JPH05275528A - Forming method of element isolating region - Google Patents

Forming method of element isolating region

Info

Publication number
JPH05275528A
JPH05275528A JP6891992A JP6891992A JPH05275528A JP H05275528 A JPH05275528 A JP H05275528A JP 6891992 A JP6891992 A JP 6891992A JP 6891992 A JP6891992 A JP 6891992A JP H05275528 A JPH05275528 A JP H05275528A
Authority
JP
Japan
Prior art keywords
silicon
trench
oxide film
silicon oxide
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6891992A
Other languages
Japanese (ja)
Inventor
Tomoyuki Hikita
智之 疋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6891992A priority Critical patent/JPH05275528A/en
Publication of JPH05275528A publication Critical patent/JPH05275528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To selectively form silicon oxide film in a trench without dispersion on a wafer surface thereby enabling a trench type isolating region in high mass productivity to be formed by a method wherein amorphous silicon is buried-in the trench to be an element isolating region to be annealed later. CONSTITUTION:A silicon oxide film 2, a silicon nitride film 3 and another silicon oxide film 4 are successively formed on a silicon sibstrate 1 and then the part to be an element isolating region 10 is etched away to form a trench 5. Next, the other silicon oxide film 6 and another silicon nitride film 7 are formed inside the trench 5 to form a sidewall on the trench 5 side simultaneously removing the silicon oxide film 6 and the silicon nitride film 7 to expose the silicon substrate 1. Next, amorphous silicon 8 is deposited on the whole surface previously implanted with ions so as to bury-in a single crystalline silicon 9 inside the trench 5 by annealing step and then oxidized to form the element isolating region 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、素子分離領域の形成方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an element isolation region.

【0002】[0002]

【従来の技術】理想的なIC,LSIの分離領域には、
出来るだけ小さな面積で高い分離耐圧と反転電圧を有す
ることが望まれている。その内で、トレンチ分離法は、
現在最も小面積での分離が実現可能である技術である。
2. Description of the Related Art In the ideal IC / LSI separation area,
It is desired to have a high isolation breakdown voltage and a high inversion voltage in the smallest possible area. Among them, the trench isolation method is
This is the technology that can currently achieve the smallest separation.

【0003】以下に、従来のトレンチを用いた素子分離
領域の形成工程(トレンチ分離法)について説明する。
図2は、従来のトレンチを用いた素子分離領域の形成工
程を示す。まず、シリコン基板1上にシリコン酸化膜2
及びシリコン窒化膜3を順に堆積した後、素子分離領域
となる領域のシリコン窒化膜3,シリコン酸化膜2及び
シリコン基板1をエッチングし、トレンチ5を形成する
(図2(a))。
The conventional process for forming an element isolation region using a trench (trench isolation method) will be described below.
FIG. 2 shows a process of forming a device isolation region using a conventional trench. First, the silicon oxide film 2 is formed on the silicon substrate 1.
After the silicon nitride film 3 and the silicon nitride film 3 are sequentially deposited, the silicon nitride film 3, the silicon oxide film 2 and the silicon substrate 1 in the region to be the element isolation region are etched to form the trench 5 (FIG. 2A).

【0004】次に、熱酸化法により、トレンチ5の内面
にシリコン酸化膜6を形成した後、全面にCVD法によ
り、シリコン窒化膜7を形成し、エッチバックを行いト
レンチ5側面部にサイドウォールを形成するとともに、
トレンチ5底面部のシリコン基板1を露出させ、チャン
ネルストッパー用の不純物をイオン注入する。その後ポ
リシリコン11を全面に堆積した後、レジスト12を回
転塗布し、完全に平坦化する(図2(b))。
Next, a silicon oxide film 6 is formed on the inner surface of the trench 5 by a thermal oxidation method, and then a silicon nitride film 7 is formed on the entire surface by a CVD method and etched back to form a sidewall on the side surface of the trench 5. Together with forming
The silicon substrate 1 on the bottom surface of the trench 5 is exposed, and impurities for a channel stopper are ion-implanted. After depositing polysilicon 11 on the entire surface, a resist 12 is spin-coated and completely flattened (FIG. 2B).

