JPH0513524B2 - - Google Patents

Info

Publication number
JPH0513524B2
JPH0513524B2 JP15725886A JP15725886A JPH0513524B2 JP H0513524 B2 JPH0513524 B2 JP H0513524B2 JP 15725886 A JP15725886 A JP 15725886A JP 15725886 A JP15725886 A JP 15725886A JP H0513524 B2 JPH0513524 B2 JP H0513524B2
Authority
JP
Japan
Prior art keywords
layer
dielectric
insulator
composite
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15725886A
Other languages
Japanese (ja)
Other versions
JPS6313318A (en
Inventor
Takatada Tomioka
Juzo Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP15725886A priority Critical patent/JPS6313318A/en
Publication of JPS6313318A publication Critical patent/JPS6313318A/en
Publication of JPH0513524B2 publication Critical patent/JPH0513524B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複合部品に関し、特に大容量コンデン
サを基板中に内蔵したコンデンサ内部複合積層セ
ラミツク部品に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to composite parts, and particularly to a capacitor-internal composite laminated ceramic part in which a large capacity capacitor is built into a substrate.

(従来の技術) 従来、大容量のコンデンサを利用する電子回路
に対して、アルミナ等の基板上にチツプ形コンデ
ンサが搭載され高集積化がはかられてきた。つま
り、セラミツク等の絶縁体基板上に印刷法等によ
り、抵抗体、電極および導体による配線パターン
の形成を行ない、かつ同一面上にチツプ形コンデ
ンサおよび半導体IC等を搭載する方法でハイブ
リツトICが作製されていた。また最近では誘電
体を絶縁体ではさみ込んだ複合セラミツク部品の
開発が進み、ハイブリツトIC等への応用が行な
われつつある。
(Prior Art) Conventionally, chip-type capacitors have been mounted on substrates such as alumina to achieve high integration in electronic circuits that utilize large-capacity capacitors. In other words, a hybrid IC is fabricated by forming a wiring pattern of resistors, electrodes, and conductors on an insulating substrate such as ceramic using a printing method, and then mounting chip capacitors, semiconductor ICs, etc. on the same surface. It had been. Recently, composite ceramic parts in which a dielectric material is sandwiched between insulators have been developed, and are being applied to hybrid ICs and the like.

(発明が解決しようとする問題点) 近年ではエレクトロニクスの急激な技術進歩に
伴ない、各種エレクトロニクス部品は小型化へ移
行しつつあり、低コスト化の点においても部品の
軽薄短少化は必須条件となつてきている。
(Problem to be solved by the invention) In recent years, with the rapid technological progress in electronics, various electronic parts are becoming smaller, and making parts lighter, thinner, and smaller is an essential condition for reducing costs. I'm getting used to it.

しかしながら、従来のハイブリツトIC等の複
合部品では、限られたセラミツク基板上に、抵抗
体、電極、配線パターンを、より高密度に印刷す
ることおよびチツプコンデンサ、半導体IC等を
よりも高集積に塔載するには、ある程度の限界が
ある。
However, in conventional composite parts such as hybrid ICs, it is necessary to print resistors, electrodes, and wiring patterns at a higher density on a limited ceramic substrate, and to integrate chip capacitors, semiconductor ICs, etc. more highly. There are certain limits to what can be posted.

たとえば、高密度のパターンを形成した場合に
は、品質の低下あるいは、コストの高騰を生じ、
高集積な設計においては、特に実装部品類の数量
増加に共なう塔載スペースの問題および形状の制
約等が問題となつた。
For example, if a high-density pattern is formed, quality may deteriorate or costs may rise.
In highly integrated designs, problems such as tower mounting space and shape constraints have arisen, especially as the number of mounted components increases.

