JPH05285477A - Method for making ultrapure water - Google Patents

Method for making ultrapure water

Info

Publication number
JPH05285477A
JPH05285477A JP4090614A JP9061492A JPH05285477A JP H05285477 A JPH05285477 A JP H05285477A JP 4090614 A JP4090614 A JP 4090614A JP 9061492 A JP9061492 A JP 9061492A JP H05285477 A JPH05285477 A JP H05285477A
Authority
JP
Japan
Prior art keywords
water
height
treated
exchange resin
resin bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4090614A
Other languages
Japanese (ja)
Inventor
Yoshitaka Yamaki
由孝 八巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP4090614A priority Critical patent/JPH05285477A/en
Publication of JPH05285477A publication Critical patent/JPH05285477A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To continuously and easily obtain ultrapure water of high quality extremely low in silica concn. by setting the mixing ratio of the strong acidic cation exchange resin and strong basic anion exchange resin received in a polisher apparatus and the height of the packed resin bed to predetermined values and passing water to be treated through the resin bed at a predetermined water passing speed. CONSTITUTION:In an ultrapure water making method having a pretreatment means of water to be treated, a primary pure water making means and a secondary pure water making means 3 equipped with the nonregeneration type polisher device 3b'', the mixing ratio of the strong acidic cation exchange resin and strong basic anion exchange resin received in the polisher device 3b'' is set to 1/5 and the height of the packed resin bed is set to at least 0.4m and water to be treated is passed through the resin bed at a water passing speed satisfying formula 2m10<-2= height (m) of packed resin bed/linear velocity m/h of water to be treated <=8X10<-2> at the time of 0.4m<= height of packed resin bed < 0.8m and formula 1.5X10<-2= height (m) of packed resin bed/linear velocity m/h of water to be treated <=1X10<-1> at the time of 0.8<= height of packed resin bed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超純水化方法に係り、特
にシリカ濃度が大幅に低減された高純度水を連続的に製
造しえる超純水化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrapure water purification method, and more particularly to an ultrapure water purification method capable of continuously producing high-purity water having a significantly reduced silica concentration.

【0002】[0002]

【従来の技術】たとえば半導体の製造や医薬品の製造な
どの分野では、超高純度の純水が広く使用されている。
そして、このような超高純度の純水は、通常前処理手
段,一次純水化手段,および二次純水化手段を順次経て
超高純水化することにより製造されている。すなわち、
原水中のコロイドなどを除去する凝集沈澱槽もしくは砂
濾過器などの前処理手段と、前記前処理された被処理水
中のイオン,有機物,バクテリア,微粒子の大部分の除
去に寄与するイオン交換装置,脱炭酸装置(DG),真空脱
気装置(VDG) ,逆浸透装置(RO)などから成る一次純水化
手段と、さらにこの一次純水化処理された被処理水中の
残存有機物などの除去に寄与する紫外線有機物分解装置
(TOC-UV),イオン交換樹脂を充填したポリッシャー装
置,限外濾過膜(UF)(もしくは逆浸透装置(RO))などか
ら成る二次純水化手段を経て微量不純物が完全に除去さ
れた超高純水が得られる。
2. Description of the Related Art Ultrahigh-purity pure water is widely used in fields such as semiconductor manufacturing and pharmaceutical manufacturing.
Then, such ultra-high-purity pure water is usually manufactured by ultra-high-purified water through a pretreatment means, a primary-purification means, and a secondary-purification means in this order. That is,
A pretreatment means such as a coagulating sedimentation tank or a sand filter for removing colloids in raw water, and an ion exchange device that contributes to the removal of most of the ions, organic substances, bacteria and fine particles in the pretreated water to be treated, For depurification means (DG), vacuum degassing equipment (VDG), reverse osmosis equipment (RO), etc., and for removing residual organic substances etc. in the water to be treated which has been subjected to this primary deionization treatment. Contribution UV organic matter decomposition device
(TOC-UV), ion-exchange resin-filled polisher, ultrafiltration membrane (UF) (or reverse osmosis (RO)), etc. Ultra high pure water is obtained.