【0005】次に、ポリシリコン11とレジスト12と
のエッチングレートが1:1となるエッチ条件でエッチ
ングを行い、トレンチ5内にのみポリシリコン11を残
し(図2(c))、熱酸化を行い、トレンチ5内のポリ
シリコン11を完全に酸化し、素子分離領域10を形成
する(図2(d))。
Next, etching is carried out under the etching conditions such that the etching rate of the polysilicon 11 and the resist 12 is 1: 1, leaving the polysilicon 11 only in the trench 5 (FIG. 2 (c)) and performing thermal oxidation. Then, the polysilicon 11 in the trench 5 is completely oxidized to form the element isolation region 10 (FIG. 2D).

【0006】[0006]

【発明が解決しようとする課題】上記工程を用いた場
合、ポリシリコン11をトレンチ5内に埋め込み、レジ
スト12にて平坦化を行っているが、平坦化を行うには
レジスト12の膜厚はかなり厚くなるので、エッチング
時間は長くなり、また、ポリシリコン11とレジスト1
2とのエッチング比を1:1にするためには工程が複雑
になり、ウェハー面内でのバラツキが大きくなるため、
量産には不向きである。
When the above steps are used, the polysilicon 11 is buried in the trench 5 and the resist 12 is used for flattening. Since it becomes considerably thick, the etching time becomes long, and the polysilicon 11 and the resist 1
In order to make the etching ratio with 2 to 1: 1, the process becomes complicated and the variation in the wafer surface becomes large.
Not suitable for mass production.

【0007】本発明は、レジストによる平坦化技術を用
いず、選択的にトレンチ内にシリコン酸化膜を埋め込
む、量産に適した素子分離領域の形成方法を提供するこ
とを目的とする。
It is an object of the present invention to provide a method for forming an element isolation region suitable for mass production, in which a silicon oxide film is selectively buried in a trench without using a planarization technique using a resist.

【0008】[0008]

【課題を解決するための手段】本発明の素子分離領域の
形成方法は、シリコン基板上に第1シリコン酸化膜,第
1シリコン窒化膜及び第2シリコン酸化膜を順に形成す
る工程と、素子分離領域となる領域の前記第1,第2シ
リコン酸化膜,第1シリコン窒化膜及びシリコン基板を
エッチングし、所定の深さの溝を形成する工程と、前記
溝の底面へ、前記シリコン基板と同一導電型の不純物を
イオン注入する工程と、前記溝部に第3シリコン酸化膜
及び第2シリコン窒化膜によるサイドウォールを形成す
る工程と、前記第2シリコン酸化膜,第2シリコン窒化
膜及びシリコン基板上にアモルファスシリコンを堆積さ
せ、アニール処理により、前記溝内の所定の厚さまで前
記アモルファスシリコンを単結晶化する工程と、前記ア
モルファスシリコンを選択的に除去した後、前記単結晶
化したシリコンを酸化する工程とを有することを特徴と
するものである。
A method of forming an element isolation region according to the present invention comprises a step of sequentially forming a first silicon oxide film, a first silicon nitride film and a second silicon oxide film on a silicon substrate, and element isolation. The step of etching the first and second silicon oxide films, the first silicon nitride film and the silicon substrate in a region to be a region to form a groove having a predetermined depth, and the same bottom surface of the groove as the silicon substrate. A step of ion-implanting a conductivity type impurity; a step of forming a sidewall of a third silicon oxide film and a second silicon nitride film in the groove; a step of forming the second silicon oxide film, a second silicon nitride film and a silicon substrate. A step of depositing amorphous silicon on the amorphous silicon and annealing the amorphous silicon to a predetermined thickness in the groove; After selective removal of, it is characterized in that a step of oxidizing the single crystal silicon.