そこで高密度、高集積化をはかるため、基板中
に抵抗体やコンデンサを納めた構造を持つ新しい
複合セラミツク部品が開発されつつある。しか
し、第2図のような誘電体9を絶縁体10,11
ではさみ込み、導体7を形成した構造の複合セラ
ミツク部品においては、絶縁体材料、誘電体材料
とまつたく異なつた性質の材料の複合体となるた
め、各材料の微妙な収縮率の差や異質材料間の相
互拡散により、絶縁体と誘電体の界面で剥離やク
ラツクなどの現象が生じ易いなど、品質の安定し
た信頼性の高い複合部品を得ることができなかつ
た。
Therefore, in order to achieve higher density and higher integration, new composite ceramic components with a structure in which resistors and capacitors are housed in the substrate are being developed. However, the dielectric 9 as shown in FIG.
In a composite ceramic component having a structure in which the conductor 7 is formed by sandwiching the conductor 7, it is a composite of insulator material, dielectric material, and other materials with very different properties, so there may be slight differences in shrinkage rate of each material or different properties. Due to mutual diffusion between materials, phenomena such as peeling and cracking tend to occur at the interface between an insulator and a dielectric, making it impossible to obtain a composite component with stable quality and high reliability.

(問題を解決するための手段) 本発明は誘電体を絶縁体ではさみこんだ構造を
有する複合積層セラミツク部品において、誘電体
層と絶縁体層の間に誘電体ダミー層および絶縁体
ダミー層を形成し、異なる材料層間に金属層を形
成した構成である。
(Means for solving the problem) The present invention provides a composite laminated ceramic component having a structure in which a dielectric material is sandwiched between insulators, in which a dielectric dummy layer and an insulator dummy layer are provided between the dielectric layer and the insulator layer. This is a structure in which a metal layer is formed between different material layers.

(作用) この誘電体ダミー層および絶縁体ダミー層を誘
電体層と絶縁体層の間に形成することにより、誘
電体と絶縁体の微妙に異なる収縮特性から生じる
ストレスを緩和吸収させることにより、マイクロ
クラツク、誘電体層と絶縁体層の界面の剥離など
を防止するための効果がある。
(Function) By forming the dielectric dummy layer and the insulator dummy layer between the dielectric layer and the insulator layer, the stress generated from the slightly different shrinkage characteristics of the dielectric and the insulator can be relaxed and absorbed. This has the effect of preventing microcracks and peeling at the interface between the dielectric layer and the insulator layer.

また、誘電体材料と絶縁体材料は、焼結後での
材質強度が異なるため、強度差から起因するスト
レスなどはダミー層として用いる絶縁体ダミー層
の層厚みを内蔵コンデンサ部を有する誘電体層の
層厚みより少なくなることで緩和することができ
る。
In addition, since the dielectric material and the insulator material have different material strengths after sintering, the stress caused by the strength difference should be reduced to the layer thickness of the insulator dummy layer used as a dummy layer. It can be relaxed by making the layer thickness smaller than .

さらに各層間(絶縁体層、誘電体ダミー層、絶
縁体ダミー層、誘電体層)に形成した金属層は、
比較的低い温度で焼結が起るため、高温で誘電体
と絶縁体のセラミツクスの焼結反応が起こる際、
これらの界面を完全に分離し、異なる材料間の相
互拡散を防止しセラミツク同志の反応を全く起さ
せなくする効果があることならびに各セラミツク
ス(誘電体、絶縁体)との接合性をもたせる効果
がある。
Furthermore, the metal layer formed between each layer (insulator layer, dielectric dummy layer, insulator dummy layer, dielectric layer)
Since sintering occurs at relatively low temperatures, when the sintering reaction between dielectric and insulating ceramics occurs at high temperatures,
It has the effect of completely separating these interfaces, preventing mutual diffusion between different materials, and completely preventing reactions between ceramics, as well as providing bonding properties with each ceramic (dielectric, insulator). be.