【0003】図3はこのような超純水化方法のフローチ
ャート例を示したもので、1は凝集沈澱装置1a,重力式
濾過装置1b,前処理済水槽1cから成る前処理手段であ
る。また、2は2床3塔型イオン交換装置2a,逆浸透装
置(RO)2b,真空脱気装置2c,混床型イオン交換装置2d,
一次純水槽2eから成る一次純水化手段であり、さらに3
は紫外線有機物分解装置(TOC-UV)3a,イオン交換樹脂充
填の非再生型ポリッシャー装置3b,限外濾過膜(UF)3cか
ら成る二次純水化手段である。そして、このような処理
工程における一次純水の水質は、一般的に比抵抗≧10 M
Ω・cm,全有機炭素 (TOC)≦30 ppbであり、また二次純
水(超高純水)の水質は、比抵抗≧18 MΩ・cm,全有機
炭素 (TOC)≦ 5 ppbと高純度化されて、ユースポイント
4に送られ実用に供される。
FIG. 3 shows an example of a flow chart of such an ultrapure water purification method. Reference numeral 1 denotes a pretreatment means comprising a flocculation-precipitation apparatus 1a, a gravity type filtration apparatus 1b and a pretreated water tank 1c. Further, 2 is a two-bed three-tower type ion exchange device 2a, a reverse osmosis device (RO) 2b, a vacuum degassing device 2c, a mixed bed type ion exchange device 2d,
It is a primary pure water purification means consisting of the primary pure water tank 2e.
Is a secondary water purifying means composed of an ultraviolet organic substance decomposing device (TOC-UV) 3a, a non-regeneration type polisher device 3b filled with an ion exchange resin, and an ultrafiltration membrane (UF) 3c. The water quality of primary pure water in such a treatment process generally has a resistivity of ≧ 10 M.
Ω · cm, total organic carbon (TOC) ≦ 30 ppb, and the quality of secondary pure water (ultra-high-purity water) is as high as specific resistance ≧ 18 MΩ · cm, total organic carbon (TOC) ≦ 5 ppb. Then, it is sent to the youth point 4 for practical use.

【0004】[0004]

【発明が解決しようとする課題】ところで、前記超純水
化方法で、二次純水化手段3に供給される一次純水中の
微量イオンにおいて、カチオンのほとんどがNa+ であ
り、またアニオンはシリカ(SiO2 ),炭酸ガス(C
O2 ),重炭酸イオン(HCO- 3 )が大部分を占めてい
る。つまり、イオン交換樹脂の選択性は一般的に下記の
とうりで、2価イオンよりも1価イオンの方が悪く、ア
ニオンにおいてはシリカ(SiO2 )が最も悪い。
By the way, in the above ultrapure water purification method, most of the cations are Na + in the trace ions in the primary pure water supplied to the secondary pure water means 3, and the anions are Is silica (SiO 2 ), carbon dioxide (C
O 2 ), bicarbonate ion (HCO - 3 ) account for the majority. That is, the selectivity of the ion exchange resin is generally as follows, and monovalent ions are worse than divalent ions, and silica (SiO 2 ) is the worst anion.

【0005】カチオン交換樹脂の選択性 Na+ <NH+ 4 < K+ <Mg2+<Ca2+ アニオン交換樹脂の選択性 SiO2 < F- < HCO- 3 <Cl- <NO- 3 <SO2+ 4 さらに逆浸透装置(RO)2bにおいても、2価イオンよりも
1価イオンの方が排除率が悪く、溶存ガスであるCO2
除去率は 0といえる。
[0005] Selection of the cation exchange resin Na + <NH + 4 <K + <Mg 2+ <Ca 2+ anion exchange resin selective SiO 2 <F - <HCO - 3 <Cl - <NO - 3 <SO 2+ 4 Further, in the reverse osmosis device (RO) 2b, the removal rate of monovalent ions is lower than that of divalent ions, and it can be said that the removal rate of CO 2 which is a dissolved gas is 0.

【0006】前記したように、二次純水化手段3におい
て一次純水中の微量不純物は除去されるが、先ず紫外線
有機物分解装置(TOC-UV)3aで、 185nmの紫外線が照射さ
れると有機物が分解し有機酸やCO2 になり、これらの有
機酸やCO2 に加え一次純水中に含まれている微量のN
a+ , SiO2 ,CO2 , HCO- 3 を主体とするイオンを、
イオン交換樹脂充填の非再生型ポリッシャー装置3bで完
全に除去した後、限外濾過膜(UF)3cで微粒子やバクテリ
アを除去される。
As described above, trace impurities in the primary pure water are removed in the secondary pure water purification means 3, but first, when the ultraviolet organic substance decomposing device (TOC-UV) 3a is irradiated with ultraviolet rays of 185 nm. Organic matter is decomposed into organic acids and CO 2 , and in addition to these organic acids and CO 2 , a trace amount of N contained in primary pure water
Ions mainly composed of a + , SiO 2 , CO 2 , and HCO - 3 are
After completely removing with a non-regeneration type polisher device 3b filled with an ion exchange resin, fine particles and bacteria are removed with an ultrafiltration membrane (UF) 3c.

