JPH0795630B2 - Composite monolithic ceramic parts - Google Patents

Composite monolithic ceramic parts

Info

Publication number
JPH0795630B2
JPH0795630B2 JP1049917A JP4991789A JPH0795630B2 JP H0795630 B2 JPH0795630 B2 JP H0795630B2 JP 1049917 A JP1049917 A JP 1049917A JP 4991789 A JP4991789 A JP 4991789A JP H0795630 B2 JPH0795630 B2 JP H0795630B2
Authority
JP
Japan
Prior art keywords
dielectric
layer
insulating
capacitor
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1049917A
Other languages
Japanese (ja)
Other versions
JPH02230798A (en
Inventor
孝忠 冨岡
勇三 嶋田
和明 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1049917A priority Critical patent/JPH0795630B2/en
Publication of JPH02230798A publication Critical patent/JPH02230798A/en
Publication of JPH0795630B2 publication Critical patent/JPH0795630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は複合積層セラミック部品に関する。TECHNICAL FIELD The present invention relates to a composite laminated ceramic component.

[従来の技術] 従来、大容量のコンデンサを利用する電子回路に対して
は、アルミナなどの基板上にチップ形コンデンサを搭載
し、高集積化をはかってきた。
[Prior Art] Conventionally, for an electronic circuit using a large-capacity capacitor, a chip-type capacitor is mounted on a substrate made of alumina or the like to achieve high integration.

つまり、セラミック等の絶縁体基板上に印刷法などによ
り、抵抗体、電極および導体による配線パターンの形成
を行い、かつ同一面上にチップ形コンデンサおよび半導
体集積回路等を搭載する方法で混成集積回路を作製して
いた。また最近では、コンデンサを形成する誘電体を絶
縁体で挟み込んだ複合セラミック部品の開発が進み、混
成集積回路などへの応用が行われつつある。
That is, a hybrid integrated circuit is formed by forming a wiring pattern of resistors, electrodes and conductors on an insulating substrate such as ceramics by a printing method and mounting a chip type capacitor and a semiconductor integrated circuit on the same surface. Was being made. In addition, recently, development of a composite ceramic component in which a dielectric material forming a capacitor is sandwiched between insulators has been advanced, and its application to a hybrid integrated circuit or the like is being performed.

さらに、近年ではエレクトロニクスの急速な技術進歩に
伴い、各種エレクトロニクス部品は小型化へ移行しつつ
あり、低コスト化の点においても部品の軽薄短小化は必
須条件となってきている。
Further, in recent years, with the rapid technological progress of electronics, various electronic parts are shifting to miniaturization, and in terms of cost reduction, miniaturization of parts has become an essential condition.

しかしながら、従来の混成集積回路等の複合部品では、
限られたセラミック等の絶縁体基板上に、抵抗体、電
極、配線パターンをより高密度に印刷すること、および
チップ形コンデンサ、半導体集積回路等をより高集積に
搭載することは、ある程度の限界がある。
However, in conventional composite parts such as hybrid integrated circuits,
To some extent, it is possible to print resistors, electrodes, and wiring patterns with higher density on a limited insulating substrate such as ceramics, and to mount chip capacitors, semiconductor integrated circuits, etc. in a higher degree of integration. There is.

例えば、高密度の配線パターンを形成した場合には、品
質の低下あるいはコストの高騰を生じ、高集積な設計に
おいては、特に実装部品類の数量増加に伴う搭載スペー
スの問題および形状の制約などが問題となった。
For example, when a high-density wiring pattern is formed, the quality is lowered or the cost is soared. In the highly integrated design, there are problems such as a mounting space problem due to an increase in the number of mounting parts and a shape restriction. It became a problem.

そこで高密度、高集積化をはかるために、絶縁体基板中
に抵抗体やコンデンサを納めて積層した構造を持つ複合
積層セラミック部品が開発されつつある。
Therefore, in order to achieve high density and high integration, a composite laminated ceramic component having a structure in which resistors and capacitors are housed and laminated in an insulating substrate is being developed.