以上のことにより、クラツク及び界面の剥離な
どの発生しない信頼性の高い高品質な複合積層セ
ラミツク部品が実現できた。
As a result of the above, a highly reliable and high quality composite laminated ceramic part that does not cause cracks or interfacial peeling could be realized.

(実施例) 以下、本発明について実施例によつて詳細に説
明する。一般的にセラミツクグリーンシートを得
るには、酸化粉末原料を科量し、ボールミル等に
より混合あるいは粉砕を行なう。次に混合粉末原
料を電気炉等を用いて仮焼し予熱粉末材料を作製
する。仮焼して得た予焼粉末材料を有機溶剤およ
び有機物バインダと混合しスラリーを得る。その
スラリーをドクターブレイド法等のキヤステイン
グ装置を用い、ポリエチレンフイルム上にグリー
ンシート化しセラミツクグリーンシートを得る。
(Examples) Hereinafter, the present invention will be explained in detail by way of examples. Generally, to obtain ceramic green sheets, oxidized powder raw materials are weighed and mixed or pulverized using a ball mill or the like. Next, the mixed powder raw material is calcined using an electric furnace or the like to produce a preheated powder material. The precalcined powder material obtained by calcining is mixed with an organic solvent and an organic binder to obtain a slurry. The slurry is formed into a green sheet on a polyethylene film using a casting device such as a doctor blade method to obtain a ceramic green sheet.

前記方法を用いて絶縁体のセラミツクグリーン
シート、誘電体のセラミツクグリーンシート、絶
縁体と誘電体セラミツクの粉末を添加した金属体
グリーンシートを各々作製し、それぞれ適当な形
状に切断し、各セラミツクグリーンシート片およ
び金属体グリーンシート片を作製した。
Using the method described above, an insulator ceramic green sheet, a dielectric ceramic green sheet, and a metal green sheet to which insulator and dielectric ceramic powders were added were each produced, each was cut into an appropriate shape, and each ceramic green sheet was prepared. A sheet piece and a metal green sheet piece were produced.

なお、ここで用いる絶縁体としては、アルミナ
ホイケイ酸鉛系の複合材料をはじめ、コージエラ
イト系セラミツクス、ムライト系セラミツクス、
アノーサイト系セラミツクス、カルシライト系セ
ラミツクス、フオルステライト系セラミツクス、
スポデユーメン、ユニクリプタイト等の材料が適
当できる。これらの絶縁体の誘電率は5〜10程度
である。
The insulators used here include alumina-lead borosilicate-based composite materials, cordierite-based ceramics, mullite-based ceramics,
anorthite ceramics, calcilite ceramics, forsterite ceramics,
Materials such as spodumene and unicryptite are suitable. The dielectric constant of these insulators is about 5 to 10.

一方、誘電体材料としては、鉛を含むペログス
カイト構造の化合物であり、焼結温度を絶縁体材
料と合わせている。この誘電体材料の誘電体は構
成する元素の組成により変化するがほぼ500〜
20000の範囲で制御している。したがつて大容量
のコンデンサを形成するためには極めて有利であ
る。
On the other hand, the dielectric material is a compound with a perogskite structure containing lead, and the sintering temperature is the same as that of the insulating material. The dielectric of this dielectric material varies depending on the composition of the constituent elements, but it is approximately 500~
It is controlled in the range of 20000. Therefore, it is extremely advantageous for forming a large capacity capacitor.

また、金属体としては、Au、Ag、Pd、Pt、
Cu、Ni等の1つ以上を含む組成からなるものを
用いる。
In addition, the metal bodies include Au, Ag, Pd, Pt,
A composition containing one or more of Cu, Ni, etc. is used.

次に、誘電体シート片にはAg/Pd内部電極ペ
ーストを用い電極パターンを印刷し、更にスルー
ホールが必要な各セラミツクグリーンシート片
は、スルーホールを開けその後スルーホールに電
極ペーストを詰め、ビア導体部を形成する。また
金属シート片には、必要なスルーホールを形成す
る。
Next, electrode patterns are printed on the dielectric sheet pieces using Ag/Pd internal electrode paste, and for each ceramic green sheet piece that requires through holes, through holes are opened and then the through holes are filled with electrode paste. Form a conductor part. In addition, necessary through holes are formed in the metal sheet piece.

