JPH0513367B2 - - Google Patents

Info

Publication number
JPH0513367B2
JPH0513367B2 JP61025129A JP2512986A JPH0513367B2 JP H0513367 B2 JPH0513367 B2 JP H0513367B2 JP 61025129 A JP61025129 A JP 61025129A JP 2512986 A JP2512986 A JP 2512986A JP H0513367 B2 JPH0513367 B2 JP H0513367B2
Authority
JP
Japan
Prior art keywords
dielectric
insulator
layer
metal
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61025129A
Other languages
Japanese (ja)
Other versions
JPS62183106A (en
Inventor
Takatada Tomioka
Juzo Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP61025129A priority Critical patent/JPS62183106A/en
Publication of JPS62183106A publication Critical patent/JPS62183106A/en
Publication of JPH0513367B2 publication Critical patent/JPH0513367B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複合部品に関し、特に大容量コンデン
サを基板中に内蔵したコンデンサ内蔵複合積層セ
ラミツク部品に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a composite component, and more particularly to a capacitor-embedded composite laminated ceramic component in which a large-capacity capacitor is built into a substrate.

(従来の技術) 従来、大容量のコンデンサを利用する電子回路
に対して、アルミナ等の基板上にチツプ形コンデ
ンサが搭載され高集積化がはかられてきた。つま
り、セラミツク等の絶縁体基板上に印刷法等によ
り、抵抗体、電極および導体による配線パターン
の形成を行ない、かつ同一面上にチツプ形コンデ
ンサおよび半導体IC等を搭載なる方法でハイブ
リツトICが作製されていた。また最近では誘電
体を絶縁体ではさみ込んだ複合セラミツク部品の
開発が進み、ハイブリツトIC等への応用が行な
われつつある。
(Prior Art) Conventionally, chip-type capacitors have been mounted on substrates such as alumina to achieve high integration in electronic circuits that utilize large-capacity capacitors. In other words, a hybrid IC is fabricated by forming a wiring pattern of resistors, electrodes, and conductors on an insulating substrate such as ceramic using a printing method, and then mounting chip capacitors, semiconductor ICs, etc. on the same surface. It had been. Recently, composite ceramic parts in which a dielectric material is sandwiched between insulators have been developed, and are being applied to hybrid ICs and the like.

(発明が解決しようとする問題点) 近年ではエレクトロニクスの急速な技術進歩に
伴ない、各種エレクトロニクス部品は小型化へ移
行しつつあり、低コスト化の点においても部品の
軽薄短少化は必須条件となつてきている。
(Problems to be solved by the invention) In recent years, with the rapid technological advancement of electronics, various electronic parts have been moving towards miniaturization, and making parts lighter, thinner, and smaller is an essential condition from the point of view of cost reduction. I'm getting used to it.

しかしながら、従来のハイブリツトIC等の複
合部品では、限られたセラミツク基板上に、抵抗
体、電極、配線パターンを、より高密度に印刷す
ることおよびチツプコンデンサ、半導体IC等を
より高集積に搭載するには、ある程度の限界があ
る。
However, in conventional composite parts such as hybrid ICs, it is necessary to print resistors, electrodes, and wiring patterns at a higher density on a limited ceramic substrate, and to mount chip capacitors, semiconductor ICs, etc. in a more highly integrated manner. has certain limits.

たとえば、高密度のパターンを形成した場合に
は、品質の低下あるいは、コストの高騰を生じ、
高集積な設計においては、特に実装部品類の数量
増加に共なう搭載スペースの問題および形状の制
約等が問題となつた。
For example, if a high-density pattern is formed, quality may deteriorate or costs may rise.
In highly integrated designs, problems such as mounting space and shape constraints have arisen, especially as the number of mounted components increases.

そこで高密度、高集積化をはかるため、基板中
に抵抗体やコンデンサを納めた構造を持つ新しい
複合セラミツク部品が開発されつつある。しか
し、第2図のような誘電体11を絶縁体12,1
3で、はさみ込み、導体9を形成した構造の複合
セラミツク部品においては、絶縁体材料、誘電体
材料とまつたく異なつた性質の材料の複合体とな
るため、各材料の微妙な収縮率の差や異質材料間
の相互拡散により、絶縁体と誘電体の界面で剥離
やクラツクなどの現象が生じ易いなど、品質の安
定した信頼性の高い複合部品を得ることができな
かつた。
Therefore, in order to achieve higher density and higher integration, new composite ceramic components with a structure in which resistors and capacitors are housed in the substrate are being developed. However, the dielectric 11 as shown in FIG.
In the composite ceramic part having the structure in which the conductor 9 is formed by sandwiching it in step 3, it is a composite of insulator material, dielectric material, and other materials with very different properties, so there is a slight difference in the shrinkage rate of each material. However, it has been impossible to obtain composite parts with stable quality and high reliability because phenomena such as peeling and cracking tend to occur at the interface between an insulator and a dielectric due to interdiffusion between different materials.