【0007】こうした観点から、図3にフローチャート
を示すように、前記二次純水化手段3では、非再生型ポ
リッシャー装置3bとして、たとえば内径 254mm,長さ12
00mm程度のイオン交換塔内に、再生率の高い強酸性カチ
オン交換樹脂と強塩基性アニオン交換樹脂との混合体
(イオン交換容量でほぼ等量比)を高さ 1 m)充填した
構成のものを用いたり、あるいは図4に示すごとく、強
酸性カチオン交換樹脂に対して強塩基性アニオン交換樹
脂との混合割合を高めて充填した同型構成の非再生型ポ
リッシャー装置3b′を、通常の非再生型ポリッシャー装
置3bの前に設置することも試みられている。
From this point of view, as shown in the flow chart of FIG. 3, in the secondary deionizing means 3, the non-regeneration type polisher device 3b has, for example, an inner diameter of 254 mm and a length of 12
A structure in which a mixture of a highly acidic cation exchange resin and a strong basic anion exchange resin (almost equal ratio in ion exchange capacity) with a height of 1 m) is packed in an ion exchange tower of about 00 mm. 4, or as shown in FIG. 4, a non-regeneration type polisher device 3b ′ of the same structure, in which the mixing ratio of the strongly acidic cation exchange resin and the strongly basic anion exchange resin is increased and filled, Installation has also been attempted in front of the mold polisher device 3b.

【0008】二次純水化手段3の構成において、非再生
型ポリッシャー装置3bを上記構成とすることにより、高
純度の(非常に水質の高い)水を得られるが、実用上次
のような問題が認められる。すなわち、連続的な純水化
操作において、運転時間の経過に伴い、非再生型ポリッ
シャー装置3b出口のシリカ微量リークが発生し、ユース
ポイント4での水質低下を招来する。このシリカリーク
レベルは、1 ppb 以下であり、微量シリカ分析の定量下
限の向上によって確認(発見)し得るに至ったものであ
る。
In the structure of the secondary deionizing means 3, by using the non-regeneration type polisher device 3b having the above structure, high-purity (very high water quality) water can be obtained. The problem is recognized. That is, in continuous deionization operation, a slight amount of silica leaks from the outlet of the non-regeneration type polisher device 3b with the lapse of operating time, resulting in deterioration of water quality at the use point 4. This silica leak level is 1 ppb or less, which can be confirmed (discovered) by the improvement of the lower limit of quantification in the analysis of a trace amount of silica.

【0009】本発明はこのような事情に対処してなされ
たもので、シリカ濃度がさらに低減された超高純水化が
可能な超純水化方法の提供を目的とする。
The present invention has been made in view of such circumstances, and an object thereof is to provide an ultrapure water purification method capable of ultrapure water purification in which the silica concentration is further reduced.

【0010】[0010]

【課題を解決するための手段】本発明に係る超純水化方
法は、被処理水を前処理手段と、前記前処理した被処理
水を一次純水化する一次純水化手段と、前記一次純水化
した被処理水を二次純水化する強酸性カチオン交換樹脂
−強塩基性アニオン交換樹脂混合系が充填されたポリッ
シャー装置を備えた二次純水化手段とを具備して成る超
純水化方法において、前記ポリッシャー装置に充填され
た強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂
との混合比を 1/1〜 5/1、充填樹脂層の高さを少なくと
も0.4mに設定し、かつ下記式 0.4m≦充填樹脂層の高さ<0.8mのとき 2×10-2≦充填樹脂層の高さ(m) /被処理水の線速度(m/h) ≦ 8×10-2 0.8m≦充填樹脂層の高さのとき 1.5×10-2≦充填樹脂層の高さ(m) /被処理水の線速度(m/h) ≦ 1×10-1 を満たす通水速度(m/h) で被処理水を通水させることを
特徴とする。
The ultrapure water purification method according to the present invention comprises pretreatment means for treating water to be treated, primary purification means for purifying the pretreated water to be primary purification water, and Secondary purification means provided with a polisher device filled with a strongly acidic cation exchange resin-strongly basic anion exchange resin mixed system for secondary purification of the primary purified water to be treated. In the ultrapure water purification method, the mixing ratio of the strongly acidic cation exchange resin and the strongly basic anion exchange resin filled in the polisher device is 1/1 to 5/1, and the height of the filled resin layer is at least 0.4 m. When set and the following formula 0.4m ≤ height of filled resin layer <0.8m 2 x 10 -2 ≤ height of filled resin layer (m) / linear velocity of treated water (m / h) ≤ 8 x 10 -2 0.8 m ≤ height of filled resin layer 1.5 x 10 -2 ≤ height of filled resin layer (m) / linear velocity of treated water (m / h) ≤ 1 x 10 -1 Water speed (m / h) The feature is that the treated water is passed through.