次に第1図のような構造になるように積層しプ
レス金型に投入後、熱圧着プレスを行なう。プレ
ス圧着された生積層セラミツク体をナイフ刃等に
より所定の形状に切断後、500℃前後にて脱バイ
ンダ処理を行ない、脱バインダ後の積層セラミツ
ク体を電気炉を用い850℃から1000℃位の温度で
焼結することによりコンデンサ内臓の複合積層セ
ラミツク部品が得られる。
Next, they are stacked so as to have the structure shown in FIG. 1, put into a press mold, and then subjected to thermocompression pressing. After cutting the press-bonded raw laminated ceramic body into a predetermined shape with a knife blade, etc., the binder is removed at around 500℃, and the laminated ceramic body after the binder is removed is heated at about 850℃ to 1000℃ using an electric furnace. By sintering at high temperatures, a composite laminated ceramic component with a built-in capacitor is obtained.

第1図は実施例に基づき作成されたコンデンサ
内臓複合積層セラミツク部品の分解断面である。
コンデンサとなる内部パターン電極1と誘電体層
2があり、誘電体層2の上下面に絶縁体ダミー層
3、更にその上下面に誘電体ダミー層4。またさ
らにその上下面に絶縁体層5が形成され、かつ異
なる材料のセラミツクス層の界面には金属層6が
形成された複合積層構造である。誘電体層2に形
成された内部パターン電極1はコンデンサ部とし
て導体7により、絶縁体層5の上面に導かれ基板
上面パツド電極8として形成される。
FIG. 1 is an exploded cross-section of a composite laminated ceramic part with a built-in capacitor manufactured based on the example.
There is an internal pattern electrode 1 serving as a capacitor and a dielectric layer 2, an insulator dummy layer 3 on the upper and lower surfaces of the dielectric layer 2, and a dielectric dummy layer 4 on the upper and lower surfaces thereof. Further, it has a composite laminated structure in which an insulating layer 5 is formed on the upper and lower surfaces thereof, and a metal layer 6 is formed at the interface between the ceramic layers made of different materials. The internal pattern electrode 1 formed on the dielectric layer 2 is guided to the upper surface of the insulating layer 5 by a conductor 7 as a capacitor portion, and is formed as a pad electrode 8 on the upper surface of the substrate.

以上のように作製した積層セラミツク部品、絶
縁体ダミー層と誘電体ダミー層を誘電体層と絶縁
体層の間に形成することになり、マイクロクラツ
クの発生、界面の剥離等が発生しない高品質で信
頼性の良好なコンデンサ内臓複合積層セラミツク
部品となつた。
In the laminated ceramic component manufactured as described above, an insulator dummy layer and a dielectric dummy layer are formed between the dielectric layer and the insulator layer, so that a high quality product with no occurrence of microcracks or peeling of the interface, etc. Composite laminated ceramic parts with built-in capacitors of high quality and reliability.

(発明の効果) 以上のように本発明によれば、クラツクの発生
しにくい高信頼性高品質の複合積層セラミツク部
品を提供できる。
(Effects of the Invention) As described above, according to the present invention, it is possible to provide a highly reliable and high quality composite laminated ceramic component that is less prone to cracking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の複合積層セラミツク部品の実
施例における断面図。第2図は従来の複合セラミ
ツク部品の構造断面図。 1……内部パターン電極、2……誘電体層、3
……絶縁体ダミー層、4……誘電体ダミー層、5
……絶縁体層、6……金属体層、7……導体、8
……パツド電極、9……誘電体層、10,11…
…絶縁体層。
FIG. 1 is a sectional view of an embodiment of the composite laminated ceramic component of the present invention. Figure 2 is a cross-sectional view of the structure of a conventional composite ceramic component. 1... Internal pattern electrode, 2... Dielectric layer, 3
...Insulator dummy layer, 4...Dielectric dummy layer, 5
...Insulator layer, 6...Metal layer, 7...Conductor, 8
... Pad electrode, 9 ... Dielectric layer, 10, 11 ...
...Insulator layer.