【0009】[0009]

【作用】上記発明を用いることにより、アモルファスシ
リコンをトレンチ内に埋め込み、アニールによりトレン
チ内に単結晶シリコンを形成し、熱酸化によりロコス酸
化膜をレジストによる平坦化、アッシングを行わず形成
することができる。
By using the above invention, it is possible to fill amorphous silicon in a trench, form single crystal silicon in the trench by annealing, and form a locos oxide film by thermal oxidation without using a resist for flattening and ashing. it can.

【0010】[0010]

【実施例】以下、一実施例に基づいて、本発明を詳細に
説明する。
The present invention will be described in detail below based on an example.

【0011】図1は、本発明の一実施例の製造工程図で
ある。まず、シリコン基板1上に、約1050℃で熱酸
化し、膜厚約500Åのシリコン酸化膜2を形成し、C
VD法によりシリコン窒化膜3を膜厚約1200Å形成
し、連続的にCVD法により、ノンドープ・シリコン酸
化膜4を膜厚2000Å形成する。上記ノンドープ・シ
リコン酸化膜4は、アモルファスシリコン8の選択的除
去を行うために形成する。次に、素子分離領域となる領
域のシリコン酸化膜2,4及びシリコン窒化膜3を除去
し、シリコン基板1を約3000Åエッチングし、トレ
ンチ5を形成する(図1(a))。
FIG. 1 is a manufacturing process diagram of an embodiment of the present invention. First, thermal oxidation is performed on a silicon substrate 1 at about 1050 ° C. to form a silicon oxide film 2 having a film thickness of about 500Å, and C
The silicon nitride film 3 is formed to a film thickness of about 1200Å by the VD method, and the non-doped silicon oxide film 4 is formed to a film thickness of 2000Å by the continuous CVD method. The non-doped silicon oxide film 4 is formed in order to selectively remove the amorphous silicon 8. Next, the silicon oxide films 2 and 4 and the silicon nitride film 3 in the regions to be the element isolation regions are removed, the silicon substrate 1 is etched by about 3000 Å, and trenches 5 are formed (FIG. 1A).

【0012】次に、約1050℃の熱酸化により、トレ
ンチ5内側表面に膜厚約500Åのシリコン酸化膜6を
形成し、次に、全面にCVD法を用いて、シリコン窒化
膜7を膜厚約1500Å堆積し、エッチングガスとして
CF4及びCHF3をそれぞれ流量約90SCCM及び約
30SCCMで流し、圧力約1600mTorrでエッ
チバックを行い、トレンチ5側面にサイドウォールを形
成すると同時に、トレンチ5底面のシリコン酸化膜6及
びシリコン窒化膜7を除去し、シリコン基板1を露出さ
せる。その後、チャンネルストッパー形成のため、加速
エネルギー約50keV,ドーズ量約4×1013ion
s/cm2の条件で、ボロンのイオン注入を行う。次
に、減圧CVD法で、例えば、温度約500℃,圧力約
190mTorrでジシラン(Si26)を水素還元す
ることにより、アモルファスシリコン8を全面に膜厚約
1500Åに形成する(図1(b))。
Next, a silicon oxide film 6 having a film thickness of about 500 Å is formed on the inner surface of the trench 5 by thermal oxidation at about 1050 ° C. Then, a silicon nitride film 7 is formed on the entire surface by a CVD method. About 1500 Å is deposited, CF 4 and CHF 3 are flown as etching gas at a flow rate of about 90 SCCM and about 30 SCCM, respectively, and etch back is performed at a pressure of about 1600 mTorr to form a sidewall on the side surface of the trench 5 and, at the same time, to oxidize silicon on the bottom surface of the trench 5. The film 6 and the silicon nitride film 7 are removed to expose the silicon substrate 1. Then, for forming a channel stopper, the acceleration energy is about 50 keV and the dose is about 4 × 10 13 ion.
Boron ion implantation is performed under the condition of s / cm 2 . Next, by a low pressure CVD method, for example, disilane (Si 2 H 6 ) is hydrogen-reduced at a temperature of about 500 ° C. and a pressure of about 190 mTorr to form amorphous silicon 8 on the entire surface to a film thickness of about 1500Å (see FIG. b)).