第2図は、この複合積層セラミック部品の一例を示す積
層形成前の基板の断面図である。
FIG. 2 is a cross-sectional view of a substrate before laminated formation showing an example of this composite laminated ceramic component.

この例では、所定の誘電率をもつ3枚の誘電体層1のう
ちの2枚にコンデンサの電極を形成する電極層3を設
け、これらを積層してコンデンサとする。絶縁体層2の
最外層の1枚には外面に外部回路とのパッド電極6を設
け、絶縁体層2に他の部品、配線などと共に設けられた
引出し導体4および接続パターン配線5により、これら
絶縁体層2、誘電体層1を積層・圧着した時に外部パッ
ド電極6と電極層3とが接続する構造となっている。こ
れら誘電体材料、絶縁体材料は、互いに異なる性質を有
しており、このうち絶縁体材料としては通常、酸化アル
ミニウムとホウケイ酸鉛系ガラスの2成分組成物が用い
られている。
In this example, two of the three dielectric layers 1 having a predetermined dielectric constant are provided with the electrode layers 3 forming the electrodes of the capacitor, and these are laminated to form a capacitor. One of the outermost layers of the insulator layer 2 is provided with a pad electrode 6 for an external circuit on the outer surface, and the lead conductor 4 and the connection pattern wiring 5 provided on the insulator layer 2 together with other components, wiring, etc. The external pad electrode 6 and the electrode layer 3 are connected to each other when the insulating layer 2 and the dielectric layer 1 are laminated and pressure-bonded. These dielectric materials and insulating materials have different properties from each other, and among them, a two-component composition of aluminum oxide and lead borosilicate glass is usually used as the insulating material.

[発明が解決しようとする課題] 上述した従来の複合積層セラミック部品は積層された誘
電体層1、絶縁体層2が互いに異なる性質を有する誘電
体材料、絶縁体材料により形成される構成となっている
ので、各材料の微妙な収縮率の差や熱膨張率の大きな相
違等により、絶縁体層2と誘電体層1との界面で剥離や
クラックなどの現象が生じ易く、品質の安定性および信
頼性を阻害するという欠点があった。
[Problems to be Solved by the Invention] In the above-described conventional composite laminated ceramic component, the laminated dielectric layers 1 and insulating layers 2 are made of dielectric materials having different properties from each other, and are made of an insulating material. Therefore, due to a slight difference in shrinkage ratio or a large difference in thermal expansion coefficient between the materials, a phenomenon such as peeling or cracking is likely to occur at the interface between the insulating layer 2 and the dielectric layer 1 and stability of quality is improved. And there is a drawback that it hinders reliability.

本発明の目的は、絶縁体層と誘電体層の界面での剥離や
クラックの発生を防止し、品質の安定性、信頼性が向上
した複合積層セラミック部品を提供することにある。
It is an object of the present invention to provide a composite multilayer ceramic component that prevents peeling and cracks from occurring at the interface between an insulating layer and a dielectric layer and that has improved quality stability and reliability.

[課題を解決するための手段] 本発明は、絶縁体層と、コンデンサを形成する内部電極
を設けた誘電体層と、該誘電体層のコンデンサを前記絶
縁体層の最上部に導く導体と、導体配線層とからなる複
合積層セラミック部品において、絶縁体層を形成する絶
縁体材料が酸化アルミニウム、酸化マグネシウムおよび
ホウケイ酸鉛系ガラスの3成分組成物を主成分とし、か
つ誘電体層を形成する誘電体材料が鉛を含むペロブスカ
イト構造の化合物を主成分としてなり、前記絶縁体材料
と前記誘電体材料の熱膨張係数差が2.0×10-6/℃以内で
あることを特徴とする複合積層セラミック部品である。
[Means for Solving the Problems] The present invention provides an insulator layer, a dielectric layer provided with an internal electrode forming a capacitor, and a conductor for guiding the capacitor of the dielectric layer to the uppermost part of the insulator layer. In a composite multilayer ceramic component including a conductor wiring layer, the insulating material forming the insulating layer contains a three-component composition of aluminum oxide, magnesium oxide and lead borosilicate glass as a main component, and a dielectric layer is formed. The composite laminate characterized in that the dielectric material contains a compound of perovskite structure containing lead as a main component, and the difference in thermal expansion coefficient between the insulating material and the dielectric material is within 2.0 × 10 −6 / ° C. It is a ceramic part.

