component, larger-scale composite components can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のコンデンサ内蔵複合積層セラ
ミツク部品の実施における分解断面図。第2図は
従来の複合積層セラミツク部品の分解断面図。第
3図a,b〜第10図a,bは本発明の実施例に
よる複号積層セラミツク部品の各製造工程を示す
図。 図において、1……絶縁体層、2……金属体
層、3……誘電体層、4……パツド電極、5……
コンデンサパターン電極、6……導体、7……ス
ルーホール、8……コンデンサ形成部、9……絶
縁体シート、10……金属体シート、11……誘
電体シート。
FIG. 1 is an exploded cross-sectional view of a composite laminated ceramic component with a built-in capacitor according to the present invention. Figure 2 is an exploded cross-sectional view of a conventional composite laminated ceramic part. 3a and 3b to 10a and 10b are diagrams illustrating each manufacturing process of a multiple laminated ceramic component according to an embodiment of the present invention. In the figure, 1...insulator layer, 2...metal layer, 3...dielectric layer, 4...pad electrode, 5...
Capacitor pattern electrode, 6... Conductor, 7... Through hole, 8... Capacitor forming portion, 9... Insulator sheet, 10... Metal sheet, 11... Dielectric sheet.

Claims (1)

【特許請求の範囲】[Claims] 1 誘電体層、絶縁体層および金属体層を積層し
た構造を有する複合積層セラミツク部品の製造方
法において、誘電体生シートと絶縁体生シートお
よびAu,Ag,Pd,Cu,Niの1つ以上を含む組
成からなる金属体生シートを形成する工程と、誘
電体生シートと絶縁体生シートおよび金属体生シ
ートにスルーホールを設ける工程と、スルーホー
ルを穿設した誘電体生シートおよび絶縁体生シー
トのスルーホールに誘電性物質を充填し、該誘電
体生シートまたは誘電体生シートと絶縁体生シー
トの表面に導体層をそれぞれ形成する工程と、誘
電体生シートを介して導体層が対向するように誘
電体生シートを配置し、さらに誘電体生シートと
絶縁体生シートの境界に金属体生シートを配置し
て積層圧着する工程と該積層体を850℃〜950℃で
焼成する工程とを有することを特徴とする複合積
層セラミツク部品の製造方法。
1. In a method for manufacturing a composite laminated ceramic component having a laminated structure of a dielectric layer, an insulator layer, and a metal layer, a dielectric green sheet, an insulator green sheet, and one or more of Au, Ag, Pd, Cu, and Ni are used. a step of forming a green metal sheet having a composition including a composition including the following: a step of forming through holes in a dielectric green sheet, an insulator green sheet, and a metal green sheet; and a dielectric green sheet with through holes and an insulator. Filling the through holes of the green sheet with a dielectric substance and forming conductor layers on the surfaces of the dielectric green sheet or the dielectric green sheet and the insulator green sheet, and forming the conductor layer through the dielectric green sheet. A step of arranging the dielectric raw sheets so as to face each other, further arranging the metal raw sheets at the boundary between the dielectric raw sheets and the insulating raw sheets, laminating and crimping them, and firing the laminate at 850°C to 950°C. A method for manufacturing a composite laminated ceramic part, comprising the steps of:
JP61089319A 1986-04-17 1986-04-17 Manufacture of composite laminated ceramic part Granted JPS62244631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61089319A JPS62244631A (en) 1986-04-17 1986-04-17 Manufacture of composite laminated ceramic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61089319A JPS62244631A (en) 1986-04-17 1986-04-17 Manufacture of composite laminated ceramic part

Publications (2)

Publication Number Publication Date
JPS62244631A JPS62244631A (en) 1987-10-26
JPH0542159B2 true JPH0542159B2 (en) 1993-06-25

Family

ID=13967344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61089319A Granted JPS62244631A (en) 1986-04-17 1986-04-17 Manufacture of composite laminated ceramic part

Country Status (1)

Country Link
JP (1) JPS62244631A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265795A (en) * 1986-05-14 1987-11-18 株式会社住友金属セラミックス Ceramic board with built-in capacitor
US4858077A (en) * 1987-11-25 1989-08-15 Hitachi, Ltd. Condenser-containing, ceramic multi-layer circuit board and semiconductor module and computer having the circuit board
JPH0632384B2 (en) * 1987-12-22 1994-04-27 株式会社住友金属セラミックス Method for manufacturing laminated ceramic substrate
JPH01312896A (en) * 1988-06-09 1989-12-18 Murata Mfg Co Ltd Ceramic multilayer substrate
JPH0797705B2 (en) * 1989-07-17 1995-10-18 日本電気株式会社 Multilayer ceramic board
JP2882157B2 (en) * 1992-01-13 1999-04-12 株式会社村田製作所 Manufacturing method of ceramic multilayer electronic component

Also Published As

Publication number Publication date
JPS62244631A (en) 1987-10-26

Similar Documents

Publication Publication Date Title
US4663215A (en) Alumina interconnection substrate for an electronic component, and method of manufacture
US5814366A (en) Method of manufacturing multilayered ceramic substrate
JP2001060767A (en) Method for manufacturing ceramic board and unfired ceramic board
JP3944791B2 (en) Ceramic multilayer printed circuit board
JPH0542159B2 (en)
JPH05327218A (en) Manufacture of multilayer ceramic base
JPS5917232A (en) Composite laminated ceramic part and method of producing same
JP3955389B2 (en) Capacitor-embedded substrate and manufacturing method thereof
JPH0346978B2 (en)
JPH03108203A (en) Conductive paste and wiring board
JPH0155594B2 (en)
JPH0632384B2 (en) Method for manufacturing laminated ceramic substrate
JPS6092697A (en) Composite laminated ceramic part
JP2598706B2 (en) Carrier board with built-in capacitor
JPH0462449B2 (en)
JPH0216004B2 (en)
JPH0795630B2 (en) Composite monolithic ceramic parts
JPH0513524B2 (en)
JPH0513367B2 (en)
JP2604416B2 (en) Composite multilayer ceramic parts
JP2812605B2 (en) Method for manufacturing multilayer ceramic substrate
JPS6088420A (en) Composite laminated ceramic part
JPH0453119B2 (en)
JP4623851B2 (en) Multilayer wiring board
JPH0613756A (en) Conductive paste composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term