(問題を解決するための手段) 本発明は、誘電体を絶縁体ではさみ込んだ構造
を有する複合積層セラミツク部品において、誘電
体層と絶縁体層の界面に誘電体材料を添加した金
属層と、絶縁体材料を添加した金属層の異なる2
種類の金属層を形成した。
(Means for Solving the Problems) The present invention provides a composite laminated ceramic component having a structure in which a dielectric material is sandwiched between insulating materials. , two different metal layers added with insulator material
Formed various metal layers.

(作用) この誘電体材料が添加された金属層を形成する
材料および絶縁体材料が添加された金属層は、比
較的低い温度で焼結が起こるため、高温で誘電体
と絶縁体のセラミツクスの焼結反応が起こる際こ
れらの界面の完全に分離し、異なる材料間の相互
拡散を防止し、セラミツクス同志の反応を全く起
こさせなくする。この事は、従来発生したマイク
ロクラツク、界面の剥離などを防止するための効
果がある。また各セラミツクス(誘電体、絶縁
体)との接合をもたせるため誘電体側の界面には
誘電体材料を添加した金属体材料による金属層を
設け、一方絶縁体側には、絶縁体材料を添加した
金属体材料による金属層を設けることにより接合
性の高い剥離の発生しない複合積層セラミツク部
品を実現した。
(Function) The material forming the metal layer to which dielectric material is added and the metal layer to which insulator material is added undergo sintering at a relatively low temperature, so the dielectric and insulator ceramics sinter at a high temperature. When the sintering reaction occurs, these interfaces are completely separated, preventing interdiffusion between different materials and preventing any reaction between ceramics. This has the effect of preventing microcracks, interfacial peeling, etc. that conventionally occur. In addition, in order to bond with each ceramic (dielectric, insulator), a metal layer made of a metal material added with a dielectric material is provided at the interface on the dielectric side, while a metal layer made of a metal material added with an insulator material is provided on the insulator side. By providing a metal layer made of body material, we have achieved a composite laminated ceramic component with high bonding properties and no peeling.

(実施例) 以下、本発明について実施例によつて詳細に説
明する。一般的にセラミツクグリーンシートを得
るには、酸化粉末原料を秤量し、ボールミル等に
より混合あるいは粉砕を行なう。次に混合粉末原
料を電気炉等を用いて仮焼し予焼粉末材料を作製
する。仮焼して得た予焼粉末材料を有機溶剤およ
び有機物バインダと混合しスラリーを得る。その
スラリーをドクターブレイド法等のキヤステイン
グ装置を用い、ポリエチレンフイルム上にグリー
ンシート化しセラミツクグリーンシートを得る。
(Examples) Hereinafter, the present invention will be explained in detail by way of examples. Generally, to obtain ceramic green sheets, oxidized powder raw materials are weighed and mixed or pulverized using a ball mill or the like. Next, the mixed powder raw material is calcined using an electric furnace or the like to produce a prefired powder material. The precalcined powder material obtained by calcining is mixed with an organic solvent and an organic binder to obtain a slurry. The slurry is formed into a green sheet on a polyethylene film using a casting device such as a doctor blade method to obtain a ceramic green sheet.

前記方法を用いて絶縁体のセラミツクグリーン
シート、誘電体のセラミツクグリーンシート、絶
縁体材料を添加した金属体グリーンシート、誘電
体材料を添加した金属体グリーンシートを各々作
製し、それぞれ適当な形状に切断し、各セラミツ
クグリーンシート片および2種類の金属体グリー
ンシート片を作製した。
Using the method described above, an insulating ceramic green sheet, a dielectric ceramic green sheet, a metal green sheet with an insulating material added, and a metal green sheet with a dielectric material added were produced, and each was shaped into an appropriate shape. By cutting, each ceramic green sheet piece and two types of metal green sheet pieces were produced.