従来の複合積層セラミック部品においては、絶縁体材料
と誘電体材料は熱的特性(熱膨張率)に差があるものが
用いられており、その差が焼結後のクラック発生を起こ
させる要因となっていた。
In conventional composite monolithic ceramic parts, insulator materials and dielectric materials are used that have different thermal characteristics (coefficient of thermal expansion), and this difference is a factor that causes cracking after sintering. Was becoming.

本発明においては、絶縁体材料および誘電体材料として
上記したものを用い、絶縁体層を形成する絶縁体材料と
誘電体層を形成する誘電体材料の熱膨張係数差を2×10
-6/℃以内にコントロールすることによって両層の熱膨
張率差を少なくし、クラックの発生を防止する。
In the present invention, the above-mentioned materials are used as the insulating material and the dielectric material, and the thermal expansion coefficient difference between the insulating material forming the insulating layer and the dielectric material forming the dielectric layer is 2 × 10 5.
By controlling the temperature within -6 / ℃, the difference in the coefficient of thermal expansion between both layers is reduced, and the occurrence of cracks is prevented.

絶縁体材料を構成する各成分の割合は、酸化アルミニウ
ムが20重量%以下、酸化マグネシウムが15〜40重量%、
ホウケイ酸鉛系ガラスが52〜75重量%の組成範囲である
ことが好ましい。
The proportion of each component constituting the insulating material is such that aluminum oxide is 20% by weight or less, magnesium oxide is 15 to 40% by weight,
It is preferable that the lead borosilicate glass has a composition range of 52 to 75% by weight.

酸化アルミニウムが20重量%を超える範囲および酸化マ
グネシウムが40重量%を超える範囲では、1000℃以下で
焼結されず、また酸化マグネシウムが15重量%未満の範
囲では熱膨張率が小さくなる。さらにホウケイ酸鉛系ガ
ラスにおいては、上記範囲外の場合にはガラス安定性が
得られず、発泡やガラス成分の流出が生じやすい。
When the content of aluminum oxide exceeds 20% by weight and the content of magnesium oxide exceeds 40% by weight, sintering is not performed at 1000 ° C. or lower, and the coefficient of thermal expansion decreases when the content of magnesium oxide is less than 15% by weight. Further, in the case of lead borosilicate glass, when the content is out of the above range, the glass stability cannot be obtained, and foaming and outflow of glass components easily occur.

また、絶縁体材料と誘電体材料との焼結後の収縮差につ
いては、前述の熱膨張率の整合によって微妙な収縮差は
問題とならなくなるが、収縮差が問題となるような場合
は絶縁体の組成比をコントロールすることにより適当な
ものとすることが可能である。
Regarding the shrinkage difference between the insulating material and the dielectric material after sintering, the subtle difference in shrinkage does not become a problem due to the matching of the thermal expansion coefficients described above. It is possible to make it appropriate by controlling the composition ratio of the body.

[実施例] 次に本発明の実施例について図面を参照して詳細に説明
する。
[Embodiment] Next, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す積層成形前の基板の断
面図である。第1図の基板断面図の主要構成部分は第2
図におけるものと同様であるので、同一構成部分につい
てはその説明を省略する。この実施例が第2図に示す従
来の複合積層セラミック部品と異なる点は、従来は絶縁
体層2を形成する絶縁体材料は酸化アルミニウムとホウ
ケイ酸鉛系ガラスの2成分組成物であるのに対し、本実
施例では絶縁体材料を酸化アルミニウム、酸化マグネシ
ウム、ホウケイ酸鉛系ガラスの3成分組成物にし、誘電
体材料との熱膨張係数の差を2×10-6/℃以内にコント
ロールしたことにある。
FIG. 1 is a cross-sectional view of a substrate before lamination molding showing one embodiment of the present invention. The main component of the substrate cross-sectional view of FIG. 1 is the second
Since it is similar to that in the figure, description of the same components will be omitted. This example is different from the conventional composite laminated ceramic part shown in FIG. 2 in that the insulator material forming the insulator layer 2 is a two-component composition of aluminum oxide and lead borosilicate glass in the past. On the other hand, in this example, the insulating material was a three-component composition of aluminum oxide, magnesium oxide, and lead borosilicate glass, and the difference in the coefficient of thermal expansion from the dielectric material was controlled within 2 × 10 −6 / ° C. Especially.