【0011】そして、前記本発明は次のような経緯に基
づいて成されたものである。すなわち、前記微量シリカ
リークの原因については明確に解明されていないが、Na
+ に対するカチオン交換樹脂のイオン交換速度は、アニ
オンに対するアニオン交換樹脂のイオン交換速度に比較
して遅い。つまり、前記ポリッシャー装置に流入した被
処理液中Na+ のイオン交換速度が最も遅く、一方アニオ
ンのイオン交換ではイオン交換樹脂にたいする選択性の
違いから、CO2 や HCO- 3 ,有機酸が速くイオン交換さ
れ SiO2 が遅くなる。このイオン交換過程において、始
めにCO2 やHCO- 3 ,有機酸がイオン交換樹脂に吸着し
てOH- を発生し、このときNa+ が存在することに伴ない
微量なNaOHを生成し、 SiO2 が吸着し難い状態ないし吸
着した SiO2 が離脱され易い状態を呈して,微量シリカ
リークが起こることになり、通水速度が大きい場合程、
もしくはポリッシャー装置内の強酸性カチオン交換樹脂
/強塩基性アニオン交換樹脂比が低い程、前記微量シリ
カリークの起こる傾向は顕著である。
The present invention is based on the following circumstances. That is, although the cause of the trace amount of silica leak is not clearly understood,
The ion exchange rate of the cation exchange resin for + is slower than the ion exchange rate of the anion exchange resin for the anion. In other words, the ion exchange rate of Na + in the liquid to be treated flowing into the polisher device is the slowest, while in the ion exchange of anions, due to the difference in selectivity with respect to the ion exchange resin, CO 2 and HCO - 3 and organic acids are faster. Exchanged and slows down SiO 2 . In this ion exchange process, started to CO 2 and HCO - 3, the organic acid is adsorbed on the ion exchange resin OH - generates, generates a wake no small amount of NaOH in the presence of this time Na +, SiO When 2 is difficult to be adsorbed or the adsorbed SiO 2 is easily desorbed, a small amount of silica leak will occur.
Alternatively, the lower the strongly acidic cation exchange resin / strongly basic anion exchange resin ratio in the polisher device, the more prominent the tendency of the trace silica leak to occur.

【0012】このような傾向ないし問題に対し、前記の
ごとく二次純水化手段の一部を構成する非再生型ポリッ
シャー装置に充填される強酸性カチオン交換樹脂および
強塩基性アニオン交換樹脂の混合比、イオン交換樹脂層
の高さ、およびイオン交換樹脂層の高さと一次純水の通
水速度を所定の範囲に設定した場合、前記シリカの微量
リーク発生問題を効果的に回避し得ることを確認し、本
発明を達成するに至ったものである。
In order to solve such a tendency or problem, a mixture of a strongly acidic cation exchange resin and a strongly basic anion exchange resin filled in a non-regenerating type polisher device which constitutes a part of the secondary deionizing means as described above. When the ratio, the height of the ion exchange resin layer, and the height of the ion exchange resin layer and the water flow rate of the primary pure water are set within a predetermined range, it is possible to effectively avoid the problem of a slight amount of silica leak. It was confirmed that the present invention has been achieved.