次に誘電体シート片にはAg/Pd内部電極ペー
ストを用い電極パターンを印刷し、更にスノーホ
ールが必要な各セラミツクグリーンシート片は、
スルーホールを開けその後スルーホールに電極ペ
ーストを詰めビア導体部を形成する。また金属シ
ート片には、必要なスルーホールを形成し、次
に、第1図のような構造になるように積層し、プ
レス金型に投入後、熱圧着プレスを行なう。圧着
プレスされた生複合積層セラミツク体を、ナイフ
刃などにより所定の形状に切断後、500℃前後に
て脱バインダ処理を行ない、脱バインダ後の複合
積層体を電気炉を用い、850℃から950℃位の温度
で焼結することによりコンデンサ内蔵複合積層セ
ラミツク部品が得られる。
Next, electrode patterns are printed on the dielectric sheet pieces using Ag/Pd internal electrode paste, and each ceramic green sheet piece that requires snowholes is
A through hole is opened and then filled with electrode paste to form a via conductor. Further, necessary through holes are formed in the metal sheet pieces, and then they are laminated so as to have the structure shown in FIG. 1, and after being put into a press mold, a thermocompression press is performed. After cutting the press-pressed raw composite laminated ceramic body into a predetermined shape with a knife blade, etc., the binder is removed at around 500℃, and the composite laminate after the binder is removed is heated from 850℃ to 950℃ using an electric furnace. A composite laminated ceramic component with a built-in capacitor can be obtained by sintering at a temperature of about °C.

なお、ここで用いる絶縁体としては、アルミナ
ホらケイ酸鉛系の複合材料をはじめ、コージエラ
イト系セラミツクス、ムライト系セラミツクス、
アノーサイト系セラミツクス、カルシライト系セ
ラミツクス、フオルステライト系セラミツクス、
スポデユーメン、ユークリプタイト等の材料が適
当できる。これらの絶縁体の誘電率は5〜10程度
である。
The insulators used here include alumina oxide, lead silicate-based composite materials, cordierite-based ceramics, mullite-based ceramics,
anorthite ceramics, calcilite ceramics, forsterite ceramics,
Materials such as spodumene and eucryptite are suitable. The dielectric constant of these insulators is about 5 to 10.

一方、誘電体材料としては、鉛を含むペログス
カイト構造の化合物であり、焼結温度を絶縁体材
料と合せている。この誘電体材料の誘電率は構成
する元素の組成により変化するがほぼ500〜20000
の範囲で制御している。したがつて大容量のコン
デンサを形成するためには極めて有利である。
On the other hand, the dielectric material is a compound with a perogskite structure containing lead, and the sintering temperature is the same as that of the insulating material. The dielectric constant of this dielectric material varies depending on the composition of the constituent elements, but is approximately 500 to 20,000.
It is controlled within the range of Therefore, it is extremely advantageous for forming a large capacity capacitor.

また、金属体としては、Au、Ag、Pd、Pt、
Cu、Niなど1つ以上を含む組成からなる金属材
料に絶縁体材料と誘電体材料をそれぞれ添加した
ものをそれぞれの金属層とした。
In addition, examples of metal bodies include Au, Ag, Pd, Pt,
Each metal layer was made by adding an insulator material and a dielectric material to a metal material having a composition containing one or more of Cu, Ni, etc.

第1図は実施例に基づき作製されたコンデンサ
内蔵複合積層セラミツク部品の分解断面図であ
る。コンデンサ層となる内部電極パターンを有す
る誘電体層1の上下面に誘電体フリツト入り金属
層2,3を形成。さらに金属層2,3の各外側面
に、絶縁体フリツト入り金属層4,5が形成さ
れ、さらに金属層4,5の各側側面に、絶縁体層
6,7が形成された複合積層構造で、誘電体層1
に形成された内部電極パターン8はコンデンサ部
として導体電極9により絶縁体層6の上面に導か
れ、基板上面のパツト電極10、として形成され
る。
FIG. 1 is an exploded cross-sectional view of a composite laminated ceramic component with a built-in capacitor manufactured based on an example. Dielectric frit-containing metal layers 2 and 3 are formed on the upper and lower surfaces of a dielectric layer 1 having an internal electrode pattern that becomes a capacitor layer. Further, metal layers 4 and 5 containing insulating frits are formed on each outer surface of the metal layers 2 and 3, and furthermore, insulator layers 6 and 7 are formed on each side surface of the metal layers 4 and 5. So, dielectric layer 1
The internal electrode pattern 8 formed in the capacitor portion is guided to the upper surface of the insulating layer 6 by a conductive electrode 9, and is formed as a patch electrode 10 on the upper surface of the substrate.

以上のように絶縁体材料を添加した絶縁体フリ
ツト入り金属層と誘電体材料を添加した誘電体フ
リツト入り金属層の2種類の金属層を絶縁体層と
誘電体層の界面に形成することで、金属層のない
ものと比べ誘電体と絶縁体の界面反応を防止し、
かつ接合性が良好な信頼性の高い高品質のコンデ
ンサ内蔵複合積層セラミツク部品が提供できた。
As described above, by forming two types of metal layers at the interface between the insulator layer and the dielectric layer, a metal layer containing an insulator frit containing an insulating material and a metal layer containing a dielectric frit containing a dielectric material. , prevents interfacial reaction between dielectric and insulator compared to those without metal layer,
Moreover, we were able to provide a highly reliable, high-quality composite laminated ceramic component with a built-in capacitor that has good bonding properties.