次に、この実施例の製造方法について説明する。Next, the manufacturing method of this embodiment will be described.

誘電体層および絶縁体層のセラミックグリーンシートを
得るには、まず粉末原料を秤量し、ボールミル等により
混合あるいは粉砕を行う。次に混合粉末原料を電気炉等
を用いて仮焼し、予焼粉末材料を作製する。仮焼して得
た予焼粉末材料を有機溶剤および有機物バインダと混合
しスラリーを得る。このスラリーをドクターブレード法
等のキャスティング装置を用い、ポリエチレンフィルム
上にグリーンシート化し、セラミックグリーンシートを
得る。
In order to obtain the ceramic green sheets of the dielectric layer and the insulating layer, first, the powder raw materials are weighed and mixed or pulverized by a ball mill or the like. Next, the mixed powder raw material is calcined using an electric furnace or the like to prepare a pre-calcined powder material. The pre-calcined powder material obtained by calcination is mixed with an organic solvent and an organic binder to obtain a slurry. This slurry is formed into a green sheet on a polyethylene film using a casting device such as a doctor blade method to obtain a ceramic green sheet.

前記方法により、絶縁体のセラミックグリーンシート、
誘電体のセラミックグリーンシートを作製し、それぞれ
所定の形状に切断し、各セラミックグリーンシート片を
作製する。
According to the above method, an insulating ceramic green sheet,
Dielectric ceramic green sheets are produced and cut into predetermined shapes to produce individual ceramic green sheet pieces.

なお、ここで用いる誘電体材料は、鉛を含むペロブスカ
イト構造の化合物であり、この誘電体材料の誘電率は、
構成する元素の組成比により変化するが、ほぼ500〜200
00の範囲で制御できる。従って、大容量のコンデンサを
形成するためには、極めて有利である。
The dielectric material used here is a compound having a perovskite structure containing lead, and the dielectric constant of this dielectric material is
Depending on the composition ratio of the constituent elements, it is almost 500-200
It can be controlled in the range of 00. Therefore, it is extremely advantageous for forming a large capacity capacitor.

また、ここで用いる絶縁体材料としては、アルミナ、マ
グネシア、ホウケイ酸鉛系ガラスの複合材料をはじめ、
コーディライト系セラミックス、カルシライト系セラミ
ックス等の材料も熱膨張率をコントロールすることで適
合可能で、これらの絶縁体材料の誘電率は5〜10程度で
ある。
As the insulating material used here, a composite material of alumina, magnesia, lead borosilicate glass,
Materials such as cordierite-based ceramics and calcillite-based ceramics can be adapted by controlling the coefficient of thermal expansion, and the dielectric constant of these insulator materials is about 5-10.

一方、金属体としてはAu,Ag,Pb,Pt,Cu,Ni等の1種以上
を含む組成からなるものを用いる。
On the other hand, as the metal body, one having a composition containing at least one of Au, Ag, Pb, Pt, Cu, Ni and the like is used.

次に誘電体のセラミックグリーンシート片にはAg−Pdペ
ーストを用い、コンデンサの電極層3を印刷し、さらに
スルーホールが必要な各セラミックグリーンシート片に
はスルーホールを開け、その後スルーホールにAg−Pdペ
ーストを詰め、導体4を形成する。同様にして最外層の
絶縁体層2となるセラミックグリーンシート片に外部パ
ッド電極6を形成し、導体4と外部パッド電極6とを接
続する導体配線層5を絶縁体層2となるセラミックグリ
ーンシート片に形成する。
Next, Ag-Pd paste is used for the dielectric ceramic green sheet pieces, the electrode layer 3 of the capacitor is printed, and a through hole is made in each ceramic green sheet piece that requires a through hole. Fill the Pd paste to form the conductor 4. Similarly, an outer pad electrode 6 is formed on a ceramic green sheet piece which is the outermost insulator layer 2, and a conductor wiring layer 5 connecting the conductor 4 and the outer pad electrode 6 is the insulator green layer 2. Form into pieces.