【0013】[0013]

【作用】本発明に係る超純水化方法によれば、前記のご
とく非再生型ポリッシャー装置に充填される強酸性カチ
オン交換樹脂および強塩基性アニオン交換樹脂の混合
比、イオン交換樹脂層の高さを設定し、かつイオン交換
樹脂層の高さを考慮しながら一次純水の通水速度を比較
的低い範囲に選択したことによって、一次純水中に含ま
れるNa+ を完全に吸着除去し、非再生型ポリッシャー装
置内でのNaOHの生成・発生を解消し得るので、シリカリ
ークの発生も全面的に回避され、高品質の超純水を容
易、かつ常に得ることが可能である。
According to the ultrapure water purification method of the present invention, as described above, the mixing ratio of the strongly acidic cation exchange resin and the strongly basic anion exchange resin filled in the non-regeneration type polisher device and the high ion exchange resin layer are high. By setting the height of the ion-exchange resin layer and considering the height of the ion-exchange resin layer and selecting the water flow rate of the primary pure water to a relatively low range, Na + contained in the primary pure water can be completely adsorbed and removed. Since the generation and generation of NaOH in the non-regeneration type polisher can be eliminated, the generation of silica leak can be completely avoided, and high-quality ultrapure water can be easily and constantly obtained.

【0014】[0014]

【実施例】次に図1および図2を参照して本発明の実施
例を説明する。
Embodiments of the present invention will now be described with reference to FIGS.

【0015】図1は本発明に係る超純水化方法において
もちいた二次純水化手段を示すフローチャートであり、
二次純水化手段3′は、紫外線有機物分解装置(TOC-UV)
3a,イオン交換樹脂充填の非再生型ポリッシャー装置3
b″,限外濾過膜(UF)3cから構成されている。ここで、
非再生型ポリッシャー装置3b″は、以下に説明するごと
く構成したものであるが、紫外線有機物分解装置(TOC-U
V)3aおよび限外濾過膜(UF)3cは一般的な市販品である。
すなわち、前記非再生型ポリッシャー装置3b″は、内径
254mm,長さ1200mmの円筒形カラム内に、99%の再生率
を有する強酸性カチオン交換樹脂SK1B(商品名,三菱化
成株式会社製)30 lおよび95%の再生率を有する強塩基
性アニオン交換樹脂 SA10A(商品名,三菱化成株式会社
製)20 lをほぼ一様に混合・調製した混合イオン交換樹
脂が、その充填層の厚さ(高さ) 1m程度に充填した構
成を成している。
FIG. 1 is a flow chart showing a secondary water purification means used in the ultrapure water purification method according to the present invention.
The secondary deionizing means 3'is an ultraviolet organic substance decomposing device (TOC-UV)
3a, non-regeneration type polisher device filled with ion exchange resin 3
b ″, composed of an ultrafiltration membrane (UF) 3c. where:
The non-regeneration type polisher device 3b ″ is configured as described below, but it is a UV organic substance decomposing device (TOC-U
V) 3a and ultrafiltration membrane (UF) 3c are common commercial products.
That is, the non-regenerative polishing device 3b ″ has an inner diameter
In a cylindrical column of 254 mm and 1200 mm in length, 30 l of strongly acidic cation exchange resin SK1B (trade name, manufactured by Mitsubishi Kasei Co., Ltd.) having a regeneration rate of 99% and a strongly basic anion exchange having a regeneration rate of 95% are used. Resin SA10A (trade name, manufactured by Mitsubishi Kasei Co., Ltd.), 20 liters of which are mixed and prepared almost uniformly, has a composition in which the packed bed has a thickness (height) of about 1 m. ..

【0016】このような構成を成す二次純水化手段3′
で、前記図3のフローチャートにおける二次純水化手段
3を置換したシステムとして、一次純水(比抵抗≧15Ω
・cm, SiO2 濃度≦10 ppb,有機物濃度≦30 ppb)を、
前記二次純水化手段3′に通水速度2.0m3 /h (線速度
=40)で連続通水し、非再生型ポリッシャー装置3b″な
どを経させ二次純水化処理して二次純水(超純水)を得
た。この超純水の水質を連続二次純水化処理過程中適宜
サンプリングして評価したところ、比抵抗≧18Ω・cm,
SiO2 濃度は図2に示すごとく検出限界(0.1μg/l)以
下,有機物濃度≦2 ppbでシリカ濃度の極めて低い高品
質な超純水であった。
A secondary water purifying means 3'having such a structure.
As a system in which the secondary deionizing means 3 in the flowchart of FIG. 3 is replaced, the primary deionized water (specific resistance ≧ 15Ω
・ Cm, SiO 2 concentration ≤ 10 ppb, organic matter concentration ≤ 30 ppb)
Water is continuously passed through the secondary deionizing means 3'at a water flow rate of 2.0 m 3 / h (linear velocity = 40), and is subjected to a secondary deionization process through a non-regeneration type polisher device 3b "and the like. Next pure water (ultra pure water) was obtained, and the water quality of this ultra pure water was sampled and evaluated during the process of continuous secondary pure water treatment.
As shown in FIG. 2, the SiO 2 concentration was below the detection limit (0.1 μg / l), the organic substance concentration was ≦ 2 ppb, and the silica concentration was extremely low.