なお、本実施例では金属層をグリーンシート法
によつて形成したが、スクリーン印刷法などの金
属ペーストを印刷する方法によつても金属層を形
成することが可能であることを確認した。
Although the metal layer was formed by a green sheet method in this example, it was confirmed that the metal layer could also be formed by a method of printing a metal paste such as a screen printing method.

(発明の効果) 本発明によれば異なる材料層間にクラツクなど
の生じない高信頼性を有する複合積層セラミツク
部品が得られる。
(Effects of the Invention) According to the present invention, it is possible to obtain a highly reliable composite laminated ceramic component in which no cracks occur between layers of different materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のコンデンサ内蔵複合積層セラ
ミツク部品の実施例における断面図。第2図は従
来の複合積層セラミツク部品の分解断面図。 1……誘電体層、2,3……誘電体フリツト入
り金属層、4,5……絶縁体フリツト入り金属
層、6,7……絶縁体層、8……内部パターン電
極、9……導体、10……電極パツド、11……
誘電体層、12,13……絶縁体層。
FIG. 1 is a sectional view of an embodiment of a composite laminated ceramic component with a built-in capacitor according to the present invention. Figure 2 is an exploded cross-sectional view of a conventional composite laminated ceramic part. 1... Dielectric layer, 2, 3... Metal layer with dielectric frit, 4, 5... Metal layer with insulator frit, 6, 7... Insulator layer, 8... Internal pattern electrode, 9... Conductor, 10... Electrode pad, 11...
Dielectric layer, 12, 13...Insulator layer.

Claims (1)

【特許請求の範囲】[Claims] 1 誘電体層と絶縁体層と導体とからなる複合積
層セラミツク部品において、誘電体層と絶縁体層
の界面に2層の金属層が形成されており、誘電体
層に接する側に誘電体材料を添加した金属層が形
成され、該絶縁体層に接する側に絶縁体材料を添
加した金属層が形成された構造を有することを特
徴とする複合積層セラミツク部品。
1 In a composite laminated ceramic component consisting of a dielectric layer, an insulator layer, and a conductor, two metal layers are formed at the interface between the dielectric layer and the insulator layer, and a dielectric material is formed on the side in contact with the dielectric layer. 1. A composite laminated ceramic component characterized in that it has a structure in which a metal layer to which is added is formed, and a metal layer to which an insulator material is added is formed on the side in contact with the insulator layer.
JP61025129A 1986-02-06 1986-02-06 Composite laminated ceramic parts Granted JPS62183106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61025129A JPS62183106A (en) 1986-02-06 1986-02-06 Composite laminated ceramic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61025129A JPS62183106A (en) 1986-02-06 1986-02-06 Composite laminated ceramic parts

Publications (2)

Publication Number Publication Date
JPS62183106A JPS62183106A (en) 1987-08-11
JPH0513367B2 true JPH0513367B2 (en) 1993-02-22

Family

ID=12157341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61025129A Granted JPS62183106A (en) 1986-02-06 1986-02-06 Composite laminated ceramic parts

Country Status (1)

Country Link
JP (1) JPS62183106A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578134B2 (en) * 2004-03-29 2010-11-10 京セラ株式会社 Glass ceramic multilayer wiring board with built-in capacitor

Also Published As

Publication number Publication date
JPS62183106A (en) 1987-08-11

Similar Documents

Publication Publication Date Title
JP2001060767A (en) Method for manufacturing ceramic board and unfired ceramic board
US20060234021A1 (en) Multi-layer ceramic substrate, method for manufacturing the same and electronic device using the same
KR20050026369A (en) Method for producing ceramic substrate, and ceramic substrate
JPH11251723A (en) Circuit board
JP3121822B2 (en) Conductor paste and wiring board
JPH0542159B2 (en)
EP2520139B1 (en) Mixed-metal system conductors for use in low-temperature co-fired ceramic circuits and devices
JPH0513367B2 (en)
JPH0462449B2 (en)
JPH0795630B2 (en) Composite monolithic ceramic parts
JPH0513524B2 (en)
JP4077625B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JP2604416B2 (en) Composite multilayer ceramic parts
JPH0155594B2 (en)
JPH0453119B2 (en)
JP2598706B2 (en) Carrier board with built-in capacitor
JPH0787226B2 (en) Low dielectric constant insulator substrate
JPH01166599A (en) Manufacture of laminated ceramic substrate
JP4623851B2 (en) Multilayer wiring board
JP2000138428A (en) Wiring board
JPS6092697A (en) Composite laminated ceramic part
JPH08298365A (en) Ceramic board with capacitor
JPH0544838B2 (en)
Chai et al. New generation silver conductor system for LTCC applications
JPS63228608A (en) Composite laminated ceramic component

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term