次に第1図のような構造になるように積層し、プレス型
に投入後、熱圧着プレスを行う。プレス圧着された生積
層セラミック体をナイフ刃等により所定の形状に切断
後、脱バインダ処理を500℃前後の温度で行う。その
後、850〜1000℃位の温度で焼結することによりコンデ
ンサ内蔵の複合積層セラミック部品が得られる。
Next, they are laminated so as to have a structure as shown in FIG. The press-pressed green laminated ceramic body is cut into a predetermined shape with a knife blade or the like, and then binder removal processing is performed at a temperature of about 500 ° C. Then, by sintering at a temperature of about 850 to 1000 ° C, a composite laminated ceramic component with a built-in capacitor can be obtained.

第1表は絶縁体層の材料組成として同表に記載の各成分
量を用いて複合積層セラミック部品を製造した時の、絶
縁体材料と誘電体材料の熱膨張係数差および部品のクラ
ック発生の有無を示したものである。
Table 1 shows the difference in the coefficient of thermal expansion between the insulating material and the dielectric material and the occurrence of cracks in the component when a composite multilayer ceramic component is manufactured by using the respective component amounts described in the same table as the material composition of the insulating layer. It indicates the presence or absence.

同表からわかるように、本発明の複合積層セラミック部
品は、絶縁体層と誘電体層との熱膨張率差がコントロー
ルされ、熱ストレスによる応力が制御されることでクラ
ックの発生が防止される。
As can be seen from the table, in the composite laminated ceramic component of the present invention, the difference in the coefficient of thermal expansion between the insulating layer and the dielectric layer is controlled, and the stress due to thermal stress is controlled to prevent the occurrence of cracks. .

[発明の効果] 以上説明したように、本発明の複合積層セラミック部品
は、絶縁体層と誘電体層の材料として所定のものを用い
ることにより、両層の熱膨張率差がコントロールされ、
熱ストレスによる応力が制御されるため、クラックの発
生がなく、かつ異質材料間の微妙な収縮差によるデラミ
ネーションも抑制することができ、品質の安定性、信頼
性の向上をはかることができる効果を有する。
[Effects of the Invention] As described above, in the composite laminated ceramic component of the present invention, the difference in the coefficient of thermal expansion between the two layers is controlled by using a predetermined material as the material of the insulating layer and the dielectric layer.
Since stress due to thermal stress is controlled, cracks do not occur, and delamination due to subtle contraction differences between dissimilar materials can also be suppressed, making it possible to improve quality stability and reliability. Have.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す積層成形前の基板の断
面図、第2図は従来の複合積層セラミック部品の一例を
示す積層成形前の基板の断面図である。 1……誘電体層、2……絶縁体層 3……コンデンサの電極層 4……導体、5……導体配線層 6……外部パッド電極
FIG. 1 is a cross-sectional view of a substrate before lamination molding showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a substrate before lamination molding showing an example of a conventional composite laminated ceramic component. 1 ... Dielectric layer, 2 ... Insulator layer, 3 ... Capacitor electrode layer, 4 ... Conductor, 5 ... Conductor wiring layer, 6 ... External pad electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁体層と、コンデンサを形成する内部電
極を設けた誘電体層と、該誘電体層のコンデンサを前記
絶縁体層の最上部に導く導体と、導体配線層とからなる
複合積層セラミック部品において、絶縁体層を形成する
絶縁体材料が酸化アルミニウム、酸化マグネシウムおよ
びホウケイ酸鉛系ガラスの3成分組成物を主成分とし、
かつ誘電体層を形成する誘電体材料が鉛を含むペロブス
カイト構造の化合物を主成分としてなり、前記絶縁体材
料と前記誘電体材料の熱膨張係数差が2.0×10-6/℃以内
であることを特徴とする複合積層セラミック部品。
1. A composite comprising an insulating layer, a dielectric layer provided with an internal electrode forming a capacitor, a conductor for guiding the capacitor of the dielectric layer to the uppermost part of the insulating layer, and a conductor wiring layer. In the laminated ceramic component, the insulating material forming the insulating layer contains a three-component composition of aluminum oxide, magnesium oxide and lead borosilicate glass as a main component,
And the dielectric material forming the dielectric layer is composed mainly of a compound having a perovskite structure containing lead, and the thermal expansion coefficient difference between the insulating material and the dielectric material is within 2.0 × 10 -6 / ° C. Composite multilayer ceramic parts characterized by:
JP1049917A 1989-03-03 1989-03-03 Composite monolithic ceramic parts Expired - Lifetime JPH0795630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049917A JPH0795630B2 (en) 1989-03-03 1989-03-03 Composite monolithic ceramic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049917A JPH0795630B2 (en) 1989-03-03 1989-03-03 Composite monolithic ceramic parts