【0017】比較例1 前記実施例の二次純水化手段3′の構成において、非再
生型ポリッシャー装置3b″に充填した99%の再生率を有
する強酸性カチオン交換樹脂SK1B(商品名,三菱化成株
式会社製)17 lおよび95%の再生率を有する強塩基性ア
ニオン交換樹脂SA10A(商品名,三菱化成株式会社製)3
3 lの混合イオン交換樹脂とした他は、前記と同様の条
件で、連続的に二次純水化処理をおこない超純水化され
た水質を、適宜サンプリングして評価したところ、比抵
抗≧18Ω・cmであったが、 SiO2濃度は図2に示すごと
く検出限界(0.1μg/l)以上であった。
Comparative Example 1 In the structure of the secondary deionizing means 3'of the above-mentioned example, a strong acid cation exchange resin SK1B (trade name, Mitsubishi) having a regeneration rate of 99% filled in the non-regenerating type polisher apparatus 3b "was used. Strongly basic anion exchange resin SA10A (trade name, manufactured by Mitsubishi Kasei) with 17 l and 95% regeneration rate 3
Under the same conditions as above, except that 3 l of mixed ion exchange resin was used, secondary pure water treatment was continuously performed, and the quality of ultrapure water was appropriately sampled and evaluated. Although it was 18 Ω · cm, the SiO 2 concentration was above the detection limit (0.1 μg / l) as shown in FIG.

【0018】比較例2 前記実施例の二次純水化手段3′の構成において、二次
純水化手段3′に連続通水する一次純水の通水速度を3.
0m3 /h (線速度=59)とした他は、実施例の場合と同
様の条件で、連続的に二次純水化処理をおこない超純水
化された水質を、適宜サンプリングして評価したとこ
ろ、比抵抗≧18Ω・cmであったが、 SiO2濃度は図2に
示すごとく検出限界(0.1μg/l)以上であった。
Comparative Example 2 In the structure of the secondary deionizing means 3'of the above-mentioned embodiment, the water passing speed of the primary deionized water continuously passing through the secondary deionizing means 3'was 3.
Under the same conditions as in the example, except that 0 m 3 / h (linear velocity = 59), secondary pure water treatment was continuously performed, and the quality of ultrapure water was sampled and evaluated. As a result, the specific resistance was ≧ 18 Ω · cm, but the SiO 2 concentration was above the detection limit (0.1 μg / l) as shown in FIG.

【0019】比較例3 前記比較例1において一次純水の通水速度を3.0m3 /h
(線速度=59)とした他は同様の条件で、連続的に二次
純水化処理をおこない超純水化された水質を、適宜サン
プリングして評価したところ、比抵抗≧18Ω・cmであっ
たが、 SiO2 濃度は図2に示すごとく検出限界(0.1μg/
l)以上であった。
Comparative Example 3 In Comparative Example 1, the water flow rate of primary pure water was 3.0 m 3 / h.
(Linear velocity = 59) Under the same conditions except that the secondary pure water treatment was continuously performed, the quality of the ultrapure water was sampled and evaluated. However, the SiO 2 concentration was lower than the detection limit (0.1 μg /
l) or more.

【0020】なお、上記では一具体例を示したが、非再
生型ポリッシャー装置に充填された強酸性カチオン交換
樹脂と強塩基性アニオン交換樹脂との混合比を 1/1〜 5
/1、充填樹脂層の高さを少なくとも0.4mに設定し、0.4m
≦充填樹脂層の高さ<0.8mのときには 2×10-2≦充填樹
脂層の高さ(m) /被処理水の線速度(m/h) ≦ 8×10-2
また、0.8m≦充填樹脂層の高さのときには、 1.5×10-2
≦充填樹脂層の高さ(m) /被処理水の線速度(m/h) ≦ 1
×10-1と、被処理水の通水速度(m/h) をそれぞれ選択・
設定した場合は、いずれの場合もシリカ濃度の極めて低
い高品質の超純水が得られる。
Although a specific example is shown above, the mixing ratio of the strongly acidic cation exchange resin and the strongly basic anion exchange resin packed in the non-regeneration type polisher device is 1/1 to 5
/ 1, set the height of the filling resin layer to at least 0.4m, 0.4m
≤2 x 10 -2 when the height of the filled resin layer <0.8 m ≤Height of the filled resin layer (m) / linear velocity of treated water (m / h) ≤ 8 x 10 -2 ,
Also, when 0.8 m ≤ height of filled resin layer, 1.5 x 10 -2
≤Height of filled resin layer (m) / linear velocity of treated water (m / h) ≤ 1
Select × 10 -1 and the water flow rate (m / h) of the water to be treated.
When set, high-quality ultrapure water with an extremely low silica concentration can be obtained in any case.