【0013】次に、1000〜1100℃で30〜60
分間アニール処理をすることにより、シリコン基板1と
接触している部分からトレンチ5内のアモルファスシリ
コン8のみを単結晶化する(図1(c))。
Next, 30 to 60 at 1000 to 1100 ° C.
By performing the annealing treatment for a minute, only the amorphous silicon 8 in the trench 5 is single-crystallized from the portion in contact with the silicon substrate 1 (FIG. 1C).

【0014】次に、単結晶化されなかったアモルファス
シリコン8を水酸化カリウム(KOH)又はフッ酸(H
F)/硝酸(HNO3)を用いたウェットエッチングに
より除去し、続いて、フッ酸(HF)を用いたウェット
エッチングによりシリコン酸化膜4を除去する(図1
(d))。
Next, the amorphous silicon 8 which has not been single-crystallized is treated with potassium hydroxide (KOH) or hydrofluoric acid (H).
F) / nitric acid (HNO 3 ) is removed by wet etching, and then the silicon oxide film 4 is removed by wet etching using hydrofluoric acid (HF) (FIG. 1).
(D)).

【0015】次に約1050℃で約100分間,O2
2雰囲気中でトレンチ5内の単結晶化シリコン9を酸
化し、素子分離領域となるシリコン酸化膜10を形成す
る(図1(e))。
Next, at about 1050 ° C. for about 100 minutes, O 2 /
The single crystallized silicon 9 in the trench 5 is oxidized in an H 2 atmosphere to form a silicon oxide film 10 serving as an element isolation region (FIG. 1E).

【0016】[0016]

【発明の効果】以上、詳細に説明した様に、本発明を用
いて、アモルファスシリコンを素子分離領域となるトレ
ンチに埋め込み、アニール処理することにより、選択的
にトレンチ内にシリコン酸化膜を形成することができ
る。このため、レジストによる平坦化技術を用いた場合
の様なウェハー面内でのバラツキも無く、長時間のエッ
チングも要せず、量産性に富んだトレンチ型素子分離領
域の形成が可能になる。
As described above in detail, according to the present invention, a silicon oxide film is selectively formed in a trench by embedding amorphous silicon in a trench to be an element isolation region and performing an annealing treatment. be able to. Therefore, there is no variation within the wafer surface as in the case of using the flattening technique using a resist, long-time etching is not required, and it is possible to form a trench type element isolation region rich in mass productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の製造工程図である。FIG. 1 is a manufacturing process diagram of an example of the present invention.

【図2】従来の素子分離領域の形成工程図である。FIG. 2 is a process diagram of forming a conventional element isolation region.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2,4,6,10 シリコン酸化膜 5 トレンチ 3,7 シリコン窒化膜 8 アモルファスシリコン 9 単結晶化シリコン 11 ポリシリコン 12 レジスト 1 Silicon Substrate 2,4,6,10 Silicon Oxide Film 5 Trench 3,7 Silicon Nitride Film 8 Amorphous Silicon 9 Single Crystalline Silicon 11 Polysilicon 12 Resist