Publications (2)

Publication Number Publication Date
JPH02230798A JPH02230798A (en) 1990-09-13
JPH0795630B2 true JPH0795630B2 (en) 1995-10-11

Family

ID=12844362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049917A Expired - Lifetime JPH0795630B2 (en) 1989-03-03 1989-03-03 Composite monolithic ceramic parts

Country Status (1)

Country Link
JP (1) JPH0795630B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454161A (en) * 1993-04-29 1995-10-03 Fujitsu Limited Through hole interconnect substrate fabrication process
JP3680713B2 (en) * 2000-07-21 2005-08-10 株式会社村田製作所 Insulator porcelain, ceramic multilayer substrate, ceramic electronic component and multilayer ceramic electronic component
GB2365007B (en) * 2000-07-21 2002-06-26 Murata Manufacturing Co Insulative ceramic compact
DE10313891A1 (en) * 2003-03-27 2004-10-14 Epcos Ag Electrical multilayer component
KR102319596B1 (en) * 2017-04-11 2021-11-02 삼성전기주식회사 Multilayered capacitor and board having the same mounted thereon

Also Published As

Publication number Publication date
JPH02230798A (en) 1990-09-13

Similar Documents

Publication Publication Date Title
JP3407716B2 (en) Composite laminated electronic components
KR100383378B1 (en) Monolithic ceramic substrate, manufacturing and designing methods therefor, and electronic device
US5814366A (en) Method of manufacturing multilayered ceramic substrate
JP2001060767A (en) Method for manufacturing ceramic board and unfired ceramic board
US20020166694A1 (en) Monolithic ceramic substrate and method for making the same
JPH0795630B2 (en) Composite monolithic ceramic parts
JP2001085839A (en) Method for manufacturing multi-ceramic substrate
JP4782397B2 (en) Conductive paste and method for manufacturing wiring board using the same
JPS5917233A (en) Method of producing composite laminated ceramic part
JP2604416B2 (en) Composite multilayer ceramic parts
JP3498200B2 (en) Multilayer ceramic composite parts
JPH0542159B2 (en)
JPS6092697A (en) Composite laminated ceramic part
JP2003026472A (en) Method for producing multilayer ceramic electronic parts, multilayer ceramic electronic parts and raw composite multilayer body for producing multilayer ceramic electronic parts
JPH0216004B2 (en)
JPH0462449B2 (en)
JP2004259897A (en) Layered ceramic capacitor and method of manufacturing the same
JP4514301B2 (en) Manufacturing method of multilayer wiring board
JP4623851B2 (en) Multilayer wiring board
JPS60176296A (en) Method of producing glazed resistance element interal multilayer substrate
JPS6313318A (en) Composite laminated ceramic parts
JPS63228608A (en) Composite laminated ceramic component
JPH04280496A (en) Multi-layer ceramic circuit board incorporating capacitor and production thereof
JPH0513367B2 (en)
JPS58163102A (en) Conductive paste

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 14