【0021】[0021]

【発明の効果】以上の説明および実施例から明らかなよ
うに、本発明に係る超純水化方法によれば、格別に煩雑
な手段や操作などを要せずに、比抵抗≧18Ω・cm,有機
物濃度≦ 2 ppbで、かつ SiO2 濃度も検出限界(0.1μg/
l)以下とシリカ濃度の極めて低い高品質な超純水を、連
続的に、また容易に得ることが可能であり、半導体装置
の製造、あるいは医薬品の製造などで使用される超高品
質純水の提供に大きく寄与するものといえる。
As is apparent from the above description and the examples, according to the ultrapure water purification method of the present invention, the specific resistance is ≧ 18 Ω · cm without requiring any particularly complicated means or operation. , Organic matter concentration ≤ 2 ppb, and SiO 2 concentration is the detection limit (0.1 μg /
l) It is possible to continuously and easily obtain high-quality ultrapure water with extremely low silica concentration, which is used in semiconductor device manufacturing, pharmaceutical manufacturing, etc. It can be said that it will greatly contribute to the provision of.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超純水化方法の主要部を示すフロ
ーチャート図。
FIG. 1 is a flowchart showing a main part of an ultrapure water purification method according to the present invention.

【図2】本発明に係る超純水化方法による連続操作で得
た二次純水中のシリカ濃度と連続操時間との菅系を本発
明外の場合と比較して示す曲線図。
FIG. 2 is a curve diagram showing a tube system of silica concentration in secondary pure water obtained by continuous operation by the ultrapure water purification method according to the present invention and continuous operation time in comparison with a case outside the present invention.

【図3】前処理手段,一次純水処理手段および二次純水
処理手段から成る超純水化方法のフローチャート図。
FIG. 3 is a flowchart of an ultrapure water purification method including pretreatment means, primary pure water treatment means, and secondary pure water treatment means.

【図4】従来の超純水化方法における二次純水処理手段
を示すフローチャート図。
FIG. 4 is a flowchart showing a secondary pure water treatment means in a conventional ultrapure water purification method.

【符号の説明】[Explanation of symbols]

1…前処理手段 1a…沈澱装置 1b…自力式濾過装
置 1c…前処理済み水槽 2…一次純水処理手段
2a…2床3塔型イオン交換装置 2b…逆浸透装置
2c…真空脱気装置 2d…混床型イオン交換装置
2e…一次純水処理済み水槽 3,3′…二次純水処理
手段 3a…紫外線有機物分解装置3b,3b′,3b″…非
再生型ポリッシャー装置 3c…限外濾過膜 4…ユ
ースポイント
1 ... Pretreatment means 1a ... Precipitation apparatus 1b ... Self-powered filtration apparatus 1c ... Pretreated water tank 2 ... Primary pure water treatment means
2a ... 2 beds, 3 towers type ion exchange device 2b ... Reverse osmosis device
2c ... Vacuum deaeration device 2d ... Mixed bed type ion exchange device
2e ... Primary pure water treated water tank 3, 3 '... Secondary pure water treatment means 3a ... UV organic substance decomposing device 3b, 3b', 3b "... Non-regenerative polishing device 3c ... Ultrafiltration membrane 4 ... Use point