Claims (1)

【特許請求の範囲】[Claims] 1 誘電体層と絶縁体層と導体と金属層とを積層
してなる複合積層セラミツク部品において、一部
の誘電体層の両側には電極層が形成され誘電体層
と絶縁体層との間に誘電体材料と絶縁体体料のダ
ミー層が形成され、かつ異なるセラミツク層間に
金属層が形成されている構造を有することを特徴
とする複合積層セラミツク部品。
1 In a composite laminated ceramic component formed by laminating a dielectric layer, an insulator layer, a conductor, and a metal layer, electrode layers are formed on both sides of some of the dielectric layers, and electrode layers are formed between the dielectric layer and the insulator layer. 1. A composite laminated ceramic component characterized by having a structure in which a dummy layer of a dielectric material and an insulating material is formed, and a metal layer is formed between different ceramic layers.
JP15725886A 1986-07-03 1986-07-03 Composite laminated ceramic parts Granted JPS6313318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15725886A JPS6313318A (en) 1986-07-03 1986-07-03 Composite laminated ceramic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15725886A JPS6313318A (en) 1986-07-03 1986-07-03 Composite laminated ceramic parts

Publications (2)

Publication Number Publication Date
JPS6313318A JPS6313318A (en) 1988-01-20
JPH0513524B2 true JPH0513524B2 (en) 1993-02-22

Family

ID=15645717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15725886A Granted JPS6313318A (en) 1986-07-03 1986-07-03 Composite laminated ceramic parts

Country Status (1)

Country Link
JP (1) JPS6313318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521691A (en) * 2003-03-27 2006-09-21 エプコス アクチエンゲゼルシャフト Electrical multilayer component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578134B2 (en) * 2004-03-29 2010-11-10 京セラ株式会社 Glass ceramic multilayer wiring board with built-in capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521691A (en) * 2003-03-27 2006-09-21 エプコス アクチエンゲゼルシャフト Electrical multilayer component

Also Published As

Publication number Publication date
JPS6313318A (en) 1988-01-20

Similar Documents

Publication Publication Date Title
CA1078079A (en) Method for preparing a multilayer ceramic
JP3407716B2 (en) Composite laminated electronic components
JP2001060767A (en) Method for manufacturing ceramic board and unfired ceramic board
JPS5817651A (en) Multilayer circuit board and its manufacture
JPS608229B2 (en) multilayer ceramic substrate
JP4284782B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JPH0513524B2 (en)
JPH0542159B2 (en)
JPS5917232A (en) Composite laminated ceramic part and method of producing same
JPH03108203A (en) Conductive paste and wiring board
JP4782397B2 (en) Conductive paste and method for manufacturing wiring board using the same
JPH0462449B2 (en)
JPH0513367B2 (en)
JPH0795630B2 (en) Composite monolithic ceramic parts
JP2604416B2 (en) Composite multilayer ceramic parts
JPH0453119B2 (en)
JPH0155594B2 (en)
JP2598706B2 (en) Carrier board with built-in capacitor
JPH04225297A (en) Manufacture of ceramic board
JP2000138428A (en) Wiring board
JP2504351B2 (en) Multi-layer glass ceramic substrate and manufacturing method thereof
JPS6092697A (en) Composite laminated ceramic part
JPS62139393A (en) Composite laminated ceramic parts
JPS63228608A (en) Composite laminated ceramic component
JP4514301B2 (en) Manufacturing method of multilayer wiring board

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term