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板上に第1シリコン酸化膜,
第1シリコン窒化膜及び第2シリコン酸化膜を順に形成
する工程と、 素子分離領域となる領域の前記第1,第2シリコン酸化
膜,第1シリコン窒化膜及びシリコン基板をエッチング
し、所定の深さの溝を形成する工程と、 前記溝の底面に、前記シリコン基板と同一導電型の不純
物をイオン注入する工程と、 前記溝部に第3シリコン酸化膜及び第2シリコン窒化膜
によるサイドウォールを形成する工程と、 前記第2シリコン酸化膜,第2シリコン窒化膜及びシリ
コン基板上にアモルファスシリコンを堆積させ、アニー
ル処理により、前記溝内の所定の厚さまで前記アモルフ
ァスシリコンを単結晶化する工程と、 前記アモルファスシリコンを選択的に除去した後、前記
単結晶化したシリコンを酸化する工程とを有することを
特徴とする、素子分離領域の形成方法。
1. A first silicon oxide film on a silicon substrate,
A step of sequentially forming a first silicon nitride film and a second silicon oxide film, and etching the first and second silicon oxide films, the first silicon nitride film and the silicon substrate in a region to be an element isolation region to a predetermined depth. A step of forming a groove having a same height, a step of ion-implanting an impurity of the same conductivity type as that of the silicon substrate into a bottom surface of the groove, and a sidewall formed of a third silicon oxide film and a second silicon nitride film in the groove part. And a step of depositing amorphous silicon on the second silicon oxide film, the second silicon nitride film and the silicon substrate, and annealing the amorphous silicon to a predetermined thickness in the groove by annealing. A step of oxidizing the single crystallized silicon after selectively removing the amorphous silicon. Forming method of the release area.
JP6891992A 1992-03-27 1992-03-27 Forming method of element isolating region Pending JPH05275528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6891992A JPH05275528A (en) 1992-03-27 1992-03-27 Forming method of element isolating region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6891992A JPH05275528A (en) 1992-03-27 1992-03-27 Forming method of element isolating region

Publications (1)

Publication Number Publication Date
JPH05275528A true JPH05275528A (en) 1993-10-22

Family

ID=13387547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6891992A Pending JPH05275528A (en) 1992-03-27 1992-03-27 Forming method of element isolating region

Country Status (1)

Country Link
JP (1) JPH05275528A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100223907B1 (en) * 1996-11-06 1999-10-15 구본준 Semiconductor element isolation film manufacturing method
KR100349377B1 (en) * 1999-12-30 2002-08-21 주식회사 하이닉스반도체 Method of making trench used amorphous silicon
KR100442852B1 (en) * 1997-09-12 2004-09-18 삼성전자주식회사 Method for forming trench isolation region to embody isolation region proper for high integrated semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100223907B1 (en) * 1996-11-06 1999-10-15 구본준 Semiconductor element isolation film manufacturing method
KR100442852B1 (en) * 1997-09-12 2004-09-18 삼성전자주식회사 Method for forming trench isolation region to embody isolation region proper for high integrated semiconductor device
KR100349377B1 (en) * 1999-12-30 2002-08-21 주식회사 하이닉스반도체 Method of making trench used amorphous silicon

Similar Documents

Publication Publication Date Title
US4925805A (en) Method of manufacturing a semiconductor device having an SOI structure using selectable etching
EP0276292B1 (en) Process for fabricating stacked mos structures
JP2000216386A (en) Fabrication of semiconductor device having junction
JPH05275528A (en) Forming method of element isolating region
JPH06232247A (en) Manufacturing of semiconductor layer isolated on insulation layer
JP3336604B2 (en) Method for manufacturing semiconductor device
JPS6252950B2 (en)
JPH023244A (en) Manufacture of semiconductor device
JP2003282869A (en) Method for fabricating semiconductor device
JPH04151852A (en) Manufacture of semiconductor device
JPH11330281A (en) Manufacturing process of bipolar and bicmos device
JP2854019B2 (en) Method for manufacturing MOS type semiconductor device
JPH05304203A (en) Fabrication of semiconductor device
KR100382612B1 (en) Method for forming the void wafer
JPS58213444A (en) Manufacture of semiconductor device
JPH0582514A (en) Manufacture of semiconductor device
KR19990062507A (en) Method of forming isolation film for semiconductor device
JPH0334332A (en) Manufacture of semiconductor device
JP2002118261A (en) Semiconductor device and its fabricating method
JPS5928356A (en) Manufacture of semiconductor device
JPS62131538A (en) Manufacture of semiconductor device
JP2000188325A (en) Manufacture of semiconductor device
JPH0529310A (en) Manufacture of semiconductor device
JPH04309226A (en) Manufacture of semiconductor device
JPH0745694A (en) Semiconductor device and manufacture thereof