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被処理水を前処理手段と、前記前処理し
た被処理水を一次純水化する一次純水化手段と、前記一
次純水化した被処理水を二次純水化する強酸性カチオン
交換樹脂−強塩基性アニオン交換樹脂混合系が充填され
たポリッシャー装置を備えた二次純水化手段とを具備し
て成る超純水化方法において、 前記ポリッシャー装置に充填された強酸性カチオン交換
樹脂と強塩基性アニオン交換樹脂との混合比を 1/1〜 5
/1、充填樹脂層の高さを少なくとも0.4mに設定し、かつ
下記式 0.4m≦充填樹脂層の高さ<0.8mのとき 2×10-2≦充填樹脂層の高さ(m) /被処理水の線速度(m/h) ≦ 8×10-2 0.8m≦充填樹脂層の高さのとき 1.5×10-2≦充填樹脂層の高さ(m) /被処理水の線速度(m/h) ≦ 1×10-1 を満たす通水速度(m/h) で被処理水を通水させることを
特徴とする超純水化方法。
1. A pretreatment means for treating water to be treated, a primary pure water purification means for converting the pretreated water to be primary purified water, and a purified water to be treated to be secondary purified water. In the ultrapure water purification method, which comprises a secondary pure water purification means provided with a polisher device filled with a strongly acidic cation exchange resin-strongly basic anion exchange resin mixed system, a strong acid filled in the polisher device is provided. The mixing ratio of the basic cation exchange resin and the strongly basic anion exchange resin from 1/1 to 5
/ 1, the height of the filling resin layer is set to at least 0.4m, and the following formula 0.4m ≤ height of the filling resin layer <0.8m 2 x 10 -2 ≤ height of the filling resin layer (m) / Linear velocity of treated water (m / h) ≤ 8 × 10 -2 0.8 m ≤ height of filled resin layer 1.5 × 10 -2 ≤ height of filled resin layer (m) / linear velocity of treated water An ultrapure water purification method characterized in that treated water is passed through at a water flow rate (m / h) satisfying (m / h) ≤ 1 × 10 -1 .
JP4090614A 1992-04-10 1992-04-10 Method for making ultrapure water Withdrawn JPH05285477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4090614A JPH05285477A (en) 1992-04-10 1992-04-10 Method for making ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4090614A JPH05285477A (en) 1992-04-10 1992-04-10 Method for making ultrapure water

Publications (1)

Publication Number Publication Date
JPH05285477A true JPH05285477A (en) 1993-11-02

Family

ID=14003366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4090614A Withdrawn JPH05285477A (en) 1992-04-10 1992-04-10 Method for making ultrapure water

Country Status (1)

Country Link
JP (1) JPH05285477A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116086A (en) * 2004-10-21 2006-05-11 Tokuyama Corp Action pole structure for iontophoresis apparatus and iontophoresis apparatus
JP2011098267A (en) * 2009-11-04 2011-05-19 Japan Organo Co Ltd Pure water production system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100971U (en) * 1975-02-13 1976-08-13
JPS575827U (en) * 1980-06-12 1982-01-12
JPS622380Y2 (en) * 1982-01-18 1987-01-20
JPS63193511U (en) * 1987-05-30 1988-12-13

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100971U (en) * 1975-02-13 1976-08-13
JPS575827U (en) * 1980-06-12 1982-01-12
JPS622380Y2 (en) * 1982-01-18 1987-01-20
JPS63193511U (en) * 1987-05-30 1988-12-13

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116086A (en) * 2004-10-21 2006-05-11 Tokuyama Corp Action pole structure for iontophoresis apparatus and iontophoresis apparatus
JP2011098267A (en) * 2009-11-04 2011-05-19 Japan Organo Co Ltd Pure water production system and method

Similar Documents

Publication Publication Date Title
JP3426072B2 (en) Ultrapure water production equipment
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
CN110451704B (en) Method for treating fluorine-containing reuse water
JPH1085743A (en) Method and apparatus for treating water containing boron
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
JP2000354729A5 (en)
JP3413883B2 (en) Pure water production equipment
JP3992299B2 (en) Ultrapure water production equipment
JPH0252088A (en) Apparatus for making desalted water
JP3319053B2 (en) Treatment method for fluoride-containing water
JPH0638953B2 (en) High-purity water manufacturing equipment
JPS6336890A (en) Apparatus for producing high-purity water
JPH05285477A (en) Method for making ultrapure water
JPH1080684A (en) Device and method for treating boron-containing water
JP3849724B2 (en) Production method of high purity hydrogen peroxide water
JPH10202296A (en) Ultrapure water producer
JPH0137997B2 (en)
JPH07962A (en) Production of pure water
JP3304412B2 (en) Pure water production method
JP2891790B2 (en) Regeneration method of anion exchange resin
JP3613376B2 (en) Pure water production apparatus and pure water production method
JP3951200B2 (en) Pure water production equipment
JPH05309398A (en) Apparatus for producing pure water
JP3543435B2 (en) Ultrapure water production method
JP2742976B2 (en) Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706